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Introduction to Machine Vision
 

Definition: Relationships to Image Processing, Pattern Classification and
 

Scene Analysis.

The Machine Vision Association of the Society of Manufacturing Engineers

defines machine vision as "the use of devices for optical non-contact sensing

to automatically receive and interpret an image of a real scene, in order to

obtain information and/or control machines or processes". The references to

‘automatic interpretation' and to 'real scenes' are critical parts of the

definition since they help to distinguish machine vision from three closely

allied fields

* Image Processing

* Pattern Classification

* Scene Analysis

each of which has contributed useful techniques.

Image Processing (often referred to as image enhancement) is concerned with

the generation of new images from existing images. The techniques used,

mainly derived from linear systems theory, are concerned with noise

reduction, deblurring and edge enhancement. The end result is still an

image, for interpretation by a human observer.

Pattern Classification is concerned with the identification of objects by

means of their features, such as total object image area, perimeter length,

ratio of perimeter squared to area. The value obtained for a particular

feature becomes the co-ordinate of a feature point in a feature space, a

multi-dimensional space in which there is one dimension for each feature

measured. An unknown object is identified by comparing the distances

between its feature points and those of various object types. The most

likely identification is given by the smallest distance. A simple example

is given as Figure 1.



 

The approach as explained assumes that sample feature combinations from images

of real objects form uniform, multi-dimensicnal Gaussian clusters around the

ideal points in feature space. Unfortunately, analysis is not. straight-

forward; for example, features may interact producing elliptical

distributions, clusters may not look Gaussian, so much more mathematically

complex classification methods have been developed (see Pattern Classification

and Scene Analysis : Duda and Hart).

Finally, the starting point for Scene Analysis is a low level symbolic

description, such as a line representation of plane faced objects. The

objective here is to transform the low level description into a higher level

description that is in a more useful form for the task in hand. This might

contain information about spatial relationships between bodies, their shapes

and their identities.

Application Areas

There are three broad areas of application for machine vision systems in

industry:

* Inspection. This is the most important area. In particular, automated

inspection is frequently the only practical way of checking products to the

standards imposed by product liability law which, in some countries, imposes

penalties on manufacturers whose products are found to be defective, without

any need for proor of negligence on the user's part. Tasks include not only

visual examination for defects, but also measurement of dimensions, counting

items, checking cf orientation, and so on.

® Guidance. This 1s probably the most rapidly growing application area.

It includes control of manipulators and unmanned vehicles, and so on, in

parts handling, sorting and transport. The vision requirements are quite

different from those of inspection.

® Recognition. In the industrial environment where parts delivery is highly

organised there is relatively little need for systems which recognise parts

from their shapes. However, with increasing emphasis on automated assembly

of small batches of objects, vision systems which can quickly recognise

unsorted parts will become more and more important.
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In 1983, the size of the North American market for machine vision systems was

$30m. Today, it is around $150m, and is estimated to rise to approximately

$850m in 1990. This rapid rise in practical applications is almost wholly

attributable to the steeply declining cost of computing power. First,

machine vision is greedy for computer memory. Typically, an image is

512 x 512 picture elements, with each element representing one of 256 grey

levels (i.e. each pixel requires one byte of memory), leading to a need for a

quarter of a Megabyte. Second, machine vision techniques are greedy for

processing cycles. For example, an edge detector may require a_ thousand

computer operations per picture element, implying more than 250 million

operations on a single image. A moderately powerful machine, capable of

executing a million operations per second, would take about five minutes to

apply such a filter to an image. In an effort to produce machine vision

systems capable of processing images in real time, much time and effort has

been devoted to the construction of special purpose parallel processors. For

those based on cellular arrays, as Figure 2 shows, there has been an increase

in processing speed of a thousand fold every ten years. However, these

devices are still expensive. By and large, practical applications have been

restricted to the simplest possible tasks. The paradigmatic situation is

that of a single object, presented against a high-contrast background, with

lighting controlled to eliminate shadows, highlights or other features that

would make analysis difficult. An object is recognised by extracting

features from a 2-D image, and by matching these features against 2-D object

descriptions stored in memory. This limits the system's recognition to

known objects observed from standard viewpoints. Many tasks naturally fit

these constraints or can be readily engineered to do so, using special

lighting arrangements and other artifices. Some examples include picking

parts off a moving conveyor belt, bonding leads to semi-conductor chips and

inspecting bottles for misaligned labels. Case studies of other

applications are given in Automated Visual Inspection: Batchelor et al., pp

479-534; Machine Vision Sourcebook: Braggins et al., pp 287-343.

So, in summary, the limitations of current industrial vision systems can be

stated as a set of requirements:

 



High contrast between object and background
No shadows ,
Single objects (no overlaps, i.e. no occlusion)
2-D object descriptions

Rigid objects
Standard viewpoint

Some examples of tasks beyond current limitations include:

Bin picking

Recognition of parts suspended from an overhead conveyor

Recognition of non-rigid objects

Fault detection

Robot vehicles

Bin picking, for example, is hard because parts of objects in a jumble have

low contrast, and occlude each other, making it difficult to isolate separate

parts in an image. Inspecting parts on a finished assembly is difficult for

the same reason, and is less amenable toengineering simplification, such as

dumping the contents of a bin on a surface to separate the individual parts.

Swinging parts on an overhead conveyor are not constrained to maintain a

standard viewpoint. Non-rigid objects can assume a continuum of

configurations and thus do not lend themselves tocharacterisation in terms of

fixed 2-D prototypes. Similarly, it is impractical to model in detail the

appearance of all conceivable flaws (dents, scratches, blemishes, and so

forth) in a fault inspection task. An archetypical example of a class of

tasks that are inherently difficult to sustain are those involving robot

vehicles in outdoor environments, such as construction site clearing,

forestry and underwater maintenance of oil well equipment.

Content of course

We will begin by considering techniques for image capture, including lighting

and viewing techniques. Next, we will consider the problem of characterising

binary images of two-dimensional objects to achieve identification, using both

connectivity and boundary tracking techniques. Thereafter, we will consider

techniques for extracting edge points from the grey level representation and

for combining them to produce an edge representation of the object(s) in a

scene. This leads to the problem of segmentation: splitting up the edge

representation into separate bodies, i.e. scene analysis. Our final task

will be to consider the problem of generating and using 3-D models to identify

instances of objects, beginning with Roberts' classical approach.
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Figure 4 A feature space. An unknown object is identified according to the
distances between the unknown and the models.
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Lighting and Viewing

In any machine vision problem the quality of the lighting is extremely

important. Frequently, through poor choice of methods, key features are

obscured by glare or the light intensity at the detector is too low.

Illumination equipment

This can be considered in two broad categories,

(i) lamps

(ii) equipment for regulating, manipulating and directing light

from these lamps.

Types of lamps, their characteristics and uses are summarised in Table 1 (from

Batchelor et al., 1985). Equipment for matching a lamp to the system's

requirements are listed in Table 2 (also from Batchelor et al., 1985).

In choosing a lamp, one has to take account of the:

wavelength required

intensity required

area to be illuminated

reflectivity of the object
transmission efficiency of image acquisition system

space available.x
*

Ke
H
K

OK

Two of the most important factors are spectral distribution and shadowing.

Besides visible light, most of the lamps in Table 1 radiate considerable

amounts of infra red. Each has its own characteristic continuous spectral

distribution: some of these have one or more spikes while others have near

Gaussian distributions. Also, the tungsten filament lamps tend to project

shadows of their filaments on to the viewing surfaces. Finally, while

fluorescent lamps do not generate shadows, their light is not uniform along

their length.  



Factors which have to be taken into account in choosing devices for

Manipulating the light include

Defects
Transmission efficiency

Filter characteristics

Diffuser characteristics
Condenser characteristics

Reflector characteristics

Intensity requirements«
e
R
e
K

Finally, some typical illumination problems and possible solutions are given

in Table 3 (from Batchelor et al., 1985).

Optics

In most machine vision applications, an object's image will be formed on the

sensor by a lens, where the sensor is typically a television camera. The

sensor's size, its resolving power and the system length determine the initial

optics design. Since the majority of sensors have a resolution limit

expressible in terms of a number of picture elements per picture height (or

width), normally a magnification value is selected that matches the detail in

the image to the sensor's resolution. Having decided upon the magnification

required and the system's length, the focal length of the lens is calculated

by means of the lens formula

ai
v

tll
fu

3 uw

c
l
<

where f is the focal length, u is the object-to-lens distance, v is the image-

to-image lens distance, and m-is the magnification.

Some examples of the use of the simple lens are given in Figure 1 (from

Batchelor et al., 1985). Particularly when working with images of 3-D

objects, the depth of focus is imparant. The lens should be chosen such that

the objects are within the distance defined by the depth of focus divided by

the square of the magnification of the system. This is known as the depth
 

of field. Since u and v have a non-linear relationship, the depth of

field is not symmetrically disposed about the object plane (as shown in

Figure 1b).

 



 

 

 

 

Relationship between resolution and contrast
 

Tne image quality of a lens is specified as the relationship between

resolution and contrast, where contrast is defined as the difference between

the intensities in light and dark areas of the image detail normalised by the

difference between white and solid black areas. By using an increasingly
 

fine pattern of black and white stripes (a grating) as test object, the image

of the stripes will gradually become grey making them difficult to distinguish.

This is due to lens defects called aberrations which blur the image. Under

monochromatic light, typical types of aberration include:

* Spherical aberration. Different focus points for light rays passing

through the lens centrally and off-centre.

® Coma. Comet-shaped images of point objects produced by oblique, off-centre

light rays.

® Astigmatism. Different parts of image in focus at different distances from
lens.

® Field of curvature. Variation in focus across image when a flat sensor is
used since the surface of best focus is domed.

If white light is used, chromatic aberrations also occur:

® Longitudinal chromatic aberration. Colour fringes appear on each image

plane, since light of different colour comes to a focus at different
distances from the lens.

"Transverse chromatic aberration. Oblique rays of different colours strike

the image plane at different points, causing differences of magnification.

The above problems can be minimised by using a narrow colour band of light and

stopping down the lens so that only its central portion is used {provided

sufficient light is available).

Examples of lighting and viewing techniques
 

Sixty three methods of lighting and viewing scenes are described by Batchelor

(Batchelor et al., 1985). Some of the most useful are:

Method 1 - to provide uniform, omni-directional

illumination (see Figure 2);

Method 2 ~ to view silhouettes (see Figure 3);

Method 3 - to acquire 3-D shape information
(see Figure 4).

 



Relationship between scene and image

Since we will be dealing either with 2-D silhouette images or with 2-D images

of polyhedral objects, the relationship between the scene and the image is

relatively straightforward. To further simplify the analysis, we will start

by considering scenes containing single objects.

The purpose of the lighting and viewing techniques described above is to cause

light reflected from the scene to be focussed on to the sensitive surface of a

photo transducer where it forms patches of light and dark. It is the

transitions in luminance that carry information about the features of the

objects in the scene, i.e. the bordering edge in the case of a 2-D silhouette

image, and the external and internal edges in the case of 2-D images of

polyhedral objects.

In the case of incoherent illumination of laminar objects, the intensity

profile of a light-to-dark transition in an image formed by a perfect lens is

shown in Figure 5 (from Batchelor et al., 1985). Notice that the true

position of the edge is at the 50% intensity point, and that this is

independent of the degree of blur. However, the actual position may vary

from this point due to the effects of electronic noise, lens aberrations, and

so on.

The intensity profile across an edge of a laminar object is somewhat different

when the light is coherent, as shown in Figure 6 (from Batchelor et al., 1985)

where the edge is located at 25% full intensity. In this case, the edge is

sharper than an edge generated by incoherent light.

Note that thick edges cause further degradation of the ideal edge intensity

case, making it impossible to analyse except in simple cases. Figure 7 (also

from Batchelor et al., 1985) illustrates the intensity profile for a perfect

thick edge, and shows how focusing can remove spurious reflections. However,

the majority of thick edges are unlikely to be perfect, so the intensity

profile will be significantly degraded.

Ideally, one would like to examine each transition in image luminance and

classify the type of edge producing that transition. What the above analysis

shows is the difficulty of doing this due to degradation introduced by factors

outside the user's control.

 



 

 

 

Also, the luminance transitions might not necessarily specify the edges of

surfaces of objects in the scene at all. Instead, they might be produced by

highlights, shadows, texture gradients across surfaces, dirty surfaces,

surface markings such as scratches or printed letters on a box. In other

words, the information in the luminance distribution is not specific to its

source, i.e. we cannot determine unambiguously which property of the physical

world is represented by a given luminance distribution. Most of the time,

much of this information will act as extrinsic noise. In other words, the

information will not be relevant to the visual system's immediate purpose:

it will merely mislead and distract it, and lengthen processing time. For

example, printed letters on the surface of a tin are "noise" when the

perceiving system's goal is to extract contour information; but when it is

trying to identify the contents of the tin, the noise-versus-information

relationship is reversed.

In conclusion, no matter now much care is taken in setting up lighting and

viewing conditions, and matching them to the characteristics of the sensor

(see next note), noise in images is a fact of life in the real world. It is

usually not possible to remove all of it, though some can be got rid of by

judicious pre-processing techniques which will be encountered in the next

note.
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Wattage and . Envelope Other inspection
Types oflamp dimensions Cheracteriatics shapes applications Yanetions uses

Tungsten: 0.25-1000 Ws Non-uniformport source Cyhndncel~ instrument peneis dens end - Miniatures
Blamert* 25-180mm oie. Flux shape primaniy Fi types nding 8 comes

Beam engie 19- 2 filamemt shope and tmenature Vehicies Cras, opaland jens
yo - ox dghting

Narrowdeem with integrat an
jens lerge wettages spothghts Sow! reflector Occasonelly bght

Rough service boxes
Low intenesty
uminston

Shon-weve Penetration of
intrared antrared tranaiucert

materiats

‘Quarts hstogen’ 10-1500W Non-uniformpout andknee Cyhndncai- —-Vetucleneediights Smooth and Borescopes
46-300mm tong sources short andiong imenor dkspisy mutitecet Microscopes

& 350°C+ Cine pr fibre-optic light
Moderate efficrency Photography Integral lens sour

Photocoprers Transverseand —Profile proyectors
Floadhighting Jongitudinal High-intensity
Theatresieges filaments urenation

Penetration ofserm-
translucent

Fluorescent’ e2sw Even iineer dsinibyution Cytendncat— Office Corcutar wrth Light boxes
flowpressure 900-3400mm Low intenaity fong, straght Shop. diameters from Large long obyect
tscherge) tong Low temperature and orcular Hotel 151-340mm Mumination

Migh etfcrency tubo intenor display Poripherai
Long lite Domesic Sharmination

Circuter obyects

oa0w Long-wave uittavioiet Cytindncat- —--Forgeries integralwood Crack detection with
(275-1200mm medeum food contamination —_giaes fitter dye penetrant - low
jong Bulbous - smatt Mineralogy intensity
128 W bulbous and large Gemmotogy

wetteges
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Wattageand “otic Envetope Other ai inspection
Types oflamp oi ys Characteristics shapes applicanons Variations

Arc idischarge!
High toow Shon beight arc of black light” Cytindricat- Laboratories Other wantages Fibre-optic light
pressure ultraviolet peaking af 366 nm medium length fot applicable source mith light
mercury 20mm dia. chameter2mm max

100mm jong
250 Ww intense visible arc. Crbndcai- Special mecroscopes

Both needdatiasis medium length

Xenon BOW High imensity Cylindecat- Flashtubes Other wattages Special microscopes
instant response medium iengih Strobes not appicable
3mm tong arc Beacons 2000 Win
Needs control gear lighthouses
Emuts uv and short-wave
wtrared
Resembdtes daylight .

leot 20-40 mA Fasly even beam oftow Button instrument Infrared and Smal, thin
fight-emitung 2-15mm dis, intensity Rectangie ituminanon visible red. green, transparent obrects
diode) 23x 6mm Long Kife Opto-siectromc and yellow with senstive

rectangle fibre-optic sensors cameres

| May be cmmed
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Table 2 Operations which mey be performed to make a lamp compatible with
other parts ofan inspection system

 

Operation Description Componenvettachment

Absorbing Retaining light ofcertain wavelengths so that Fitters (Note, differential
only desired wavelengths reach the object absorption affects image

acquisition)

Bifurcation Dividing light from a single source into two Twin arm light guides
branches which maybe aligned at the Swan(goose) necks with or
user's discretion without focusing lenses,

fitters andpolarising caps

Branching The multiple version ofbifurcation Muttibranch light guides
Chopping Strobing or breaking the beam into short bursts Shutters

Rotating discs

Collimating Producing a cylindrical or rectangular ‘column’ of Piano convex lens
light

Collecting Gathering light from a lamp and focusing itons Spherical or cylindrical lens
smaller ares - usually biconvex, aspheric

or plano convex

Condensing Collecting the radiation from a source and Aspheric or biconvex lens
removing unwanted elements, e.g. shadow

Diffusing Spreading out light from a source evenly over an Diffusers (see page 50)
ares

interfering Preventing the passageoflight other than that of Filters
selected wavelengths

Polarising Eliminating ail light waves except those in one Polarising filter
plane

Realigning Reroutinglight from a source to an object with Light guides
the facility to negotiate obstacles and align atthe (see Table 4.5)
user's discretion

Redirecting Rerouting light from a sourcein single steps at Mirrors
predetermined angies dependent on the Reflectors
component used Lenses

Plastic, glass quartz rod

Smoothing Removingthe intensity ripple effect associated dc supply
with an electricity supply High frequency ac

Splitting Dividing 8 beam oflight into two paths, 8eam splitters
@.g. transmission end reflection at predetermined
angles of bifurcation

Spreading See Diffusing

Stabilising Compensating forelectrical, chemical and in-circuit photoelectric cell
physical changes which causetheintensity ofa
lampto vary

Stimulating Activating a chemical so that it emits Ultraviolet lamps with or
wavelengths ofhigher order than thase received, without quartz fibres
€.g. by a crack detection dye penetrant - Filters

Transforming Changing the shape of a source, Cross-section converters
0.g. circularto linear
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Cause jected Problem Possible solutioncomponenvobject

Chemica!
egcng Uaraviotet fiters Uttrevioiet degradation Penned

Plesuc optical fibre ‘Glens of uv degradation resistant fore

leme Filament decomposition Manned
Compensstion by stebilisstion

recenon Allcomponems Nuciser radiation couses browning of gises Non-browneng glass

Electrica!
fracture High-pressure iemps Disruptive fracture ofenvelopes Suitabdie enctosure

Rusivetsag temps i in due to voliage ond St ‘with i am cof
lamp egeing

Me Lomps Fadure chunng inspechon cycie Planned replacement
Aanomatc changeover to standby lamp

Environmental
ont AD componcats Reduction in intensity Continuous purge by 9005quality eit

(Changes in optical cherectershcs. 0.9. glare spots Reguiar

Obyect Superimposition of fates image. 0.9. stares and micro Clearing
shadows Homogenous bight

gases Electricas iy in ‘couldbe oy ft safe hight.
fexplosive! components etectricat spark Remote itiuminetion with fibre optics
{poisonous} Certain lamps Orone Susteble enctosure
inaccessibility Object Jnsufficrent space for lamp to ikurmenate obyect Fibre optees, murrors, priame, lenees

adequately
‘missiles’ Al components Parts beng manufactured escaping from Protective materials .

handing systems High impact resistance materiols,
0.9. polycarbonate

Mechanical
bending Light guides Overbending increases attenuation andmay Observation ofdesign thru, 1.¢. bending radius

Teansperert rods couse fracture . = 10x diameter approximately

ing Light 19 causes fracture Avoid flexing ofplanned replacement within
design lirnit, #.@. $00,000exes

——$2 a -_ «= -

Table 3 continued

Affected . 7
Cause Vobyect Problem Possible solution

Ught. Se ng tensite e of Suitable jacket
assembledoptical tibres

Optica!

aberration Obdjectand lenses Colouredrings on periphery ofillumination especially# Correct focusing
fefromatic) incorrectly focused tens large in size to be compatible wih system

Achromats

contrast Otyect Features merge into background. i.e. lack of resotution Realignmentof itiumination system
More intensity
Colouredand polarised fiters

Grsinbution Lampand obyect Shadow supenmposed on object Onflusers
Condensers
(Change tamp burning position

homogenety Lamps Uneven disinbution (simular to distnbution problem:
Fibee-opte attachments above!

light scatter Obyect Transparent objects may collect light so that features Realignmentofillummingtion system
Decome incesunguishable Dittusers

Matt black background
saflectinty= Processing equipment Saturation mekes image indkstingurshabie due to Rheostats
generat andobyect noghtness Oraphragms
{excess} NOfitters

Realignmentof ithuminatron system:

ng Le i due to dareness decrease illurnination
and object ‘Use more sensitive camera

reflectivity - Processing equipment Glinting Focusedand redirected light
local and object Realignment ofitumingnon system
fexcess} Fitters

Orifusers
Removal ofdust

translucency Obyect: (See lignt scatter}
fexcess)
finedequacy! Object intemnat and. near visible 

Try shortwave infrared:
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Fig.1 Imageforming basics:(a) imageofdistant object, (b) demagnitication,
{c) unit magnification, {d) magnification, and (e) collimation oflight source or distant
image forming



 

 

(a)

Scattering
surface on
inside ofa,
hemisphere

To camera

  

 

Object under
examination

Reflector

Lamp  
 

  

Fig. &. Omni-directionallighting: (a) cross-section through the hemispherical _
diffuser, (b) view ofa bright coin in ornni-directional light, and (c} the same coin in
ordinary light
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Fig.3 Viewing silhouettes: (a) simple technique suitable only for matt objects and
using an area-scan camera, (b) viewing matt objects using a linescan camera,
(c) viewing shiny objects such as polished metal, (d) typical histogram ofa
back-illuminated opaqueobject (thresholding can be achieved successfully by using a
parameter derived from the positionofthe ‘valley’in the histogram), and
(e) silhouette ofa glass vial
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Capturing the Image : Building the Gray Level Description
 

The first step in gathering information is to convert the light from the

scene into useful electrical signals. This is done by scanning the image,

and digiting the resulting data to produce a data structure called the gray

level description which contains numerical values, each of which represents

the luminance at a defined position in the scene (or its image) (see Figure

1).

Two operations must be performed to obtain this data:-

1. The positions of the locations must be defined, and a method for visiting

these locations must be devised. This is called scanning.

2. The image intensity must be measured at each location, and expressed as a

numerical value. This is called quantization

Scanning

There are two general approaches to scanning. First, a focussed beam of

light, such as a laser beam, is moved across the scene in a controlled

manner, and the light reflected from the scene is recorded. This is known as

the flying spot scanner approach. It assumes that there is no other light

source competing with the moving beam (see example of welding system below).

The second approach is to control which spot is looked at through a moving

peephole or aperture, and to record what is seen through the aperture at each

instant. This is the flying aperture technique.

Two methods which fall into the former category are the drum scanner and the

laser scanner. In the case of the drum scanner, a photographic print of a

scene is fastened to the surface of the drum which is rotated

discontinuously. While the drum is stationary, a moving carriage containing
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a light source and a photo-diode detector traverses across it. The X-Y

position values are obtained from shaft encoders linked to the drum and

carriage respectively (see Figure 2).

At the heart of the laser scanner is a rotating mirror which deflects the

beam in one or two dimensions. Reflected light is picked up by a sensitive

detector, Again, X and Y position values are obtained from encoders attached

to the mirror drive mechanism (see Figure 3).

Turning now to flying aperture techniques, these encompass television systems

and the more recent charge transfer devices (CTDs). While there are a

variety of detector devices for generating television images, the vidicon is

the one most often used in machine vision applications. In a vidicon tube,

the image is focussed on a photosensitive screen and scanned with an electron

beam (see Figure 4). Typically, its spectral range is from 400 to 750

nanometers, with peak sensitivity around 550 nanometers. Unfortunately,

electron-beam deflection varies in a non-linear way across the screen, so the

position information is inaccurate and non-repeatable. Also, the image drifts

around the screen surface due to temperature and voltage fluctuations.

Finally, the vidicon tube suffers from image persistence.

CTD technology offers a number of advantages over conventional tube-type

cameras, including light weight, small size, low power consumption, high

sensitivity, wide spectral range (from 450 to 1,000 nanometers) and lack of

persistence. There are two main classes of CTD's - charge coupled devices

(CCDs) and charge injection devices (CIDs}. For imaging purposes, the CCD is

an array of closely packed MOS capacitors forming a shift register (see

Figure 5). Charges on the array are transferred to an output register either

one line at a time or one frame at a time. An example of the use of a CCD

array is given in Figure 6 (from Clocksin, 1985). This shows a MIG welding

torch packaged with a sensor system, part of a visually guided arc welding

device. In this application, infra red light is the best choice for

illuminating the work site since the most significant spectral components of

scattered light from the nearby arc are in the visible and ultra violet

bands. With this in mind the sensor components used include a pair of

rectangular CCD cameras (488 x 380 elements) fitted with narrow band optical

interference filters having a spectral bandpass of 10 nanometers centred at

830 nanometers, and four infra red laser diodes emitting at 830 nanometers.
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The use of infra red light also gives improved transmission through smoke and

fumes produced in the course of welding. In the CID device, charges are not

transferred at sensing. Instead, they are read using an X-Y addressing

technique similar to that used in computer memories (see Figure 7).

Quantization

Regardless of which method is used to convert from the analogue image to

final digital form, each cell (pixel) in the sampled image will assume a

value between some minimum luminance value representing black (usually 1) and

some maximum value representing white (minimally 16 but up to 256). This is

the quantization process which is usually performed by the hardware

interfacing the sensor to the computer.

A simple, image-processing system is shown in Figure 8. Like the drum

scanner, it uses a photocell mounted on a moving carriage which scans the

cell “across the image from left-to-right and from top-to-bottom. The cell's

measufements of light intensity are expressed as an electrical signal whose

Magnitude varies according to the value of the light intensity. This

analogical signal is transformed into numbers by an analogue-to-digital

convertor, the size of each number representing the light intensity at a

particular 2-D position in the image, e.g. 0 for black, 15 for white. These

numbers are stored in a 2-D array in the computer's'memory. We can look at

the contents of this array, either by printing out the numerical values or by

feeding these values to a full-tone printer to produce a gray-level image in

which each square represents one pixel of the stored gray-level description,

and each square's gray level directly shows the intensity of the associated

pixels.

Data Acquisition Problems

There are two characteristics of this image data acquisition process that

give cause for concern. The first is the precision of the process. This

refers to the spatial resolution of a given system (Figure 9). Both sampling

and quantization determine whether or not the digital representation captures

the significant features of the original scene. Although a very course

digital representation contains enough information so that a person can

recognize a face (see Figure 10, from Harmon, 1973), machine vision programs

usually work with digital images at higher resolution.
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The second characteristic of the process is its accuracy. This refers to gray

scale resolution. What we are interested in here is the data degradation that

might have occurred in the data acquisition process, and some measures for

compensating for that degradation.

One form of degradation is intrinsic noise, in the form of isolated pixels

whose gray-level values are radically different from those of their

neighbours. It can be caused by defective phosphors in photosensors, or

round off errors in the analog-to-digital conversion process, and so on.

Spurious values could pose problems for later processing methods. High

values are likely to be interpreted as feature points which a system will try

to account for at some later stage in the processing (in vain!); low values

are likely to be interpreted as belonging to the scene background, producing

gaps in the feature data. To eliminate these spurious values, a local

transformation operation, called "smoothing", can be applied. It is a local

operation since it is applied at each point in an image.

Basically, smoothing operations rest on the assumption that the actual scene

consists of areas that are much larger than the area represented by a single

pixel. Accordingly, pixels that differ markedly from their immediate

neighbours are errors that ought to be removed.

The following is a description of a simple smoothing operator:

If any point in the picture is brighter than all of its eight immediate

neighbours, its luminance value is reduced to make it the same as the

brightest of its neighbours; if any point in the picture is dimmer than

any of its eight immediate neighbours, its luminance value is increased to

make it the same as the dimmest of its neighbours.

Notice that this operation is conservative in the sense that it removes some

of the noise without reducing the amount of information in the representation.

In particular, it eliminates isolated noise points, but has no effect upon

noise that occupies two or more adjacent image points.

A simpler, more liberal smoothing operator that would reduce the significance

of larger regions of noise is:
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Replace the luminance value of each point by the average of the luminance

values of its eight immediate neighbours.

Unfortunately, the application of this operator to every point in an image

will have the effect that every edge will be blurred. Indeed, several

successive applications of the operator would wash away the entire picture.

Clearly, therefore, smoothing operators are useful, but must be carefully

chosen to try to eliminate whatever kind of intrinsic noise is present in a

set of digitized pictures, without also removing significant features of the

pictures themselves.

A global transformation that might improve accuracy is histogram

equalization, where the histogram is a bar chart of an image, with the X-axis

representing pixel intensity levels and the Y-axis the number of pixels at

each level. From information theory, it can be shown that a uniform

distribution of pixel values results in maximum information content in the

description. In other words, a histogram with roughly equal numbers of

pixels at each level is the optimum situation. Histogram equalization

defines a mapping that stretches contrast (i.e. expands the range of gray

levels) for gray levels near histogram maxima and compresses contrast in

areas with gray levels near histogram minima (see Figure 11, from Hall,

1979). Further details of the technique can be found in Hall: Computer Image

Processing and Recognition, 1979, pp 166-173.
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Figure 1. The first step of digitizationis to partition the image into cells (pixels) addressed by row and column, shown (exaggerated)

on the left. Within each pixel, the digitizer measures and assigns a number correspondingto the image brightness (right).
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Figure 2: A drum scanner produces high-quality results by moving the photograph
relative to the sensor, Its drawbacks are thatit requires precision mechanical construe-
tion, works very slowly, and the signal it produces is not video-compatibie.
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Figure Effect of reducing precision. (2) 60 by 60 resolution. (b) 30 by 30
resolutioh.

 

Figure (9 Low-precision picture of a familiar face. (Leon Harmon,Bell Tele-
phone Laboratories.)
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Figure i Pictorial example of histogram equalization (a chest x ray): (a) histogram of

original chest x ray, (b) original chest x ray, (c) histogram of enhanced chest x ray, and (d)
enhanced chest x ray.
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ProcessingBinary Images

In many industrial applications, objects can be successfully discriminated by

means of shape parameters derived from 2-D binary (silhouette) images. In

this note. we will. begin with the generation of binary representations.

Thereafter we will consider the problem of extracting and interpreting shape

information from the binary representation.

Building the binary image

Our starting point is the gray-level description of the scene of interest.

The binary image is made by setting a threshold value. Cells in the gray-

level description where the luminance value exceeds the threshold value give

rise to 1s in corresponding positions in a new two dimensional array, and

those below the threshold give rise to zeros. Note that it is a matter of

choice whether 1 and 0 represent bright and dark cells, or dark and bright

cells. An example of a binary image is given as Figure 1 (from Horn, 1986).

We have glossed over the problem of selecting the threshold value. It could

be chosen by human experimentation: select a value, build a binary

representation, then convert the binary representation into a binary image on

a graphics screen, for examination by the human experimenter. However, an

automatic method of selecting the threshold would be preferable to minimise

time and cost. A popular approach is to use histogramming techniques as

tools for selecting threshold values. These include the gray-level histogram

(see Figure 2, from Horn, 1986) which records the numbers of picture cells at

different gray-levels, and the cumulative gray-level histogram which records

the number of cells at or below a given gray-level.

The prototypicel situation is an object of uniform brightness lying on a

background of uniform brightness. Owing to the presence of noise, the gray

level cells corresponding to the object will not have exactly the same value.

The same is true of background values. In both cases, there will be a spread

of grey scale values and a median value. Provided the spreads are small
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enough, it should be possible to identify a value separating the two groups of

gray~levels. In the histogram, this would appear as two peaks separated by é

valley, where one peak corresponds to the object and the other to the back-

ground. In an ideal case, there will be a gap between the peaks, but ever.

when there is some overlap the threshold can be set where the histogram has

a minimum.

The technique suffers from three main difficulties. {1) The first difficulty

with the method is deciding the width of the histogram's bins. If each gray

level value is given a bin, the histogram is likely to be too flat and ragged.

On the other hand, if the bin is too wide, the gray-level resolution will be

too low. (2) The picture cells bordering an object introduce the next

difficulty since they will have intermediate gray-levels (see discussion of

edge characteristics in earlier note). Their effect is to smear and merge

the skirts of the two peaks in the histogram. The magnitude of the effect

depends upon the fraction of cells that fall on the boundary, where that

fraction is inversely proportional to the square root of the ratio of the area

of the object to the area of a picture cell. (3) The final difficulty occurs

when the image area occupied by the object is much larger (or much smaller)

than that occupied by the background, since the smaller peak may become

submerged in the larger peak's skirt. Also, there may be no detectable

minimum value for setting the threshold.

When the fraction of the area occupied by the object is known, the cumulative

histogram can be used. In this case, the threshold is set at the gray level

value corresponding to that fraction.

Processing the binary image

We will begin by considering a binary representation of a single object. We

will refer to the group of contiguous pixels of the same colour that represent

the object in the binary representation as a blob. Also, we will assume that

our objective is to recognise the blob as an instance of a known object whose

features have been recorded and stored as a set of parameters. The

task, therefore, is to derive a feature description of the unknown blob and

match that description with stored descriptions.
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A variety of global feature parameters can be derived, depending on the

method used to describe the shape. They include simple measures such as

area, perimeter length, area to perimeter ratio, compactness (ratio of

perimeter to square root of area), and more complex measures, such as maximum

and minimum dimensions, for which area, position and orientation data are

required. The latter information is usually obtained by forming a series

expansion of an exact representation of the shape, and then using the first

few terms of the series. The co-efficients of these terms constitute the

description of the shape. But more of this later.

We will start by considering two methods of finding blobs in the binary

description.

® connectivity analysis

# boundary tracking

Connectivity analysis is concerned with the local connectivity around each

pixel in the binary description: blobs are built up on a pixel-by-pixel

basis using run-length coding. Boundary tracking on the other hand infers

the connectivity of pixels by following the boundary of a blob to determine

its outline. If the object has hole(s) in it, or if more than one object

is represented by the binary description, the former method is more efficient

since all the processing is done in a single raster scan whereas the boundary

tracker alternates between boundary following which requires random access to

the image and raster scan search for new blobs. The main advantage of the

second method is that it produces a chain-code description of the boundary of

each blob. As we shall see later, a number of complex shape parameters can

be derived from a chain-code description.

Definition of connectivity

These two methods share a common problem, that of the definition of

connectivity. Adjacent pixels are connected if they are of the same colour.

But which pixels should be regarded as being adjacent to the one of immediate

interest? In a rectangular grid, the usual connectivity relationships are

4-connectivity and 8-connectivity. These alternatives are shown in Figure 3

(a) and (b). Unfortunately, neither of these methods is entirely

satisfactory. Consider the binary description of a closed curve, given in

Figure 4. If we apply 4-connectivity, the result will be six separate

blobs, two made up of zeros (background and central blobs) and four made up
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from pairs of adjacent 1s! If, instead, we apply 8-connectivity, the result

will be two blobs, one comprising the background and the central areas (0s)

and the other the continuous curve (1s). The problem here is that linking

the central area of the background is a breach of the Jordan curve theorem

which states that a simple closed curve should separate the image into two

simply connected regions. For the purposes of automated recognition, the

central area is a feature of the object, not a part of the background.

One solution which is often adopted is to use 6-connectivity, as shown in

Figure 3(c). However, this also fails when applied to Figure 4, since it

will yield three blobs, one made from Os (background and central area) and two

made from 1s (two halves of the closed curve). Another solution to the

problem is to apply 4-connectivity to one colour and 8-connectivity to the

other colour. If these are background and object colours respectively, the

required connectivity relationships can be obtained.

Connectivity analysis

Connectivity analysis is achieved by combining one of the above methods with

run-length coding. This latter method exploits the fact that along any

particular scan line there will usually be long runs of zeros or ones.

Individual bits can be replaced by numbers indicating the length of such

runs. Typically, each run of consecutive Os or ts on a line is encoded as a

three word record where the first word encodes the starting position (in x

dimension) of the run, the second the number of pixels in the run, and the

third the name of the blob that these pixels belong to. Each line of the

binary description can be described by a list of these run-length records

(see Figure 5).

The connectivity analysis algorithm scans the images from left to right, top

to bottom, updating the descriptions of each blob which intersects the

current scan line. At the end of each run of Os and 1s, the run-length list

is updated and blob statistics are computed. If any pixel of the run just

completed is connected to a pixel of the same colour on the previous line, an

existing blob is extended to include this run and its statistics are updated.

Otherwise a new blob record is allocated.
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A blob may have more than one name associated with it (see Figure 6). The

two blobs 1 and 2 will not be combined to form a single blob until the scan

reaches line A. At that point, the statistics for blobs 1 and @2 are

combined. The nesting relationship between the larger and smaller blobs in

Figure 6 can aiso be described. In this case, the second blob might be

characterised as CHILD of the first blob since it is wholly enclosed within

the first blob. Such relational descriptions are useful, and will be

discussed in more detail in a later note.

Value of run code method

The value of the run code method is the ease with which a limited set of

measurements can be generated. Whereas area is easy to calculate (by adding

run lengths), centre of mass and perimeter are hard to calculate.

Accordingly, Batchelor (1985) recommends that the method should be used for

objects that can be characterized along one dimension. He gives the example

of a. bottle, as shown in Figure 7. This is described quite adequately in

terms of:

# simple diameter measurements (e.g. comparing values z lines from top

with y lines from bottom)

# maximum/minimum diameter

® straightness

# uprightness

#® minimum-area rectangle enclosing shape.

The run,.code method described above is restricted because the measurements are

derived from the row data, ignoring column data. Recently, Horn has suggested

a method for calculating the column values from the projection of the first

differences of the rows of the binary image, as shown in Figure 8 (from Horn,

1986). This enables first and second moments to be calculated by summing I,

J, 1, IJ and J, From these totals, position and orientation can be

calculated (see below).

Boundary tracking

A similar procedure is followed in the case of boundary tracking. The

essential difference is that a tracking algorithm traverses the boundary of

each blob in the image, starting from the first boundary point detected in

the raster scan of the binary representation. When the tracking algorithm

returns to its starting point, the raster scan is resumed, and so on.
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The boundary tracker operates as follows. First, each pixel is viewed as a

unit square, bounded by four edges. A boundary pixel is one which has one

or more edges in common with a pixel of a different colour. The boundary of

a blob is a sequence of directed boundary segments (composed of boundary

pixels) identified by means of a chain coding scheme. There are two chain

coding schemes, one with four directions and the other with eight directions,

as shown in Figure 9. The boundary traversal is carried out in a clockwise

direction with respect to the interior of the blob. At each step, the

tracking procedure has to decide whether to turn to the left, or to the right

or to continue straight ahead. In the case of four direction chain coding,

this is determined by examining the two pixels that lie ahead and on either

side of the current boundary segment. The decision rules are shown in

Figure 10 (for 4-connectivity: rules for 6- and 8-connectivity are more

complex).

Value of chain code

Blob statistics are obtained as the boundary of the shape is traversed. At

each point, partial sums can be calculated for the perimeter i.e. the length

of the chain. For 4-connectivity, this is a simple calculation; for

8-connectivity, links coded as 1,3,5 0r 7 add $2 to the length of the

perimeter. Chain height and chain width (i.e. the height and width of a box

drawn round the shape so that the outline touches on all four sides) can also

be easily calculated by taking differences between maximum and minimum

co-ordinate values in both dimensions.

However, the real advantage of chain coding is that a variety of analytical

measures of a shape's area, position and orientation can be derived from the

boundary description by generating its moments. While we can generate an

infinite series of moments, the low order moments are the most robust. In

particular, the first six moments can be used to obtain:
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# Boo - number of points making up the shape, i.e. area

a To
— x value of centroid of shape
nN. -

00

M4
Fe - y value of centroid of shape

n,
00

orientation of
, 2(Mo9™1 = ™oor) — shape's major

* 3tan (Moo®oq ~ My) - (MoqMo> - Boy? pee mee
axis

Moments of odd degree, such as Moy and Dios

balance of gray levels between the left and right, or upper and lower, half

provide information about the

planes; moments of even degree, such as Moo and Moo» provide information about

the spread of gray levels away from the y or x axis. The major axis is the

line through the centroid about which the spread of gray levels is least.

In the context of boundary tracking (using 4-connectivity) moments are

calculated according to the following formulae:

 Moo (Area) = P,

m, (LI) = P/2

| my (25) = P3/2

M59 (21) = P,/3

m, ( tw) = (2P,-P,)/4

Mm, (20°) = PL/3

 

where the terms PisP etc are accumulated according to the following
2

formulae, where the value of each term is computed from its previous value

and the current pixel edge co-ordinates?  
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If boundary code = 0

X = X +1
. 2

Poo P,- 7

Poo Pp, -Y

If boundary code = 1

Y = Yt

P, = P. - x

Poo Pa,

Pos cae

Poo Po XY

Pe = Pe +X

If boundary code = 2

xX = X-1

. 2
Pa tt

Poo Po+Y

If boundary code = 3

Y = Yi

P, = ae

P. = PL +X
2 2 3
P= P, +X
4 4 2

Po = PL + XY
5 5 2
Peo Pot k

More about moments

The purpose of obtaining these feature measurements is to compare them with

stored measurements. However, this comparison is made much easier if the

feature parameters are converted into a form that is not affected by a blob's

position, orientation oor scale. This is achieved by generating

moment-invariants.

 



 

The first step is to generate central moments by shifting the co-ordinate

system so that its origin co-incides with the centroid (%,j). For a

uniformly coloured region, R, its (p+q)th order central moment, PPA is

defined by:

/p9 ffo ~ Pry - 9) Faxay

Thus, jr = Mo cB

F

2
Feo = ao 74®

Au = ™ ~be

32
Moo * Moo “49 » and so on.

Using these, for example, the variances in X and Y directions can be

& - Yeas by - (ea

The angle 8 which the major axis of the shape makes with the horizontal

computed

direction can be calculated:

24
Fir0o2

@: 3 arctan

Finally, the eccentricity is given by the expression?

t

aqpcos + MssinB - #,,sin28 a

Mog8inB+MzcosO + pA, ,c082B
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To achieve size and orientation independence, as well as position

independence yielded by the central moments, the second step is to generate

the moment invariants. These are:

MF Moo +Mon

M. = ( - 2 +4 é2 J*20 Po2 Pa

( -34,.)% + (3h., - 23 30 342 fa Jo3

2 2
Me = M30 * Mie) + | ar * Bos?

= "

and so on.

The first six moments, M, to Mes are invariant under rotation and reflection.

(For further details, see Levine, 1985, page 526)

Using 2-D shape measures

One example of the use of 2-D shape measures is given in Cheng et al., 1986.

Each shape is enclosed by a rectangular box, from which a number of

dimensionsless values are generated. These are recorded in a look-up table,

for a range of orientations of the shape. An unknown shape is identified by

comparing values extracted from its binary description with values in the

look-up tables.

Another example of the use of 2-D shape measurements is given by Kruger and

Thompson, 1981. Seven features were extracted for each type of object.

They were:

Perimeter

Square root of area

Total hole area

Minimum radius

x
«

K
KR

MK
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Maximum radius

Average radius*
x Compactness (x,/X5)  
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These features were abstracted from the foundry castings shown in Figure 11

and analysed by the decision tree shown in Figure 12.

Limitations of chain code

In conclusion, the advantages of chain coding is that it is compact, easily

constructed, easy to understand and useful for 2-D shape recognition.

However, it does have some limitations. As we saw earlier, a shape cannot

be chain coded in a single raster scan of the binary description. This is a

drawback when trying to analyse changing scenes in real time. Also, some

basic operations, such as rotations and scale changes, are difficult to

perform.

REFERENCES

Cheng, R.M.H. and Montor, T., 1986. Synchronization of an Industrial

Robotic Manipulator Using Camera vision. In Proceedings of Conference on

Intelligent Autonomous Systems, Amsterdam

Horn, B.K.P., 1986. Robot Vision. Cambridge, Mass. : MIT Press.

Kruger, R.P., and Thompson, W.B., 1982. A Technical and Economic Assessment

of Computer Vision for Industrial Inspections and Robotic Assembly.

Procs. of IEEE, 68, 1524-1538.

Levine, M.D., 1985. Vision in Man and Machine, New York : McGraw Hill.

11



|
|! 



 

   

Figure _If the background is bright, with little light falling on the subject

of interest, a binary image can be obtained easily by thresholding the brightness

values. This particular picture may lead us to believe that mere silhouettes can
convey & great deal of information about three-dimensional objects. The artist's

carefully chosen viewpoint and our familiarity with the subject matter conspire
to give this impression. Silhouettes of unfamiliar objects, taken from randomly

chosen points ofview,are typically quite difficult to interpret. (Reproduced from

Silhouettes, edited by C. B. Grafton, Dover, New York, 1979.)
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Figure 2 6A histogram of gray-levels is sometimes useful in determining a
threshold that can be used to segment the image into regions. Here n(E) is+ the

numberofpicture cells that have gray-level E.
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Figure 3 The x's indicate which pixels ina 3 by 3 neghborhood
are connected to the center pixel using (a) 8-connectivity, (b) 4-

(b)

connectivity, and (c) 6-connectivity.

 

 

 

 

 

 

 

          
 

Figure 4 Connectivity in digital plane
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Figure5 The blob finding algorithms generate a run-length list
which encodes each run of consecutive 0’s or I’s ona line asa
three word record. The run-length list data structure for the
connectivity analysis algorithm is shown in (a). Assuming the
background is blob I and the objectis blob 2, the three numbers
in each record are interpreted as the start of a run, the number
of pixels in the run, and numberof the blob these pixels belong
to, respectively. Part (b) shows the data structure for the
boundary tracking algorithm. In this case, the second wordis the
right end of the run rather thanits length.

 

  

 

 

       

 

  
Figure© In the connectivity analysis algorithm, separate blob
records are maintainedfor the componentslabeled 1 and2 until
the raster scan reaches the point labeled A, at which point the
two records merge into one. When the scan reaches pointB,it

discovers that the same blob has surrounded aninterior hole.
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Fig.> _ Simple shape
measurements defined on a
bottie silhouette. The medial line
is computedbyfinding the

centre points of two horizontal
chords, say y rows from the base
and z rowsfrom the top
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Figure 8 . The first difference of the vertical projection can be computed
from the projection of the first differences of the rows of the image. The vertical
projection itself can then be found by summingthe result from left to right.
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a) Db)

Figure q The boundary tracking algorithm uses a four direction
chain-coaing scheme with the four directions numbered as
shown above in (a). The numberingfor eight direction. chain-
coding is shown for comparison in (b).
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DEPARTMENT OF ARTIFICIAL INTELLIGENCE

UNIVERSITY OF EDINBURGH

Detecting edge information

Having dealt with the recognition of 2-D shapes, we are going to work through

techniques which will enable us to program a computer to recognise polyhedral

objects. Our task will be broken down into four levels of analysis:

® The first level is concerned with extracting features, in

particular the positions of discontinuities in the gray-level
description.

# The second level is concerned with the construction of edge
descriptions.

® The third level deals with segmentation of the edge descriptions

into separate edge groups corresponding to distinct bodies in

the scene.

® The fourth level is concerned with recognition of these bodies.

In this note, we will tackle the first level, extracting edge information from

the gray-level description. This task can be broken down into two sub-tasks

® Locating candidate edge points
® Grouping candidate edge points together to form continuous edges.

We will start by considering methods for locating candidate edge points.

1. Detecting edge information: templates

Having built a gray-level representation of a scene, the next step is to

extract interesting "local" features of the picture, i.e. features that can

be discovered while looking at only a small portion of the entire

representation. We will begin by considering how edge information might

be extracted. The method that we will look at first of all combines the

task of detecting the presence of edge segments and measuring their

orientation. It is based on the use of an edge template, which is

matched to the shape of a straight edge in the gray~level representation.



The template takes the form of ann x 2 array of cells, corresponding in

size to an n x 2 sub-array of cells in the gray-level representation of the

image. If the dark patches are represented by low values and light

patches by high values, this template will detect a left-to-right

transition of dark-to-light along a vertical edge. The template region

labelled "low" would have values near the dark end of the gray scale, and

the region labelled "high" would have values near the light end.
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The system's task is to search for sets of values in the gray-level

representation which match the sets of values in the template. It does

so by applying a match rule. Suppose the luminance values in the

representation lie in the range 0 (black) to 15 (white). Suppose, also,

that we choose to use a 3 x 2 edge template. We will assign 10 as the

value of the high region and 5 as the value of the low region.
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The system chooses a 2 x 3 sample of luminance values from the digitised

representation

 

 

 

 

 

     
Next, it compares the values in this sample with the values in the

template, using a match rule. One example of a suitable match rule is

as follows:

"Add 1 to the value of the match for each cell which corresponds spatially

to a high value cell in the template and has a luminance value of 10 or

more, and add1 to the value of the match for each cell which compares

spatially to a low value cell in the template and has a luminance value of

5 or less. The entire template is said to match at any position for

which the total value of the match is 4 or more".

Given that a match is established, the description obtained is in the form

of (x,y) co-ordinate values of the end points of each edge segment, and an

associated orientation value of 90°.

Separate edge segments are linked together into larger segments,

corresponding to edges of objects, by applying grouping rules:

If the end point of one segment is adjacent to (e.g. above,

below, to-the-left of, to-the-right of) the end point of another

segment, and

if the orientation of the first is the same as the orientation

of the other, and

If the combined segments (combined points) are collinear

Then link the segments (to form a larger segment).

Note 1. "Same" must be given a value in practice.

2. The collinearity test must be assigned an error threshold



Junctions (corners) are detected as follows:

If the end points of two (or more) segments are adjacent, and

If the orientation of one is different from the other(s)

Then combine the segments (to form a junction).

Note "Different" must be given a value in practice.

At first sight, this method is attractive but the major difficulty is that

different templates and/or different match rules are needed for left-

vertical edges, right-vertical edges, horizontal edges, bright edges, dim

edges, sharp edges, fuzzy edges and edges at arbitrary orientations. In

other words, the process of using templates is computationally costly.

Detecting edge information: Gradient operators

Detecting evidence of the existence of an edge in an image involves

estimating the magnitude and direction of the gradient at various positions

within the gray-level description. The gradient is a vector, whose

magnitude G and orientation 9 can be expressed as

Gix,y) = {( 6f/ dx)? + ( éf7 dy)?}

tan7! ( 8£/ éy)/( 8£/ 8x)O(x,y)

For obvious reasons, the process of registering abrupt changes in the gray-

level representation is known as sharpening, edge-enhancement or spatial

differentiation.

(1) Cross Operator

Our first illustration of spatial differentation is the approach taken by

Roberts (1965). He used solid polyhedral objects, namely cubes, wedges

and prisms. These were specially prepared and specially lit so that the

surfaces were very homogeneous. In other words, he was trying to make

sure that the luminance variations in the image due to the object/

background boundary would resemble the luminance variations produced by a

step change in intensity. Since his objects were specially prepared, no

initial smoothing was attempted.
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Because he had taken so much care to optimise the transformation from image

feature to gray-scale description, the gradient was measured over the

smallest possible area of the gray-scale representation, a 2 x 2 window:
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by computing the sum of squares of the differences between diagonal pixels:

 

R(i,j) = (fe) ~ fliel, jot)? + (£(441,5) - PCA, j4t))?

Notice that Roberts is taking the difference between diagonal elements in

the window
 

i,j i,j+t
 

i+1,j +1, j+1

   
Because of this, the operator is popularly known as the Cross Operator.

Notice that since diagonal neighbours are [2 times as far away from (i,j),

a diagonal difference in the magnitude of the luminance change tends to be

larger than the magnitude of the luminance change taken in a horizontal (or

vertical) direction, given that the slope components in the different

directions are equal. This is compensated for by taking the square root

of the differences.

Let us consider the operator's qualitative behaviour. If the point (i,j)

is in a region of uniform luminance, the value R{i,j) is zero. If there

is a discontinuity between columns j and (j+1), then R(i,j) has a large

value, and similarly if there is a discontinuity between rows i and (i+j).

 



In practice, this technique constructs a new representation whose points

lie between the points of the original picture (e.g. i+3,j+}).

In passing, we should note that the cross operator is often simplified for

computational efficiency by using absolute magnitudes rather than square or

square roots. The operator becomes

Rli,j) = |f(i,g) -f(ie1,j+1) | + [eGi,jet) -fCi41.5) |

So by applying this cross operator to the digital representation, he

produces a new representation, called a gradient representation. This

contains a set of candidate edge points. Obviously low values correspond

to areas of uniform luminance whereas high values are associated with

changes in the luminance which may correspond to edges in the original

scene.

In passing, note that the direction of the gradient, a, can be computed as

follows for each candidate edge point

7 -1 fli, j+1) - fli+t, 3)
a = - 4+ tan Fliel)(j+1) - Fli,)

Since the direction of an edge is normal to the direction of its gradient,

edge direction must be computed for each point. These values are stored,

for later combination to generate edges.

As we saw, Roberts took great care to minimise data degradation. He did

this for the simple reason that the cross operator is not able to cope with

poor quality data, either in the form of isolated noise points or blurred

edges.

(2) High Pass Filter

We turn now to look at another method of spatial differentiation which is

less susceptible to the effects of noise than Roberts' 2 x 2 operator.

The way in which this is done is to combine averaging and differencing.
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This has led to the development of a number of gradient estimators using

windows of various sizes and differing weights.

As an example of a gradient operator using a 3 x 3 window, consider the

following operator which is usually referred to as a high-pass filter

(introduced by Prewitt):
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We define Dx by

Dx = (c+f+i) - (a+rd+g)

and Dy by

Dy = (g+h+i) - (atb+c)

Aw

Then we define the gradient at the paint e by either Ge {5 + ry")

or if we want a more computationally efficient definition

Ge = |[Dx| + | Dy |

The direction of the edge, 9,.is given by

-1 Dx
Q@ = tan (=

For example, suppose a small portion of a digitised array carries the

following values:

Columns AB

Rows 11 1 1

12 1 1

13 1 1
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If we pass the 3 x 3 window across the whole array we obtain the

following values:

Bi2 Dx=1, Dy=1 G=2 -

ci2 Dx = 11, Dy=0O G=11 = 84°

Di2) «Dx = 12, Dy =1 G=13 @ = 85°

E12 Dx =2, Dy=2 G=4 -

Fi2 Dx =0, Dy=0 G=0 ~

Larger weights may be given to the pixels adjacent to the central pixel

(e), as in the case of the Sobel operator:
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Note that these operators, and the Roberts' operator, are not perfectly

isotropic, i.e. edges of the same strength but differing orientations give

different edge magnitude outputs. Also, the selection of candidate edge

points is done by setting an a priori threshold and eliminating any points

whose gradient value is less than the threshold value.
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(3) Laplacian operator

The problem of threshold selection can be avoided by using an operator that

computes the second derivative since the zero crossings indicate edges:
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Taking first differences in the x and y directions as

fx(i,j)

fy(i,j)

fli,g) - rli-1,9)

f(i,j) - £(4,4-1)

where f is the image intensity and i and j are row and column co-ordinates,

the higher order differences are derived by repeating the first order

differences:

fxx(i,j) = fxli+t,j) - fxli,j)

= f(i+1,j) + fli-1,j) - 2f(i,j)

fyy(i,j) = fli,j#1) + FCi,j-1) - afi,j)

The sum of the second order differences, V? (the Laplacian) is

V?fti,g) fxx(i,j) + fyyli,j)

(f(i+t,j) + f(i-1,5) + fli, jet) + fC4,j-1)] - 4f(1,3)



The second differences can be represented by the one dimensional windows

 

  

     

   
and the Laplacian operator V? by

 

 

   

   
Note that the Laplacian operator is isotropic.

The disadvantages of the Laplacian are:

(i) Useful directional information is not available.

(ii) It doubly enhances any noise in an image.

The operators discussed above have assumed (almost) perfect edge data.

However, as we have seen earlier, edge data is often far from perfect.

This means that an edge can be distributed over a number of pixels in the

gray-level description. Such an edge will not be "seen" by the operators

described above. Instead, operators with larger windows are required.

Now, it's commonplace to use a range of these operators to process the

description at several levels of spatial resolution.
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Extracting edges

The second problem is that of grouping candidate edge points to form a

continuous contour that can be segmented into lines and junctions.

Several methods are available.

(i) Tracking

In the last note, we discussed methods for tracking the boundary of a blob.

A set of decision rules can also be developed to track through candidate

edge points, using 8-directional chain coding. Some of the more important

are as follows:

 

 A point with no neighbours.

 

     

 

 

 

     

 

 

 

     

 

 

 

x
Isolated value.

xT x Example of point with one neighbour

~ at edge. This is an end point.

x|x]x . :
- Example of point with two neighbours

x

x|]x . Example of point with three or more

x neighbours. Fork.     

Their application is illustrated in Figure 1.



Some problems with the above include:

(i) the implicit assumption that the edge contour is but one

pixel wide

(ii) due to noise, false edge elements are found, as are gaps

in the edge

(iii) tracking is a local process which is difficult to control,

bridge gaps, etc. See Shirai's approach in a later note

on Knowledge Guided Segmentation.

(2) Grouping/line fitting

In his classic program, Roberts uses grouping rules to combine candidate

edge points into edges.

The rules are:

If two edge points are adjacent, and

if the orientation of one is the same as (i.e. within + 10°)

of the other, and

If the new point is collinear with the existing points (as

judged by fitting a straight line to the data using a

sequential least-mean square-error fitting routine).

Then link the new edge point to the existing point(s).

These grouping rules produce a network of edge segments which must be

thinned, for example:

All dangling segments (i.e. connected at one end only) are removed.

Quadrilaterals are replaced by lines linking connecting points (A and B).

After thinning, the edge description may be cleaned up by re-applying the

line fitting algorithm, filling in gaps, locating junctions where two or

more lines share a common point, and so on.

12
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(3) Hough transform

To detect edges, the Hough technique can be used in preference to the

grouping operations described previously. The basic concept underlying this

technique is that by transforming input data from the (X,Y) domain into a

different domain, related features in the input data will show up as clusters

of features. The advantages of the Hough technique are that it is relatively

unaffected by gaps in the edge data and by noise (both of which can only be

handled in an ad hoc way by the earlier grouping techniques by introducing

additional rules to relax the adjacency criterion, etc.).

We begin the explanation by applying the technique to the detection of points

lying on a straight line i.e. points satisfying the equation y = mx + c.

Since m might be infinite, the normal form equation of the straight line is

preferred, vizs

x cos®@ + y sind =r

where @ is the angle made between the x axis and a normal to the line, andr

is the length of this normal. A graphical interpretation of this equation is

given in Figure 2.

Consider, now, the edge element 1', in Figure 3, which has four collinear

points. Although an infinite number of lines can be drawn through each of

these points, let us suppose that line 1 , through (x', y'), is a typical

line. As explained above, it can be characterised by the two paraemters (0,

r). Thus, we can see that any arbitrary point (x, y) on line 1 is

constrained by the equation x cos0 + y sinO =r. Suppose we fix (x, y) in

the equation at (x',y'). Now, the equation will define a relationship

between 9 and r. This function is sinusoidal, as shown in Figure 4.

Each (90, r) pair in the graph parameterizes one of an infinite number of

straight lines passing through the point (x' yt). This can be verified by

imagining line 1 rotating around (x',y'), whereupon @ will change through

360° and r will vary between two limiting values. In other words, the point

(x',y’) in the original X-Y image space has been projected into the (9,r)

Hough transform space as a sinusoidal curve. If the transform is applied to

all four points in Figure 3, the family of sinusoidal curves shown in

Figure 5 is generated. Since each of the points lies on the same straight

line 1" parameterized by (9,r'), each of the transformed curves must pass

13



through the point (Q',r'). The intersection characterizes the value of (0@,r)

which defines the line passing through all four image points.

To discover the point clusters produced by the intersecting lines, an

accumulator array is set up, with bins corresponding to the different possible

combinations of discrete parameter values. For each candidate edge point, a

'vote' is placed in every bin whose corresponding parameter set could have

given rise to that instance. At the end of the voting process, each local

peak in the accumulator array will correspond to a group of collinear edge

elements in the image. The parameters on the line onwhich the elements lie

will be given by the indices of the peak, and an estimate of the number of

points on the line by the sum of accumulator values at, or very close to, the

local maximum. In the case of Figure 2, the array cell (0',r') would

register a count of 4; all other cells would register a 1ora0Q.

Obviously, the performance of the Hough transform method is affected by the

quantization chosen. If it is too coarse, it will fail to distinguish lines

that are close together. If too fine, it will be intolerant of errors in

collinearity. Also, in cases where the orientation of candidate edge points

is known, the technique can be simplified. Then, a single point, rather

than a sinusoid, can be computed in the (r,Q@) space for a given edge point.
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How SEE Sees

So far, we have only considered single outline shapes. Now we want to

handle more complicated scenes, containing multiple, overlapping bodies.

When we look at a line drawing of blocks world objects, we can readily see

which regions (corresponding to surfaces) belong to each of the bodies present

in the scene. The task of partitioning a set of regions into bodies is known

as the segmentation task, and the difficulty of the task in the case of poly-

hedra depends upon the degree of overlap between bodies, i.e. it depends upon

the amount of occlusion in a scene (the amount by which one region is obscured

by another one).

One of the earliest programs developed to tackle the segmentation problem

was Guzman's SEE (Guzman, 1967). We will examine SEE in some detail since it

was the first of a series of programs, each of which built on the ideas or

experiences with the previous one, gradually reducing the need for ad hoc rules

by providing a better theoretical justification of the underlying processes.

In SEE, Guzman assumed as starting point the existence of a perfect edge

representation of a polyhedral scene. A typical example is the scene called

BRIDGE, shown in Figure 1. This is input to the program in the form of

unordered lists of object regions, background regions and vertices. Notice

that the program does not have to separate objects from background: this

information is provided by Guzman.

To parse the scene into bodies, SEE follows a two part strategy. First,

it collects evidence for linking regions. Then second, it evaluates this

evidence and groups regions to form objects.

We will begin by considering the first part strategy, namely collecting

evidence. It is based on the fact that some places in a picture contain more

information than others, namely the points at which several lines meet - the

vertices or picture junctions. Guzman noticed that the shape of a junction

was a pretty reliable indicator of its three-dimensional significance. For

example, a three-line junction which looks like an ARROW-head is usually the

corner of a convex object, where only two out of the three surfaces of the

body are visible. In practice, Guzman classified junctions into four basic

types:



1. Vertices where two lines meet, e.g. L

2. Vertices where three lines meet, e.g. ARROW, FORK, T

3. Vertices where four lines meet, e.g. K, X

4, Other vertices, e.g. PEAK, MULTI

Examples are shown in Figure 2.

With each type of vertex there is an associated set of links which

constitute the evidence for conglomerating adjacent regions in the scene.

These links are of two types, namely strong and weak links. The strong links

associated with each vertex are as follows:

1. Ls, Ks, MULTIs and single Ts have no links.

2. FORK. Links are planted between the three regions, meeting at

a vertex of the FORK type, except

(a) if one region is the BACKGROUND no link is placed;

(b) if one of the lines is connected to an L, or to the

barb of an arrow, or forms the bar of a T, the regions

on either side of that line are not linked.

3. ARROW. Links are placed between the two regions on either side

of its shaft, except

(a) if the shaft of the ARROW is connected to an L, the regions

on either side of the shaft are not linked;

(b) if the shaft of the ARROW is connected to a background FORK,

or to the stem of a background T, the regions on either sides

of the barbs are linked.

4. &. Two cases are distinguished.

(a) If the X is formed by the intersection of two lines,

no links are planted.

(b) If the X is formed by four lines, two of which are

collinear, the regions on either side of the collinear

lines are linked.

5. PEAK. All regions, except the one containing the obtuse angle,

are linked to each other.

6. T pairs. Facing pairs of Ts with collinear stems are linked,

provided the area between the bars is not BACKGROUND.

7. 3-parallel T. The regions on either side of the stem of the T

are linked in the case of a 3-parallel T.

 



 

 

 

Weak links, planted in addition to strong links, are associated with

the type of vertex called LEG.

LEG is an ARROW where one of the barbs of the ARROW is connected to an

L which has one line parallel to the shaft of the ARROW (if necessary through

a chain of matched Ts).

e.g.

“eel oO
/ /a’

Examples of the links associated with these junction types are given in

Figure 3.

Raving classified the vertices in the scene, as shown in Figure 4, the

second step is to combine and group the link evidence to partition the scene

into its constituent bodies. The evidence for the scene BRIDGE is shown in

Figure 5, in which the regions are depicted by circles. Strong links are

represented by solid arcs; weak links by dotted arcs. All the links to

the background ( :30) have been deleted since the background cannot be part

of any body.

Now the program attempts to form nuclei, where a nucleus is either a

region or a set of nuclei which has been formed by the following rule: if two

nuclei are connected by two or more strong links, they are merged into a jarger

nucleus by concatenation. For example, in Figure 6, regions :24 :25 :27 :12

and regions :21 and :9 are put together. As a consequence, nucleus

2:24 $325 :27 :12 has two links with nucleus :21 :9, so they are combined in

turn to form a new nucleus :24 :25 :27 :12 :21 :9 as shown in Figure 7.

So, the nuclei are allowed to grow and merge until no new nuclei can be formed.

When this is the case, the scene has been partitioned into several "maximal"

nuclei: between any two of these, there are zero or, at most, one link.

The program has still to consider the effect of weak links. The rule is

that if a strong link joining two maximal nuclei is reinforced by a weak link,

these nuclei are merged, as shown in Figure 8. For example, in scene BRIDGE,

the following weak links exist: :13 to :15 3:14 to :15 :3 to :17 3:7 to 34

28 to 311 3:10 to :4 3:5 to :6 3:28 to :29 3:18 to 219 3:25 to 2:27 2:22 to 326

323 to 3:26

Notice that nucleus :16 is linked to nucleus :18/:19 by a single strong

link. This invokes another rule to the effect that a strong link joining a



nucleus and another nucleus composed by a single region is sufficient evidence

for the nuclei in question to be merged if there is no other link emanating

from the single region. This yields the final parsing shown in Figure 9.

In summary:

i. Form nuclei from regions connected by two or more strong links.

ii. Amalgamate nuclei joined by two or more strong links until nn new

nuclei can be formed.

iii. Amalgamate nuclei joined by one strong and one weak link.

iv. Amalgamate a nucleus joined to a single region nucleus by a

strong link.

Ignoring the single links between nuclei which remain after parsing,

the program returns the results

(BODY. IS :24 :9 :21 :27 :12 :25)

(BODY2. IS :22 2:26 :23)

(BODY3. IS :17 :3 :20)

(BODY4. IS :1 :2)

(BODY5. IS :14 :15 :13)

(BODY6. IS :19 :18 :16)

(BODY7. IS :29 3:28)
(BoDY8. IS :8 2:11 :5 :6 :4 :10 :7)

How good is SEE? Since it requires two pieces of strong evidence to

join two nuclei, it is conservative, i.e. it will almost never join two regions

that belong to different bodies. Its errors are almost always of the same

type: regions that should be joined are left separate. This suggests that

more heuristics should be added to provide additional linking evidence. The

problem is that adding a heuristic can cause repercussions: it may solve the

difficult case but in turn cause other difficulties. Rather than continue

to derive rules in an ad hoc way, it would be preferable to derive them from

an explicit 2D/3D representational theory which takes into account the overall

geometry of polyhedral bodies. This is what we will consider next.
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Figure 1. "BRIDGE!

The long body :25 :24 :27 :21 :9 :12 is correctly identified.
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Exploitingphysical constraints

When we discussed Guzman's program, we found that its rules for Linking

regions depended on the shape of the local junction. In contrast, we turn

now to consider later work by Huffman, Clowes and Waltz who realised that by

devising rules for describing and linking junctions, not only could they

obtain a segmentation of the scene into bodies, but they could also derive

information about the 3-D shape of the bodies.

As we have already noted, SEE made most use of trihedral vertices - the

so~called ARROW and FORK junctions. Now, a trthedral verter ts a point of

intersection of three planes which partition the surrounding space into eight

octants. This is shown graphically in Figure 1. Some of the ways in which

these octants can be filled by three surfaces which meet at a vertex are shown

in Figure 2, where the number of octants actually occupied yields a type number.

For example, type 1 is like Guzman's ARROW, and type 7 is like his FORK junction.

Imagine now that you can view a vertex from each unoccupied octant. The

possible views for the four vertex-types are shown in Figure 3. Labels are

associated with lines in these drawings. Let's see what these labels denote.

1. a '+' marks a comvex edge which has both corresponding planes visible.

2. a ‘'=" marks aconcave edge which has both corresponding planes visible.

3. an '<' marks an occluding edge where one plane is hidden, the vistble

plane being to the right of the direction in which the arrow is

* pointing.

By understanding the three-dimensional nature of the scene, we are able to

apply the lebels of the drawing. The important question is can a program use

line-labelling to help it to understand the three-dimenstonal nature of line

drawings? The answer is that it can do so by applying to the vertices in a

drawing the set of labelled line configurations which we obtained by labelling

the possible views for the four-vertex types. The set of twelve possible

configurations is shown in Figure 4. Notice how this approach limits the

number of labellings for the different configurations. For example, given

four labels, there should be 16 ways of labelling an "L" junction but there

are only 6 legal labellings shown.

 



Huffman (1971) was interested in showing that the use of the labelled-

line configurations (which we will refer to as corner models) would enable

us to tell when certain kinds of drawings are impossible. If we look at

the picture given in Figure 5, it will be rejected as a possible line drawing

for a plane-faced object because there is no set of labels which will

consistently label it.

Labelling the outer contour is straightforward - the only allowable

labels are arrow-type labels. If we move on now and consider the two arrow-

type vertices, we find that the contour labelling has assigned arrow labels to the

lines on either side of the shaft in both cases. Inspection of our list of

legal corner models shows that there is only one arrow-type vertex with arrow labels

assigned to bounding lines. Selecting this forces a + label for the shaft

which is entered accordingly. If we now consider the L vertex between the

shafts of the two arrows, we find that each leg of the L has been assigned a

+ label. But inspection of the list of corner models indicates that this

is mot a legal corner model - there is no L configuration with plus labels on

each leg so we conclude that the drawing does not represent a three~dimensional

object of trihedral vertices.

Similar considerations apply when we examine the eight objects shown in

Figure 6. In the case of example (a), the labelling of the outer contour

forces us to label the shafts of the arrows with a + since this is the only

legal corner model which can be applied. This forces + labels on all three

lines forming the arrow in the middle, and inspection of the list of corner

models indicates that it is mot a legal labelling. Exactly the same problem

crops us in examples (b) and (f£), and in the case of example (c) we see a

recurrence of the labelling problem encountered in the case of the drawing

of the incomplete cube, seen earlier. Example (d) is a second example of an

illegal L model, whereas example (e) has an illegal fork junction. Examples

of other types of illegal arrow labellings are shown in examples (g) and (h).

Huffman only considered single objects, using a hand-worked analysis.

Clowes (1971), working independently on the problem, devised a computer program

"OBSCENE" to perform this kind of analysis. Since it was designed to handle

scenes with multiple objects, involving consideration of additional fork and

T-junctions, Clowes’ program was equipped with a larger set of corner models.

Working at M.I.T., David Waltz (1975) generalized the Huffman/Clowes ideas

in two fundamental ways:

1. He expanded the set of line labels to capture more information about

 



 
  

 

 

the physical situation, and

2. He devised a filtering procedure that reduces the search problem by

quickly converging on the possible interpretations.

Waltz's system consists of a working set of computer programs which

categorize the lines in a scene as boundary, shadow, convex, concave and crack

types. In addition, the system groups regions which belong to the same object,

calculates object orientation, and notices such relations as contact or lack of

contact, support, in-front-of, and behind. Not only can it give a 3-D

description of the shadowy scene shown in Figure 7, it can also recognize the

very different picture in the next Figure 8 as representing the same scene.

Line labels

Let's begin by considering the extensions of the system of labelling.

In the scenes analysed so far, the problem of handling shadows has been

deliberately avoided. Waltz, on the other hand, wanted to be able to analyse

less artificial scenes, and decided to try to deal with shadows and cracks .

Shadows are indicated by labelling the shadow line with a short arrow,

pointing into the shadow. This adds two new labels since a shadow can be

on the right or on the left of a line. A crack appears where there is only

one plane but two faces, and this is indicated by the label, C. These are

shown on the left-hand side of Figure 9. Now that we have 7 labels for a

line, the number of possible combinations at an L should be 49. However,

we already saw that with 4 labels the number of legal labellings was

restricted to six. By a somewhat elaborate process, similar in principle

to the one described previously, the number of legal ways to label an L, given

seven possible labels, is only 9.

The important point to notice at this stage is that the amount of constraint

is increasing as we make our descriptions more detailed. For example, we've

increased the number of line labels from 4 to 7, the number of vertex

possibilities for an L has increased from 16 to 49 but the number of legal

vertex labels has only increased by 3, from 6 to 9. As Winston points out,

the percentage of legal vertices has decreased from 30% to about 202.

A further classification can be made according to whether or not each edge

can be the bounding edge of an object (see Figure 10). One effect of doing

this is to increase the number of concave edge types from 1 to 4. What is

the difference between them? The answer is that the difference is determined

by what objects look like when we separatethen. If we look back at the

right-hand side of Figure 9, the only change in the case of object (a) is



the addition of the - sign to the bottom edge to indicate the support

relationship, i.e. the edge denoted by the arrow labels is a separable two~

object concave edge.

Whereas example (a) was a single object, examples (b) and (c) are in two

parts which can be separated. Incase (b), imagine we pull the objects

apart. Previously the concave line between the objects was labelled with a

minus; and the line between the two adjoining faces was labelled as a crack,

Now we see that concave edge corresponds to a separable two-object concave

edge, where the labelling relates to the cube shape, i.e. the arrow points in

the direction which maintains the visible surface on the right. This labelling

suggests either a support relationship, as in (a), or an occlusion situation

where one object partially occludes another object. The crack edge is labelled

with a downward pointing arrow to indicate that the object to the right

partially obscures the object to the left of the edge.

Applying the same reasoning to case (c), the edge labelling of the concave

edge separating the two objects changes to indicate that the edge belongs to

the upper object, and the crack label is changed to indicate the support

relationship between them.

Finally, example (d) explains the third new label - the double arrow.

This is used in situations where three objects meet along a single edge, and

it can be seen that the labelling of the concave edge in example (d) incorporates

the labels used in examples (a),(b),(c).

Now that we have a clear picture of the way that vertices constrain the

labelling of objects, can we find any further constraints to help with the

analysis? Waltz decided to examine the effects on regions of the illumination

of the scene. Let us assume that the scene is brightly lit by a single light

source, If the light hits a surface directly, it is an tlluwninated surface (1).

If, however, the body of an object interposes between a surface and the light

source, the surface is a seZf-shadowed (SS). Finally, where a surface would

be illuminated by the light source if it were not for the interposition of

another object, it is classified as a shadow-projected surface (SP).

To ascertain if there are constraints among region illumination, let us look

at the example in Figure 11 which has already been appropriately labelled.

Consider the lower, right-hand vertex. Let's begin by assessing what we

already know about the situation. First of all, the shadow line implies

the existence of a shadow-projected region and an illuminated region - in

 



 

 

 

 

practice, regions C and B. Looking again at the labelling we see the regions

B and A are related by a concave edge which implies that if region B is

illuminated so also must region A.

But what about region D? Again we know from the labelling that one edge

has a plus label. What this means is that region D could be self-shadowed,

or illuminated but it could not be shadow projected. To be shadow projected,

the edge label would be an arrow, not a plus, so a projected shadow is not a

possible labelling for region D.

What else do we know? Well, we know that the adjoining region C is a

projected shadow, so can D be a projected shadow? The answer is yes, it

can be a projected shadow, and equally it cannot be illuminated because the

edge between C and D is a minus edge. As we already saw, if one side of a

minus edge is illuminated, then the other side is also illuminated. “ Consequently

since C is a shadow, region D must also be a self-shadow or projected shadow.

So the relationship between regions A and D suggests that D is illuminated

or self-shadowed, and the relationship between C and D suggests that D is a

self shadow or projected-shadow region. The only possibility that satisfies

both is self-shadow.

What we have seen is that there is an intimate relationship between edge

type and scene illumination. Waltz took advantage of this to define new

edge labels which included information about the lighting on both sides of the

edge. He was including at the edge level (a very local level) information

which constrains all edges bounding the same two regions. Put another way,

wherever a line can be assigned a single label which includes this lighting

information, then the junctions which can appear around either of the regions

which bound this line are highly constrained.

Figure 12 gives tables relating region illumination types. For example,

if either side of a concave or crack edge is illuminated, both sides of the edge

must be illuminated. These tables were used to expand the set of allowable

junction labels. Prior to the addition of region illumination, the total

number of legal labels in the data base was 717. After including the region

illumination, the total increased to 3,256. The breakdown by junction type

is shown in Figure 13.

Since Waltz assumed that each scene would be of blocks on a horizontal

table top, any line segment separating the background (table) from the rest of

the scene can only be labelled in a very few ways, as shown in Figure 14.

Because of this fact the number of junction labels which could be used to label

junctions on the scene/background boundary can be greatly restricted, as shown

in Figure 15.



We have now dealt fully with the way in which Waltz extended the number

of labelling possibilities for junctions. Out task now is to understand

how possibilities are eliminated to get a unique parsing for an object or

set of objects. The strategy which Waltz follows is in two parts.

1. He uses selection rules to eliminate as many labels as possible on the

basis of relatively ZocaZ information such as location of a junction relative

to the background or region brightness. We have already seen that only

about one-tenth of the physically possible vertices can occur on the scene

background boundary, whereas all of them can be found inside the scene.

For example, only two of the ten PEAK interpretations make sense on the scene-

background boundary. Consequently, Waltz's program locates this boundary

before attempting any labelling. This can be achieved by finding all the

regions that touch the edge of the field of view and combining them, or by

finding the contour that has the property that every junction lies on or

inside it.

Turning now to region brightness, in theory a line in a scene can be

assigned any of 57 possible labels. But once it is known that there is an

arrow at the end of it, as shown in Figure 16, the number of possibilities

drops to 19. Suppose also the relative brightness of regions Rl and R2 are

known. There are three possibilities:

i. R1 is darker than R2

ii. R2" " "RL

iii. RL is equal to R2

If (i) is true, if L-A-B is a shadow edge, Rl must be the shadowed side and

R2 the illuminated side. If (ii) is true, the opposite is the case. If (iii)

is true, then L-A-B is not a shadow edge.

At any rate, if the brightnesses of Rl and R2 are known, no more than 18

and as few as 15 labels remain. Also, if the brightness of R3 is known, then

as few as 5 and no more than 18 labels will remain possible.

All the junctions lying on the scene-background boundary are labelled

first. Next, the program labels the junctions that bound regions that share an

edge or junction with the background, since these will be more constrained by

the background neighbours than by their internal neighbours. Finally, the

more central junctions are labelled (analagous to building a jig-saw puzzle

from edge to middle).

2. Next, Waltz filters out labels which cannot be part of any total scene

labelling. To understand the filtering process, we assume that the selection

 

 



 
  

 

rules have been applied to reduce the lists of possible candidate models for

each vertex of the shape. The filtering program then computes the possible

lebels for each line, using the fact that a line label is possible if and only

if there is at least one junction label at each end of the line which contains

the line label. Let's see how it works in the simple example of a cube, shown

in Figure 17.

Step 1

Compare A and B for mutually exclusive junctions. Since there are no outgoing

arrows in A, we have no ingoing arrows in B.

Eliminate Bl and B6.

Step 2

Compare remains of B, viz. B2 B3 B4 BS with C. Since there are no ingoing

arrows in C, eliminate outgoing arrows in B.

Eliminate B5

Now there are no + labels in B, so

Eliminate C3 and Eliminate A3.

Step 3

Compare remains of C, viz. Cl and C2, with D. Since there are no + labels

or outgoing arrow labels in C, there can be no + labels on ingoing arrows in

D, so

Eliminate D1, D5 and D6.

Step 4

Compare remains of D, viz. D2, D3 and D4, with E. Since there are no + labels

or outgoing arrows in D, there can be no + or ingoing arrow labels in E, so

Eliminate E3.

Step 5

Compare El and E2 with F. Since there are no + or outgoing arrow labels in E,

there can be no + or ingoing arrow labels in F, so

Eliminate Fl, F5 and F6.

Step 6

Compare remains of F with A.

No further elimination, so filtering is complete.



Optional heuristics can be invoked to select a single labelling from among

those which remain after all the other knowledge in the program has been used.

These heuristics find a “plausible” interpretation if required. For example,

one heuristic eliminates interpretations that involve concave objects in favour

of ones that involve convex objects, and another prefers interpretations which

have the smallest number of objects; this heuristic prefers a shadow inter-

pretation for an ambiguous region to the interpretation of the region as a

Piece of an object. Also, special case heuristics deal with the labelling

of non-trihedral vertices, the accidental alignment of edges, and missing

lines in the picture.

The program has reached the stage where it successfully handles scenes

such as those shown in Figure 18. The segments which remain ambiguous after

its operation are marked with stars.

We are now in a position to understand why Guzman's program works. You

will remember that we noticed that it worked best on scenes with convex

trihedral vertices, that is with conver objects. Accordingly, we can eliminate

from Huffman's corner interpretations all corners with concave edges, including

those for the L that imply a hidden concave edge, leaving the set shown at the

bottom of Figure 19. Notice that L, FORK and ARROW junctions now have unique

corner interpretations, where the + labels, which indicate convex. edges, also

match Guzman's links, i.e. we can derive Guzeman's links by planting a link at

a convex edge and no link at an occluding edge.
Also, link suppression rules. (no link is placed across a line at a junction

if its other end is a barb of an ARROW, a leg of an L, or the crossbar of a T)

are equivalent to the rule that the opposite ends of a line must have the same

labelling. Indeed, the accumulation of link evidence based on the existence

of two links between surfaces means in effect that both ends of an edge mst

agree that it is convex for it to be so taken. If only one end says so, i.e.

one link, there is a conflict which must be heuristically resolved in Guzman's

system.
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4.

Applying labelling to curved objects

Here we describe work by Turner (1974).

The consequences of handling surfaces which are not planar are as follows:

Surfaces. One cannot tell from a line drawing just what type a surface is.

Curved surfaces may be locally described as parabolic (e.g. cones, cylinders),

elliptic (e.g. spheres)-or hyperbolic (e.g. torus) but many change from-one

type to another without any trace appearing in the line drawing. The simple

geometric properties of planes and the absence of any other surface type

contributed significantly to the success of Waltz's program.

Edges. Curved surfaces introduce another edge type, known as the generator

edge (Figure 1). It corresponds to some invisible line in the surface (around

outside of sphere, cylinder etc.). A disturbing feature of curved edges is

that they may undergo transition in interpretation without any visible change

(Figure 2). Waltz's program relies on lines being ascribed the same inter-

pretation by the junctions at each end: this is not true in general.

Finally, polyhedral scenes give rise to lines connected at both ends to other

lines, with each pair of junctions connected by at most, one line. Curved

objects also violate these rules, as shown in Figure 3.

Corners. Junctions may be attached to only one line, and may be joined by

more than one line (Figure 3b). There can even be lines without junctions

(outline of sphere). Generator edges give rise to a new kind of junction,

where a generator meets another generator or a true edge (Figure 3(b) ).

Illumination. The reflected intensity is (ideally) the same at all points

of a plane surface. This is a powerful binding force in Waltz's program

since all the edges round a surface must assign it the same illumination

label. In contrast, a curved surface may receive all possible types of

illumination (Figure 4). Also shadow lines may be non-existent (e.g. in

Figure 4, the line separating the illuminated and non-illuminated halves of

the cylinder) or may peter out along their length (e.g. in Figure 4, the

shadow cast across the cylinder).

These problems indicate that curved objects cannot be treated by a straight-

forward extension of polyhedral techniques. Instead, various restrictions were

imposed.



1. Background The background is assumed to be an illuminated plane with

no holes.

2. Lighting Illumination is by a single point-source of light (producing

sharp shadow edges).

3. Viewpoint The scene is contained wholly within the picture, with fixed

viewpoint.

4. Surfaces Surfaces are smooth and opaque: creases are not permitted.

Surface points must all be of the same type (i.e. parabolic,

elliptic or hyperbolic). No surface marking is allowed.

5. Cracks Cracks are not permitted so separable edges are not handled.

(Cracks are rare with curved objects).

6. Corners Only corners enclosing a single volume in space are allowed.

The mechanism for generating curved object function labels is based on the

observation that two planes may approximate a curved surface in the vicinity of

a corner. A corner composed of both plane and curved surfaces may therefore be

approximated by a purely polyhedral one. Note that a convex (concave) surface

will give rise to a convex (concave) edge, and that the convexity (concavity) of

the other edge will be preserved. This process may be applied in reverse, a

polyhedral corner being regarded as generating one with curved surfaces. The

fact that convexity and concavity are preserved means that the labels of the non-

planar corner can be easily derived from those of the planar one. To determine

the labels for a certain class of curved objects, the procedure is to obtain the

labels for the appropriate polyhedral corner and apply a plane-to-curved trans-

formation. For example, in Figure 5, a 3-positive FORK (depicting the corner

of a cuboid with all the surrounding faces visible) can be transformed into a

2-positive curve with a nottonal junction in the middle, the stem of the fork

having got lost as the cuboid is transformed into a cylinder with no vertical

edges. So, in a sense, the program has not only to identify and label vertices

explicitly present in the picture, it also has to "see" junctions that are not

there as such,

In practice, junction labels must be generated for the cases of corners,

tees, shadowed corners, shadowed tees, shadows cast on. surfaces and shadows

cast across edges. Junction labels have also been derived for certain inter-

actions between planar, conical, cylindrical and elliptical surfaces. Some

typical labellings are shown.in Figure 6.

As indicated above, the illumination over a curved surface may vary

from directly~illuminated to self-shadowed. Also shadows cast over a

convex surface may peter out. This means that illumination information
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must be associated with lines, in the neighbourhood of junctions, rather

than with areas of the picture. This does not eliminate the problem since

the nature of the illumination may vary at opposite ends of a line, as may

the types of edge. The solution is to relax the consistency requirement

that the interpretation of a line must be the same at all points along it.

Instead, transition rules are used which specify how illumination and edge

labels can sensibly transform into others along the length of an edge.

Example transitions are shown in Figure 7, together with the rules which

deal with them.

Finally, Figure 8 is typical of the kind of scene that can be analysed

by these methods. The program takes about four times longer than Waltz's

program does to analyse a polyhedral scene. This speed difference stems

from the increased size of the label data-base, the greater complexity of

the consistency rules, and the diminished value of illumination information.

Indeed, ignoring illumination information does not give rise to much ambiguity

with curved objects: consistency of surface type is the main cohesive force.

But irregularly curved surfaces would be more difficult to handle, and

illumination might become a significant cure once again if Turner's program

was expanded.

Reference
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Ph.D. Thesis, University of Edinburgh.
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Figure 1: Generator edge labels

 

 

   
Figure 2: Edge type transitions.

 

(a) (»)

Figure 3.



m
e
m
S
O

 

 
 

xX

 
 
 
 
 
 

 

=
=am

|
|

\

 



    

 

fa)

As the cuboid is transformed into a cylinder, the actual junction at C becomes
the notional junction at C’. Line CD disappears. Lines AB and EF, which are

both genuine edge-lines depicting physical discontinuities in the cuboid, are

transformed into lines A’B’ and E'F’, which (as the double arrow labels mark) do
not correspond to “‘reai’’ edges in the cylinder, but merely to thevisible outtine

ofit.
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Reasoning about Surface Orientations

Line labels are subject to two limitations.

1. Line labels provide a qualitative shape characterization. While the convex

label + indicates that two plane surfaces meet and form a convexity, it is

unspecific about the angle at which the planes meet.

2. Legal labellings can be generated for line representations that are not

realizable as polyhedra. For example,

R1 and R2 cannotmake
convex edges at both
AB and CD

 

  

In addition to the syntactic constraints introduced by the labels, geometric

constraints are required. The use of gradient space for this purpose was proposed

by Huffman and used by Mackworth in his POLY program. Before describing POLY, we

will define the gradient space.

Gradient space

We begin by assuming that the viewer is at the origin of the projection system,

and that z-axis is the viewer's optical axis, and that the picture plane is at 2=0

and parallel to the x~y plane. Ne

Let us denote a surface in the space as

a d : : .
-ze (2) x (2) y + q assuming c is not O,where -z is the depth of the

surface point. An increase in -z represents an increase in the distance from the

viewer.

The gradients of the z components of the points in the plane in x and y directions



ATC socccevcccccccvcccccvcccccces Ge" °c Sy “Be

The gradient measures the instantaneous change in the depth of a surface

at a point (x,y) or it measures the tilt of the surface at that point with

respect to the z-axis. (Gy 6\may be viewed as a two-dimensional gradient

space, the orientation of each plane in the (x,y,z) space being uniquely

represented by a point in the gradient space (p,q), except when C is 0.

A point at the origin of the gradient space represents a plane parallel to the

(x,y) plane; a point on one of the axes of the gradient space represents a

tilt of this plane along the x or y axes, and a set of points in gradient space

represents a curved surface.

Consider the following illustration:

 

45°

P2

G, = (1,0 PO
& = (0,0)

 

 

   

The depth (-z) of P,) does not change, so its gradient G) = (0,0). Plane Py

tilts away from the viewer at 45°, so its gradient is (1,0). The gradient space

representation is:

 

 

Note that the axes of this space are p and q, not x and y, where the p-axis

represents surface rotations about the vertical y-axis, and the q-axis

represents surface rotations about the horizontal x-axis. Combinations of

p and q rotations are represented by points lying off the p and q axes,

e.g. (p,q). The direction of the vector from the origin to (p,q), i.e.

tan™!(q/p) describes the direction of steepest change in the depth of a

surface; the distance to the origin i.e. J (p'+a?), is the rate of change

of depth along the direction of steepest change.
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Line labels and gradients

Although the gradient space representation does not make explicit the

actual depth of the surface plane nor the spatial extent of the plane, it

does describe the concave/convex relationship between adjoining surfaces.

For the remainder of the note, we assume an orthographic projection,

i.e. no foreshortening when a point (x,y,z) in 3-D space is projected to a

point (x,y) in the image plane.

The relationship between line labels and gradient space is that if two

surfaces meet along a concave-or convex edge, their gradients lie along a

line in gradient space that is perpendicular to that edge in the image.

This is known as a "dual line”. For example, if two planes intersect at a

vertical edge in the image plane, the gradients of the two planes must lie in

a horizontal line in gradient space. Furthermore, if the gradients of the

surfaces are on the same side of the edge as their causing surfaces, the

edge is convex; if the gradients of the surfaces are on opposite sides of

the edge from their causing surfaces, the edge is concave. (See Figure 1.)

In this way, the line labels can be related with properties of the

gradients. For example, the convex corner (below left) is represented by

gradients in the dual space representation (below right).

c

 

Suppose the gradient of R1 is at G1. Becuase Ri and R2 are linked by a

convex line AB, the gradient of R2 must be on a line that passes through G1,

perpendicular to AB. Suppose it is at G2. Region R3 is connected to both

R1 and R2 by convex lines, BD and BC. So, its gradient G3 is given by the

intersection of lines extending from G1 and G2, perpendicular to BD and BC

respectively. Then G1, G2 and G3 form a triangle of a particular shape.

In fact, the location and scale of the triangle are arbitrary, but the shape

and orientation are strictly determined by the lines in the image. These

are exactly the constraints that the labelling represents.



Similarly, the concave corner (below left) is represented by the dual space

representation (below right).

 

POLY

For an object to be physically realizable it should be possible to construct

a consistent dual for it. This is the task tackled by Mackworth's program, POLY.

Note that POLY checks for consistency only over connect (convex or concave) labels

and uses them to assign the sense of occlusion to non-connecting edges. This is

because connect labels are much more constraining than occlusion labels:

reasoning about connect labelling involves the solution of numerically simple

simultaneous equations whereas reasoning about occlusion involves consistency

checking of relational structures expressing such concepts as ‘in front of' and

‘behind' which are not readily represented in the 2D of gradient space.

Let's see how POLY handies this example:

 

 

   
It begins with the background surface, A, and arbitrarily assigns a gradient

(0,0) (origin of gradient space) to it. Next, it takes region B. Surfaces

A and B are bounded by lines 1 and 2. Line 1 is considered. If it isa

connect edge (either concave or convex), the gradient of B must be on a gradient-

 



 

 

 

 

space line (perpendicular to line 1) that passes through the gradient of A.

The gradient of B is placed at unit distance from the origin (the origin and

scale are arbitrary):

L

GA
 

Next, line 2 is considered. To establish it as a connect edge, GB must lie on

a line perpendicular to 2 through GA. But this contradicts the previous

situation where GB lies on a line perpendicular to 1. Thus line 2 is not a

connect edge, but an occluding edge (assuming line 1 is a connect edge}.

Next, line 3 is considered. If line 3 is a connect edge, GC must lie on a line

perpendicular to line 3 through GB. Region C shares lines 4 and 5 with region

A. So both cannot be connect edges. The interpretation in which lines 1, 3

and 5 are connect edges and 2 and 4 are occluding edges is rejected by the rule

that three non-collinear points in space (corners a, b, c) cannot simultaneously

lie on two planes (A and B). So a legal interpretation is that lines 1, 3 and

4 are connect edges, but lines 2 and 5 are occluding edges. Now the situation

in gradient space is one of two possible cases:

GB Ge

ay

GA

Ge Ga

Now, POLY describes convexity or concavity of connect edges by making use of

the gradient-space constraints established so far. For the left-handed case

(above), lines 1 and 4 are concave and line 3 is convex, whereas, for the right-

hand case, lines 1 and 4 are convex and line 3 is concave.



Finally, POLY looks at the non-connect edges (lines 2 and 5). If edges

1 and 4 are concave and 3 is convex, on the right side of line 1, B is always

in front of A. Because of this, occluding edges are known to belong to

surfaces B and C respectively.

POLY yields one other interpretation, in which lines 2, 3 and 5 are

connect edges and 1 and 4 are occluding. Thereafter, it yields inter-

pretations with fewer connect edges, e.g. line 3 as connect and lines 1, 2, 4

and 5 as occluding.

Whereas the gradient space method eliminates some of the impossible objects

that were correctly labelled by Waltz's program, such as those shown in Figure 2,

it is not foolproof. For example, Figure 3 is an instance of an impossible

object that is accepted, using gradient space, because its inconsistencies are

not captured by the technique. The essential difference between Figure 2b

and Figure 3 is that the edges on either side of the notch in the latter shape

are parallel. The gradient space method does not distinguish between the duals

of parallel and collinear lines because (i) the gradient space does not represent

parts of plane surfaces, and (ii) dual lines represent only the orientation of

edges. Hence, surfaces A and B are represented as points on a single dual line.

Reference

Nevatia, R. Machine Perception, Chapter 4.  
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a : b

Figure 2. Labelling problems for Waltz’s algorithm. (a)~

Anomalous (physically impossible) interpretation
of a possible object. (6) False acceptance of an

“impossible object.”” (Source: Adapted from Huff-

man, 1971.)

   
Figure 3 An impossible figure

“accepted” by gradient
space. (Source: After
Huffman, 1971.)
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Knowledge guided segmentation

The programs which we have been reviewing so far have a hierarchical

structure. First, they find feature points in an entire scene; next they make a

complete edge representation using these feature points; finally, they segment

the edge description to form separate bodies. This approach is susceptible to

errors in the early stages (due to noise etc.); so later analysis based on the

earlier results is likely to lead to serious mistakes.

What we will look at now is an attempt to overcome the limitations of the

hierarchical structure, replacing it with a more flexible structure which

abandons the rigid ordering in favour of a strategy of using knowledge to guide

the processing. The particular research that we will be considering was carried

out at M.I.T. by Shirai.

More about detecting edges

In the work considered previously, we assumed that the edges of bodies

were represented as step (or near step) edges in the grey level representation.

This was an over simplification. Typically a blocks world scene contains a

variety of different kinds of edges. Besides the object background boundary

edges, usually of high contrast (our step edge of before), there are lower

contrast (more blurred) internal edges between adjacent surfaces of an object,

and so on. The operators considered previously (e.g. Robert's cross, high pass

filter) were designed to suit step-like edges: they perform relatively poorly

on blurred edges which are characterised by luminance gradients which extend

over a larger area of the grey scale representation. If we had a method that

could factor out the different kinds of edges from the visual data, this

information could be used by higher level processes to segment the scene into

bodies, without invoking a labelling process. In fact, Shirai's program does

exactly this. Let's examine how it does it.

Consider an intensity profile of n points taken along a band perpendicular

to the direction of a step edge:



   
  

7) direction of line segment

y Direction of intensity profile

The intensity profile is represented as follows

 

 

The contrast function is calculated as follows. We define the

contrast function of the ath profile point, to be the difference between

the sum of the m subsequent points and the sum of the m preceding points,

where m is a parameter. Graphically,
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But there are (n-2m) points for which values will be obtained, yeilding

a contrast function of the edge.

F(m)

 123Lo 123n weensereweenen

Intensity function Contrast function

So much for the step edge, but as pointed out above not all real edges

have similar cross-sectional intensity (luminance) profiles. Herskovits

and Binford classified edges into three types, namely, step, roof, peak (or

spike), according to the shape of their intensity profiles.
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The step edge (first derivative), encountered previously, occurs at

a high contrast boundary between regions of relatively homogeneous intensity.

The peak (or spike) edge (second derivative) occurs at boundaries representing

a sharp highlight, or representing a crack where one object rests against

another one. The roof edge (integral of second derivative) occurs at

boundaries between regions whose intensity profiles vary almost symmetrically

across the boundary, for example, texture edges. The contrast functions for

these profiles are:

1, F(m)
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Returning now to the problem of detecting feature points, there are

two questions still to be tackled:

a) Given an arbitrary contrast function, how do we decide whether or not

it represents an edge?

b) Given that a contrast function does represent an edge, how do we

decide what kind of edge it is?

The answer to the first question (a) is that an edge is represented

in the contrast function as a good peak. A good peak is defined as a peak

which is sufficiently high in an absolute sense, as well as being sufficiently

high relative to nearby troughs.

 

 

F(m) > Ta where Ta is threshold on absolute height

F(m) F(x) > Tr

F(m) F(y) > Tr

where Tr is a threshold on relative height.

The answer to the second question is that the type of edge is determined

both by the number of peaks in the contrast function and by the relationship

between peaks. For example, in the case of single peak contrast functions,

a positive peak represents a step edge where the intensity profile crosses

from a region of relative brightness to a region of relative darkness, whereas

a negative peak represents a step edge with a converse bright-dark relation-

ship. When both positive and negative type peaks are detected in the contrast

function, if the difference in the height of the two peaks is not greater than

75% of the height of the largest peak, the feature point represents a highlight

in the case of a negative-positive pair, or a crack in the case of a positive-

negative pair. A roof-type contrast function could be detected by examining

the width of the peaks, but is usually ignored in blocks world analysis since

texture information is usually less valuable than the edge, highlight and crack

information,
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Besides Shirai'’s program, this method of detecting candidate edge

points has been used quite widely, to good effect. One aspect of its use

which we must consider is the choice of thresholds. Up till now, we have

accepted a crude approach to the problem of thresholding: the choice of a

single threshold value a priori. But if boundary edges are of higher contrast

than internal edges, the single threshold causes problems. If set high

enough to exclude spurious boundary points, some of the internal edge data may

be missed. If lowered to capture all the internal edge data, a great deal

of spurious data in the neighbourhood of the boundary edges will be captured

in the candidate edge point representation.

Clearly we want to use different threshold values for detecting object/

background edges and surface/surface edges. The answer is to use dynamic

thresholds which are automatically adjusted as processing proceeds. In

other words, the threshold is set in accordance with local rather than global

luminance values in the grey level representation. This practice was adopted

by Shirai.

As we shall see, a difference between an edge-finding program and Shirai'’s

edge proposing program is that the former examines each and every grey scale

value in an attempt to determine if it is a candidate edge point whereas the

latter examines a subset of grey scale values selected on the basis of the

program's knowledge of the properties of bodies in its world: e.g. that edges

are parallel, Being more specific, Shirai's program continually proposes

the most plausible edges according to context, and actively searches for them

by means of a set of edge seeking procedures.

Let's look at the program's main features. It analyses blocks world

scenes, comprising evenly lit convex bodies with well defined edges. The

most obvious intensity gradients in these scenes are the "contour" edges

which separate the white body from its black background. The next obvious

intensity gradients are the "boundary" edges which separate one body from

another, and the least distinct are the "internal" edges which separate one

face of a body from another face of the same body. The program has implicit

knowledge of these differences since it is designed to detect contour edges

before boundary edges, and boundary edges before internal edges. These

edges are represented as lines on the program's graphical output so we will

refer to them as "lines"

A typical scene, input to the computer by an image dissector device,

comprises 100,000 grey scale values. As indicated above, the program's



initial task is to find the contour edges between object(s) and background.

Rather than inspect every value in the grey scale representation, the program

examines a sub-set of values. The grey level representation is divided into

8 x 8 subsets: one value is selected from each subset, making about 1500 in

total. To find a contour edge, the program searches through this reduced

data set until it finds a high contrast point. Using this point as starting

value, it tries to locate the position of a contour edge segment, using a

procedure called tracking. Briefly, the contour tracking routine uses the

step-edge detector operator described earlier, with the threshold adjusted to

the average value of the contrast function, to search for points along a

hypothesised edge and to check that they are collinear, i.e. lie on a straight

edge. The collinearity test checks

a) that the number of edge points exceeds a threshold number Tn

b) that the deviation E of the points in line fitting with the least

square method must be less than a threshold Tye

In this manner, a set of contour points is found. Then, the remainder

of the data is scanned until a new contour point is found; tracking is

repeated, and so on until the entire data subset has been examined and all

sets of contour points are known.

Next, the program returns to the high-resolution grey scale representation

and matches the sets of candidate contour points with particular values in

the representation. Using them as starting points, it derives a refined set

of contour points, by applying the contour tracking procedure once again.

Next, the program forms a polygon by connecting the contour potnts one by one.

The curvature of the polygon, i.e. the position of the vertices, is computed

to yield a final contour which can be used for the next stage in the analysis,

namely finding boundary lines. But a boundary line is a line on the border

of an object. So contour. lines are boundary lines, except where objects

overlap. In that situation, there will be one or more boundary lines in the

scene. If these boundary lines can be located, the program will be able to

segment the scene into its constituent bodies.

Suppose the program's task is to analyse the scene showin in Figure 1 (f).

As indicated above, it will begin by locating the contour lines AB, BC, CD, DE,

EF, FG, GH, HI, IJ, JK and KA (Figure 1 (a)), But since the program's world

excludes concave polyhedra, contour (boundary) lines which form a concave vertex

can be interpreted as the boundary lines of two different bodies. The obvious

strategy is to try to locate the rest of the boundary lines, using a peak edge
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detector tracking operator. In fact, this is the first of a set of ten heuristic

rules which embody knowledge about where lines are likely to be found. Details

of these heuristics are as follows:

If two boundary lines make a concave point, try to find collinear extensions

of them.

® This heuristic is tried for the concave points G and J. However, the

position of G is not precise enough to find the extension of FG. On the

other hand, a line segment is found as an extension of the line KJ. KJ is

extended by tracking, as far as L (see Figure 1b).

If no extensions of the two boundary lines are found, try to find another

line starting from the concave point using a circular search technique. If

only one is found, track along it.

® This heuristic is invoked for point G. One line segment is found and

extended until tracking terminates. Thus, line G' M' is obtained (see

Figure 1b). This line is interpreted as an extension of FG. The positions

of the points F,G,L are adjusted so that line G'M' becomes line F,G,L (as

shown in Figure 1c).

But notice that this means that two bodies, B1 and B2, have been identified

by the creation of the boundary lines GL and JL. Consequently, the first

heuristic can be applied again, at point L, provoking the extension of line

FL as far as M (see Figure 1d). LM is interpreted as an extension of FL

but the end point M is not connected to any other lines. Thus, the vertices

F,G,L and end point M are adjusted to form the new line LM.

If both extensions (of the boundary lines) are found, try to find a third

one and track along it.

® This heuristics is not invoked.

If an end of a boundry line is left unconnected, try to find the line

starting from the end point by circular search. If multiple lines are

found, try to decide which line is the boundary. If a boundary line is

found, track along it.

# This yields three lines, as shown in Figure !d. MN' is classified as a

boundary line and extended by tracking. When it terminates, the line is

connected to boundary line BC at N {as in Figure je). Now, body B1 splits

into bodies, Bi and B3. At this stage, it is known that B1 is hidden by B3,

and B2 is partly hidden by B3 and partly by B1.
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If no boundary line is found by circular search, extend the unconnected

boundary line by a certain length and test if it is connected to other

lines. If not, apply circular search again, as in (4). If necessary,

repeat the process until a solution is found.

® Since heuristic 4 was applied successfully, the fifth one was not

invoked.

At this point in the analysis, all the boundary lines have been found. The

task now is to find the internal lines.

Select the vertices of the boundary that might have internal lines starting

from them. If a line is found, track along it using the step edge tracking

procedure.

® Notice that the selection of vertices is based on heuristics such as

selecting the upper right vertex rather than the lower right vertex. Also,

the system looks for internal lines that are nearly parallel to boundary

lines (using its knowledge about blocks).

This heuristic is invoked and is applied to bodies B3, Bi and B2 (starting

with the most complete body since it is the easiest case to deal with).

Internal lines CO and MO are found and connected at vertex 0 (see Figure

le), as are AM and IP (see Figure if).

If no line is found (by 6), try to find one by circular search between

adjacent boundary lines. When one is found, track along it.

® Since the sixth heuristic was invoked, the seventh was ignored.

If two internal lines meet at a vertex, try to find another internal line

starting at the vertex (using circular search, if necessary).

® This is applied to vertex O and a line segment towards E is identified.

This is extended by tacking as far as E' (see Figure 1f).

If an end of an internal line is not connected to any line, try to find

lines starting from the end by circular search. If lines are found, track

along them, one by one.

® This heuristic fails.

If no line is found in (9), extend the line by a certain length (as in 5

above) and test if it is connected to other lines. If not, try circular

search again. Repeat until successful.

 



 

 

 

ll

® After a few trials, line OE' is extended to connect to vertex E, giving

the final analysis shown in Figure if.

Strengths and Weaknesses

Notice that Shirai's ten heuristics are ordered with respect to their

likelihood of success in finding useful cues in the scene. Also, their results

are continually tested for consistency with previous results, so the program is

less likely to be confused by small imperfections in the input. For example,

when an unconnected line fragment is found, the program checks if it could be

extended to intersect with another fragment already found, or whether it could

be the continuation of an existing line fragment. In such a situation, the

tracker can be made more sensitive by lowering its threshold. Similarly,

circular search can be made more sensitive and more wide-ranging in the area

covered. In this way, quite faint lines can be detected.

Notice,too, that Shirai's programs can ignore irrelevant lines provided

they do not distort the contour because they do not make sense as

representations of edges in the 3-D scene hypothesised by the interpretation as

a whole.

Notice, finally, that the edge description of the scene is partitioned

into groups of edges which represent bodies. Thus the program achieves a

measure of segmentation. It is, however, possible for the program to miss

bodies. For example, if it is presented with a tower of bricks, as shown in

Figure 2a, it will not propose the cracks between them because there are not

concave points to activate the boundary-line detecting heuristics. Also, when

one object is supported within the face of another object, as in Figure 2b, so

that no part of it touches the contour, it will not be found since the program

does not include heuristics for searching for line segments inside a region.
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Steps in analysis.
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Fig. 2. Situations with a lack of cues.
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Knowle ided segmentation

The programs which we have been reviewing so far have a hierarchical

structure. First, they find feature points in an entire scene; next they make a

complete edge representation using these feature points; finally, they segment

the edge description to form separate bodies. This approach is susceptible to

errors in the early stages (due to noise etc.); so later analysis based on the

earlier results is likely to lead to serious mistakes.

What we will look at now is an attempt to overcome the limitations of the

hierarchical structure, replacing it with a more flexible structure which

abandons the rigid ordering in favour of a strategy of using knowledge to guide |

the processing. The particular research that we will be considering was carried

out at M.I.T. by Shirai.

More about detecting edges

In the work considered previously, we assumed that the edges of bodies

were represented as step (or near step) edges in the grey level representation.

This was an over simplification. Typically a blocks world scene contains a

variety of different kinds of edges. Besides the object background boundary

edges, usually of high contrast (our step edge of before), there are lower

contrast (more blurred) internal edges between adjacent surfaces of an object,

and so on. The operators considered previously (e.g. Robert's cross, high pass

filter) were designed to suit step-like edges: they perform relatively poorly

on blurred edges which are characterised by luminance gradients which extend

over a larger area of the grey scale representation. If we had a method that

could factor out the different kinds of edges from the visual data, this

information could be used by higher level processes to segment the scene into

bodies, without invoking a labelling process. In fact, Shirai's program does

exactly this. Let's examine how it does it.

Consider an intensity profile of n points taken along a band perpendicular

to the direction of a step edge:



7? Direction of line segment

y Direction of intensity profile

?

The intensity profile is represented as follows

 
The contrast function is calculated as follows. We define the

contrast function of the gth profile point, to be the difference between

the sum of the m subsequent points and the sum of the m preceding points,

where mis a parameter. Graphically,
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But there are (n~2m) points for which values will be obtained, yeilding

a contrast function of the edge.

F(m)

  3 Tlon 123
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Intensity function Contrast function

So much for the step edge, but as pointed out above not all real edges

have similar cross-sectional intensity (luminance) profiles. Herskovits

and Binford classified edges into three types, namely, step, roof, peak (or

spike), according to the shape of their intensity profiles.
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The step edge (first derivative), encountered previously, occurs at

a high contrast boundary between regions of relatively homogeneous intensity.

The peak (or spike) edge (second derivative) occurs at boundaries representing

a sharp highlight, or representing a crack where one object rests against

another one. The roof edge (integral of second derivative) occurs at

boundaries between regions whose intensity profiles vary almost symmetrically

across the boundary, for example, texture edges. The contrast functions for

these profiles are:
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Returning now to the problem of detecting feature points, there are

two questions still to be tackled:

a) Given an arbitrary contrast function, how do we decide whether or not

it represents an edge?

b) Given that a contrast function does represent an edge, how do we

decide what kind of edge it is?

The answer to the first question (a) is that an edge is represented

in the contrast function as a good peak. A good peak is defined as a peak

which is sufficiently high in an absolute sense, as well as being sufficiently

high relative to nearby troughs.

“4

 

 

F(m) > Ta where Ta is threshold on absolute height

F(m) - F(x) > Tr

F(m) - F(y) > Tr

where Tr is a threshold on relative height.

The answer to the second question is that the type of edge is determined

both by the number of peaks in the contrast function and by the relationship

between peaks. For example, in the case of single peak contrast functions,

a positive peak represents a step edge where the intensity profile crosses

from a region of relative brightness to a region of relative darkness, whereas

a negative peak represents a step edge with a converse bright-dark relation-

ship. When both positive and negative type peaks are detected in the contrast

function, if the difference in the height of the two peaks is not greater than

75% of the height of the largest peak, the feature point represents a highlight

in the case of a negative-positive pair, or a crack in the case of a positive-

negative pair. A roof-type contrast function could be detected by examining

the width of the peaks, but is usually ignored in blocks world analysis since

texture information is usually less valuable than the edge, highlight and crack

information.

 



 
 

 

 

Besides Shirai's program, this method of detecting candidate edge

points has been used quite widely, to good effect. One aspect of its use

which we must consider is the choice of thresholds. Up till now, we have

accepted a crude approach to the problem of thresholding: the choice of a

single threshold value a priori. But if boundary edges are of higher contrast

than internal edges, the single threshold causes problems. If set high

enough to exclude spurious boundary points, some of the internal edge data may

be missed. If lowered to capture all the internal edge data, a great deal

of spurious data in the neighbourhood of the boundary edges will be captured

in the candidate edge point representation.

Clearly we want to use different threshold values for detecting object/

background edges and surface/surface edges. The answer is to use dynamic

thresholds which are automatically adjusted as processing proceeds. In

other words, the threshold is set in accordance with local rather than global

luminance values in the grey level representation. This practice was adopted

by Shirai.

As we shall see, a difference between an edge-finding program and Shirai's

edge proposing program is that the former examines each and every grey scale

value in an attempt to determine if it is a candidate edge point whereas the

latter examines a subset of grey scale values selected on the basis of the

program's knowledge of the properties of bodies in its world: e.g. that edges

are parallel, Being more specific, Shirai's program continually proposes

the most plausible edges according to context, and actively searches for them

by means of a set of edge seeking procedures.

Let's look at the program's main features. It analyses blocks world

scenes, comprising evenly lit convex bodies with well defined edges. The

most obvious intensity gradients in these scenes are the "contour" edges

which separate the white body from its black background. The next obvious

intensity gradients are the "boundary" edges which separate one body from

another, and the least distinct are the “internal” edges which separate one

face of a body from another face of the same body. The program has implicit

knowledge of these differences since it is designed to detect contour edges

before boundary edges, and boundary edges before internal edges. These

edges are represented as lines on the program's graphical output so we will

refer to them as “lines”

A typical scene, input to the computer by an image dissector device,

comprises 100,000 grey scale values. As indicated above, the program's



initial task is to find the contour edges between object(s) and background.

Rather than inspect every value in the grey scale representation, the program

examines a sub-set of values, The grey level representation is divided into

8 x 8 subsets: one value is selected from each subset, making about 1500 in

total. To find a contour edge, the program searches through this reduced

data set until it finds a high contrast point. Using this point as starting

value, it tries to locate the position of a contour edge segment, using a

procedure called tracking. Briefly, the contour tracking routine uses the

step~edge detector operator described earlier, with the threshold adjusted to

the average value of the contrast function, to search for points along a

hypothesised edge and to check that they are collinear, i.e. lie on a straight

edge. The collinearity test checks

a) that the number of edge points exceeds a threshold number Tn

b) that the deviation E of the points in line fitting with the least

square method must be less than a threshold The

In this manner, a set of contour points is found. Then, the remainder

of the data is scanned until a new contour point is found; tracking is

repeated, and so on until the entire data subset has been examined and all

sets of contour points are known.

Next, the program returns to the high-resolution grey scale representation

and matches the sets of candidate contour points with particular values in

the representation. Using them as starting points, it derives a refined set

of contour points, by applying the contour tracking procedure once again.

Next, the program forms a polygon by connecting the contour points one by one.

The curvature of the polygon, i.e. the position of the vertices, is computed

to yield a final contour which can be used for the next stage in the analysis,

namely finding boundary lines. But a boundary line is a line on the border

of an object. So contour. lines are boundary lines, except where objects

overlap. In that situation, there will be one or more boundary lines in the

scene. If these boundary lines can be located, the program will be able to

segment the scene into its constituent bodies.

Suppose the program's task is to analyse the scene showin in Figure 1 (f).

As indicated above, it will begin by locating the contour lines AB, BC, CD, DE,

EF, FG, GH, HI, IJ, JK and KA (Figure 1 (a)), But since the program's world

excludes concave polyhedra, contour (boundary) lines which form a concave vertex

can be interpreted as the boundary lines of two different bodies. The obvious

strategy is to try to locate the rest of the boundary lines, using a peak edge
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detector tracking operator. In fact, this is the first of a set of ten heuristic

rules which embody knowledge about where lines are likely to be found. Details

of these heuristics are as follows:

If two boundary lines make a concave point, try to find collinear extensions

of them.

® This heuristic is tried for the concave points G and J. However, the

position of G is not precise enough to find the extension of FG. On the

other hand, a line segment is found as an extension of the line KJ. KJ is

extended by tracking, as far as L (see Figure 1b).

If no extensions of the two boundary lines are found, try to find another

line starting from the concave point using a circular search technique. If

only one is found, track along it.

# This heuristic is invoked for point G. One line segment is found and

extended until tracking terminates. Thus, line G' M! is obtained (see

Figure 1b). This line is interpreted as an extension of FG. The positions

of the points F,G,L are adjusted so that line G'M' becomes line F,G,L (as

shown in Figure 1c).

But notice that this means that two bodies, B1 and B2, have been identified

by the creation of the boundary lines GL and JL. Consequently, the first

heuristic can be applied again, at point L, provoking the extension of line

FL as far as M (see Figure id). LM is interpreted as an extension of FL

but the end point M is not connected to any other lines. Thus, the vertices

F,G,L and end point M are adjusted to form the new line LM.

If both extensions (of the boundary lines) are found, try to find a third

one and track along it.

# This heuristics is not invoked.

If an end of a boundry line is left unconnected, try to find the line

starting from the end point by circular search. If multiple lines are

found, try to decide which line is the boundary. If a boundary line is

found, track along it.

# This yields three lines, as shown in Figure 1d. MN' is classified as a

boundary line and extended by tracking. When it terminates, the line is

connected to boundary line BC at N (as in Figure le). Now, body B1 splits

into bodies, B1 and B3. At this stage, it is known that B1 is hidden by B3,

and B2 is partly hidden by B3 and partly by B1.
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If no boundary line is found by circular search, extend the unconnected

boundary line by a certain length and test if it is connected to other

lines. If not, apply circular search again, as in (4). If necessary,

repeat the process until a solution is found.

® Since heuristic 4 was applied successfully, the fifth one was not

invoked.

At this point in the analysis, all the boundary lines have been found. The

task now is to find the internal lines.

Select the vertices of the boundary that might have internal lines starting

from them. If a line is found, track along it using the step edge tracking

procedure.

# Notice that the selection of vertices is based on heuristics such as

selecting the upper right vertex rather than the lower right vertex. Also,

the system looks for internal lines that are nearly parallel to boundary

lines (using its knowledge about blocks).

This heuristic is invoked and is applied to bodies B3, B1 and B2 (starting

with the most complete body since it is the easiest case to deal with).

Internal lines CO and MO are found and connected at vertex O (see Figure

le), as are AM and IP (see Figure 1f).

If no line is found (by 6), try to find one by circular search between

adjacent boundary lines. When one is found, track along it.

® Since the sixth heuristic was invoked, the seventh was ignored.

If two internal lines meet at a vertex, try to find another internal line

starting at the vertex (using circular search, if necessary).

* This is applied to vertex O and a line segment towards E is identified.

This is extended by tacking as far as E' (see Figure 1f).

If an end of an internal line is not connected to any line, try to find

lines starting from the end by circular search. If lines are found, track

along them, one by one.

* This heuristic fails.

If no line is found in (9), extend the line by a certain length (as in 5

above) and test if it is connected to other lines. If not, try circular

search again, Repeat until successful.
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# After a few trials, line OE' is extended to connect to vertex E, giving

the final analysis shown in Figure if.

Strengths and Weaknesses

Notice that Shirai's ten heuristics are ordered with respect to their

likelihood of success in finding useful cues in the scene. Also, their results

are continually tested for consistency with previous results, so the program is

less likely to be confused by small imperfections in the input. For example,

-when an unconnected line fragment is found, the program checks if it could be

extended to intersect with another fragment already found, or whether it could

be the continuation of an existing line fragment. In such a situation, the

tracker can be made more sensitive by lowering its threshold. Similarly,

circular search can be made more sensitive and more wide-ranging in the area

covered. In this way, quite faint lines can be detected.

Notice,too, that Shirai's programs can ignore irrelevant lines provided

they do not distort the contour because they do not make sense as

representations of edges in the 3-D scene hypothesised by the interpretation as

a whole.

Notice, finally, that the edge description of the scene is partitioned

into groups of edges which represent bodies. Thus the program achieves a

measure of segmentation. It is, however, possible for the program to miss

bodies. For example, if it is presented with a tower of bricks, as shown in

Figure 2a, it will not propose the cracks between them because there are not

concave points to activate the boundary-line detecting heuristics. Also, when

one object is supported within the face of another object, as in Figure 2b, so

that no part of it touches the contour, it will not be found since the program

does not include heuristics for searching for line segments inside a region.
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Fig. 4 Steps in analysis.
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Fig. 2, Situations with a lack of cues.
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Model-based segmentation

Today, we are going to follow a different route to segmentation, namely

segmentation through recognition of the primitive bodies in a scene. This is

the approach taken by Roberts,

Roberts’ thinking was strongly influenced by the work of a psychologist

called J J Gibson (1966). Previously, most psychologists considered vision

as a problem-of extracting invariant information about the physical world from

a flat, static, ambiguous 2-D image, We have already seen that an ‘edge’ is

not invariant information because it does not uniquely characterise its source

in the environment. Instead, it might be caused by a change inillumination or

colour, or perhaps by the edge of a shadow, So an ‘edge’ does not unequivocally

specify any particular thing. Gibson suggested that the visual system extracts

invariant information about the physical world from transformations of images

over time. Typically, these transformations occurthrough movement of the

observer, Information about surfaces such as their orientation, their extent

and their inter-relationships is specific to the environment, and can be obtained

by interpreting velocity signals generated by retinal transformations. This is

still a research problem that we will not deal with here. Instead, Robert's

captured invariance through the use of 3-D models stored in the machine. Each

model represents an invariant percept, and each can be identified with any

projection of itself (in 3 or 2-D). Such a system would therefore recognise what

the objects in a scene are without the intervening activity of segmentation.

Like most other programs considered so far, Roberts’ system is limited to

handling three types of 'primitive'objects, namely cube, rectangular wedge and

hexagonal prism (see Figure 1). Typical scenes analysed by the system include

simple and/or compound objects. Simple objects are created by transformations

which expand a 'primitive’ object along each of its co-ordinate axes, rotate it

and translate it. Compound (composite) objects are constructed by abutting two

or more simple objects so that each pair share a common surface. Examples are

shown in Figure 2.

Roberts’ program is really a conglomerate of three separate programs. The

first reduces the photograph of a scene (composed of simple/compound objects) to

a line drawing using similar methods to those studied earlier. This program

yields a set of lines, represented by their end point co-ordinates, and a set of

regions bounded by these lines, where the regions are all polygons since the

objects are all planar.



The second program, the interpretation program, handles the task of finding

the models which best describe a scene. It is this process which interests us.

The third program, which constructs a two-dimensional projection of the objects

in @ scene, will not be dealt with.

To understand the interpretation program, we have to understand the picture

taking process. Details are as follows.

An image is a direct perspective transformation of a 3-D field of object points.

This transformation is a projection of each object point on to a plane surface,

through a lens. The basic model of the process is shown in Figure 3 where the

camera is represented by a pinhole lens with an image plane lying a distance f

behind the lens. The image of a point V in 3-space is determined by the inter-

section of the image plane with the projecting ray defined by V and the lens centre.

y is the image point corresponding to the object point V.

A difficulty with this basic model of the picture-taking process is that the

image is a reflection of the object, i.e. the image is inverted from top to bottom

and left to right. To avoid reflections, the preferred focal plane is placed in

front of the camera and intercepts the projecting ray as shown in Figure 4. Here

the focal plane is really the plane of the print, not of the negative.

This process is called central projection. The z-axis is aligned with the

optical axis, or principal ray, of the camera, the principal ray being the ray

from the lens perpendicular to the image plane. The centre of co-ordinates (0,0,0) 1

is the intersection of the principal ray with the image plane. Notice that the °

process of central projection is many-to-one: for each image point there is a line 1

in space, defined by the image point and the lens centre, along which the correspondint!

object point must lie.  We are now in a position to understand the two questions associated with the “

image making process. First, given an arbitrary object point, the answer to the 1

question, "What is the location of its image point?" is provided by a direct LJ

perspective transformation from object point to image point. Second, given an ,

arbitrary image point, the answer to the question, “What is the straight line along [

which the corresponding object must lie?" is provided by the inverse perspective

transformation from image point to object point.

Unfortunately, the equations from the direct perspective transformation of

the object point V to the image point YD are non-linear because they involve

divisions. This difficulty is overcome by converting the non-linear transformations

into linear transformations in a different co-ordinate system in which an object

point (x,y,z) in three dimensions is represented by a vector of four numbers

(x), Yy> 249 h,). The four components of this vector are interpreted as co-ordinates | |

,
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in four dimensional space. In order to transform a point in 3-D co-ordinates

(x,y,z) into this 4-D representation, known as homogeneous co-ordinates, we

merely choose some non-zero number w and form the vector [wx wy wz w). This

number w is the scale factor or the homogeneous co-ordinate. Since the choice

of wis arbitrary, the homogeneous co-ordinates of a point are not unique. of

course, a homogeneous point (wx wy wz w] can be converted back into 3-D co-

ordinates by dividing by the scale factor: the point is Cwx/ wy w2/).

With homogeneous co-ordinates, we can now express the perspective trans-

formations as linear matrix operations. Let's consider a simple example, a

unit cube centred at the origin (0,0,0). In 3-space, this can be described as

a set of eight points, Vi(x,5 Yy» 24) to V8(xe5 Yes 2)» representing the eight

vertices, as shown in Figure 5.

/ This set of eight points in 3=D space can be described by an 8 x 4 matrix

of homogeneous co-ordinates. Co-ordinate transformations and projections,

either with or without perspective, can be done, either individually or in

combination, by multiplying this 8 x 4 matrix by an appropriate 4 x 4 trans-

formation matrix to give a product matrix of the transformed homogeneous co-

ordinates, as shown in Figure 6.

Returning to the central projection problem, the image co-ordinates are

obtained by multiplying the object co-ordinates by a transformation matrix P.

In similar fashion, the object co-ordinates can be obtained from the image co-

ordinates by the inverse transformation, rl,
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Note that the first column ofthe matrix affects only the x co-ordinate and

so contains all the numbers that define the updated x co-ordinate. The same

holds for y and z. A vertex is transformed as follows: To get a new x co-

ordinate, the old x co-ordinate is multiplied by the top number in the first

column; its result is added to the product of the old y co-ordinate and the

second number in the first column, The sum is then added to the product of

the old z co-ordinate and the third number in the first colum, Finally, the

total is added to the bottom number in the first column. The new y, z and h

co-ordinates are obtained in the same way, using the second,third and fourth

columns.



The perspective transformation applies when the object and image points are

specified in the co-ordinate system aligned with the camera. It may be necessary

to express objects in an independent co-ordinate system, the world co-ordinate

system i.e. object co-ordinates have to be transformed from world co-ordinates

to a system aligned with the camera before a perspective transformation can be

applied.

The models in Roberts' system (cube, rectangular wedge and hexagonal prism)

are also represented by homogeneous co-ordinates. This means that a model can

be transformed to match an object in the scene by applying translation, scaling

and rotation transformations, Indeed the advantage of matrix multiplication

becomes evident when several consecutive transformations are required because

a series of transformations can be done by using only a single 4 x 4 matrix

which is the product of individual 4 x 4 transformation matrices. Note, however,

that the individual matrices must be multiplied in the order in which the trans-

formations are required. For example, a rotation followed by a translation does

not give the same result as a translation followed by a rotation i.e. matrix

multiplication is not commutative.

The transformation which translates a point (x y z) to the new point

(x', y", 2") is

tef1 000]

010 0
0010 where Ty» Ty and T) are the

T, ty T, 1 components of the translation in the

xX, y and z directions respectively.

The transformation which scales dimensions in each co-ordinate direction

separately is

Different scalings along the three

axes may be represented by noneunit
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terms in the diagonal of matrix S

Rotational transformations are more complex: we must determine an axis of rotation.

The simplest form of transformation occurs when the axis passes through the origin

and is aligned with a co-ordinate axis. To rotate about an arbitrary point, we

must concatenate three transformations: translate the point to the origin, perform

the rotation and translate back. To complicate matters, we must cope with axes

of rotation that are not aligned with the co-ordinate axes: in these cases we .

have to concatenate several primitive rotation transformations to form a matrix

that rotates about the desired axis,

 



 

 

 

The transformations for rotation about each of the co-ordinate axes, shown

in Figure 7, are given below. Note that rotation is measured clockwise about

the named axis of rotation, looking along the axis towards the origin.

Rotation by 6 about the x axis, Rx:

  
 

R, = {1 0 0 0

0 cos6 ~sin® 0

0 sin6 cos8 0

0 0 0 1

Rotation by-6 about the y-axis, Ry:
oats —

Ry = cos8 0 sin® 0

0 1 0 0

~sin6 0 cos8 0

0 0 0 1

Rotation by 8 about the z axis, Rz:

R, = cos@ -sind 0 “Ol

sin@ cos6 0 0

0 0 1 0

oO 0 0 1   
Now we are in a position to understand Roberts" program, Recognition is

achieved by selecting a model, and by applying a transformation matrix R which

will scale, rotate and translate it so that it matches a body in the scene.

i
OBJECT “MODEL

The question to be solved is ‘How is R calculated?’

Recollect that we encountered the matrix P which transforms object to image

co-ordinates:

aMODEL
_

~~?—srace e— 4



If we can find a transformation H which transforms model points into

image points, we can calculate R as a concatenation of H and the inverse of

Pi.e.R®= up, Having identified the object, its location can be specified

completely, except for its actual distance from the camera. This distance

is computed by assuming that the most downward facing surface of an object

must lie on the ground plane,

We turn now to consider how H is found, The question now is how does

the program select a model to account for the image data? Obviously, the

space of the three models, juxtaposed and transformed in all possible ways

and viewed from every direction is too large for a blind search. So instead

of generating all possible images of all possible objects until one matches

the input data, the search space must be intelligently structured. Roberts

uses the facts that despite transformation the topology of an object remains

invariant, and within a wide range of viewpoints the topology of the visible

aspect of an object does not change, to reduce the search space to models

viewed from a small number of typical viewpoints.

Let us consider the topology search in detail. It is based on the notion

of an "approved polygon" which is simply one of the shapes of the model surfaces.

For the three models used in the program, the set of possible polygons is

restricted to convex polygons of 3, 4 or 6 sides. Notice that eachvertex on

a cube has 3 quadrilaterals around it; each vertex on a wedge model has 2

quadrilaterals and 1 triangle around it, and each vertex on a prism model has

2 quadrilaterals and 1 hexagon around it. We can now identify the task of

the interpretation program as that of matching regions (polygons) in the picture

description with regions in the model description.

The first step is to select the appropriate regions from the scene

description since not all regions will be convex polygons (1) because of the

effects of occlusion of one object on another, and (2) the presence of compound

objects. To find the largest picture fragment corresponding to a model, the

program applies an ordered sequence of testsyeach one involving a smaller

fragment than the previous one until one succeeds.

Test 1. Find a picture point surrounded by three approved polygons. See

Figure 8a. (7 picture points required). Notice that this test corresponds

to Guzman's FORK rule.

Test 2. Find a line with an approved polygon on each side. See Figure 8b.

(6 picture points required). Notice that this test corresponds to Guzman's

ARROW rule.

e

 



 

 

Test 3. Find an approved polygon with an extra line coming from one vertex.

See Figure 8c. (5 picture points required).

Test 4. As a last resort, find a point with 3 lines coming from it. See

Figure 8d. (4 picture points required).

When a fragment has been identified the program searches the mdels in

sequence, cube followed by wedge followed by prism, to find a model point

surrounded by the same polygon structure as the fragment's image point.

Next, it constructs a list of topologically equivalent image-model point pairs;

it transforms the model fragment and calculates the mean square error of the

fit between model fragment and image fragment, using a threshold to eliminate

any model. which matches.the image topologically but would require deformation

to fit it. A model with a small error can now be completely transformed to

produce lines and points not part of the fitted area. These points are checked

against the image to make sure they do not fall outside the object's external

boundary. A fit confirms: the selection of the correct model and the correct-

ness of the transformation, H.

w If some of the model-generated points fall outside the external boundary

of the image, the wrong model has been selected and another must be tried.

If, however, they fall within the boundary, but do not account for all the

image lines, the image is probably of a compound object. The points correspond-

ing to. the model are then stripped from the image, and the remaining points

are, examined as hitherto.

In Figure 9, we see a typical compound object considered by Roberts. The

topology search finds no fragment from applying Step 1, but two from applying

Step 2, namely lines 2 and 3 have approved polygons on each side of them. The

cube has approved polygons on both sides of an edge so the geometry matcher

tries A and B as surfaces of a transformed cube as shown in Figure 10, but

discovers that the residual error of the least squares fit of the corresponding

object-model point pairs is too large and rejects it. Similarly for line 3.

The topology search then finds a fragment using Step 3, namely polygon A with

line 9 attached. The five points defined by that fragment match a transformed

cube exactly,as in (b). This is removed from the original image and the

process continues by finding the parts shown in (c) and (d) with the final

compound object shown in (e).

This example also emphasises the importance of perspective, Without it,

lines 1, 2 and 3 would be parallel, as would lines 5 and 6, and 7 and 8. Under

these circumstances, the transformed cube would fit exactly as shown in Figure 10

with disastrous effects on the subsequent analysis. This imposes severe

demands on the accuracy of Roberts’ line-finder system whose adequacy is



questionable. Just as with other systems we have looked at, it is relatively

easy to find counter~examples. Mackworth provides one, shown in Figure 11.

This object is simply a wedge on top of a cuboid. But it seems that whenever

topology teste succeed, the model suggested will not pass the geometric

transformation test, and so the program fails completely. Details are as

follows:

The topology test finds the two quadrilaterals flanking line 4 but if

one face of the cube is fitted to region A the rest of the cube will fall

outside the complete figure as shown in Figure 12(a). Next, it finds a polygon

with a line from one corer, and attempts to fit cubes or wedges. Again it

fails. In particular, Figure 12(b) shows a wedge that might be thought to

fit but it is incorrect as only rectangular wedges are allowed. Finally,

even withdrawing to the weakest test, a point with three lines coming from it,

will not succeed. Looking at lines 1, 2 and 3 of figure 12(c) we can see

that they are the three significant edges of a cube model that could be made

to fit but the program cannot find that context as it only looks for contexts

concentrated at vertices.

Before moving on, a few words of comparison between Guzman's and Roberts’

program might be useful,

1.  Guzman's program would segment the scene called 'BRIDGE', shown in Figure

13, into 8 separate bodies, namely:

Rody 1 : (R24 R9 R21 R27 R12 R25)

Body 2 : (R22 R26 R23)

Body 3 : (R17 R3 R20)

Body 4 : (RL R2)

Body 5 : (R13 R14 R15)

Body 6 : (R19 R18 R16)

Body 7 : (R29 R28)

Body 8 : (R8 R11 RS R6 RS RIO R7)

The question is how would Roberts’ program cope with this scene? We

might expect it to arrive at the following conclusions:

 



 

 

(R24 RO R21 R27 R12 R25) is instance of cube cf. Body 1 above

(R22 R23 R26) is instance of cube cf. Body 2 above

(R17 R3 R20) is instance of cube cf. Body 3 above

(Rl R2) is instance of wdecf. Body 4 above

(R3_ R14 R15) is instance of cube cf. Body 5 above

(R16 R18 R19) is instance of cube (or wedge) cf. Body 6 above

(R28 R29) is instance of cube (or wedge) cf. Body 7 above

So far, Roberts' program has made the same segmentation of the scene.

However, at this point its analysis differs. Guzman's "Body 8" is not

an instance of one of Roberts’ prototypes. Instead Roberts’ program would

decompose it into its primitive parts, as shown in Figure 14 yielding:

(R10 R32) is instance of cube cf. Body 8 above

(R33 R34) is instance of cube cf. Body 8 above

(R4 R11) is instance of cube cf. Body 8 above

(R6 R5 R31) is instance of cube cf. Body 8 above

So Roberts’ program finds three more componente than Guzman's program, i.e.

it doesn't matter whether or not all the edge information is present in the

picture description, provided that the outer boundary ts intact. In

contrast, Guzman's program is highly susceptible to missing/edgein! ormation.

The reason for this difference is that Roberts’ prototypes carry with them

information about 3-D structure whereas Guzman's corner models are derived

from the 2-D appearance of a 3-D scene, and do not carry information about

3-D structure.

2. Notice that Roberts'first test, namely finding a point surrounded by

three approved polygons, corresponds to Guzman's FORK heuristic. Notice

also that his second test, namely find a line flanked by two approved polygons,

is Guzman's ARROW rule. Finally, notice also Roberts' use of T-joints to

provide evidence of interposition of one body in front of another one.

3. Although we discussed Guzman's program before dealing with Roberts’

program, in fact Roberts’ progrzm was written about 4 years before Guzman's

programs Although it doesn't identify objects, it does identify all the

primitive component bodies, e.g. cubes, wedges and hexagonal prisms, and

can name them if required. Because of this, it is referred to as a

recognition program, and is cited by many as an important example of the



10

seeing paradigm which is based on the notion of a stimulus fragment invoking

a prototype model. But in reality, Roberts’ program is another special

case segmentation program because it decomposes a scene into its constituent

bodies, i.e. blocks, wedges and prisms. It does not recognise objects

made from these components, such as arches, bridges, tables and so on.
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1. Find a vertex surrounded by

3 approved polygons.
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an extra line coming from one
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4. Find a vertex with 3 lines

coming from it.
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Recognising 3-D objects

Although Roberts claimed that his program recognised objects, it seems

preferable to think of it as a model driven segmentation program since it

decomposes bodies into their constituent parts. But recognition of objects

also implies the existence of models of these objects which can be invoked,

and matched with a scene description to achieve recognition. The question

is what form. might these models take, bearing in mind that they have to

represent object invariances?

Dealing with polyhedral objects first of all, consider a simple arch,

built from three blocks. We know that Roberts’ program would recognise

three transformed cubes, but it would not "see" an arch. So how is an arch

defined? The answer is that an arch is defined in terms of the invariant

relationships between the constituent bodies. A convenient way of representing

scenes is to use a directed graph, where objects and object parts are rep-

resented by nodes, and relationships between parts are characterised by arcs

between nodes. In the blocks world, typical objects, and their properties,

include:

wedge brick small
cube object medium-size
rectangle standing large
triangle lying

and typical types of relationships include:

one-part-is a~kind-of left-of
in-front-of group-of right-of
has-property-of supported=-by married-to
abut

Let's apply this technique to the HOUSE scene shown in Figure 1(a).

Basically, it is just one wedge on top of one brick. Its graph description

is given in Figure 1(b). The top node represents the scene, while its

daughter nodes (A and B) represent the two parts. The arcs are labelled

ONE-PART-IS to denote the relationship between scene and parts. In turn,

each daughter node has its own daughter node which describes the type of part.

Part 'A' is a wedge and part 'B' is a brick: these are represented by the

relationship A-KIND-OF. Finally, there is one more relationship between

parts 'A' and 'B', the support relationship SUPPORTED~BY.
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Let's turn now to the scene shown in Figure 2(a). Its graph structure

shown in Figure 2(b), differs in one respect: the absence of the SUPPORTED-BY

relationship. If we are prepared to see Figure l(a) as a HOUSE, but reject

Figure 2(a) as a HOUSE, this suggests that the SUPPORTED-BY relationship between

the parts is an essential feature of a HOUSE. This can be captured in the

graph by modifying the SUPPORTED-BY description to a MUST~BE-SUPPORTED-BY

description, as shown in Figure 3. Again, if we wish to reject the scenes

shown in Figure 4 as examples of HOUSE, the A-KIND-OF description attached to

to the arcs from parts to part types must be altered to become a MUST-BE-A-KIND-OF

description (Figure 5).

Construction of a pedestal model proceeds in much the same way (Figure 6):

i) the top object MUST-BE-A-KIND-OF brick

ii) the upper object MUST-NOT-MARRY the lower

The scene in Figure 7(a) forces the top object to be a brick while the scene in

Figure 7(b) forces the lower one to be a brick, too. Figure 7(c) forces

support and Figure 7(d) forbids the MARRYS relation,

The arch scene in Figure 8(a) introduces a wider variety of differences

and produces a more complex graph, as shown in Figure 9, The scene given in

Figure 8(b) indicates that the MARRY relationship is not necessary; the scene

in Figure 8(c) shows that the support relationships are crucial i.e. MUST-BE-

SUPPORTED pointers are required; by placing the standing bricks in contact,

scene 8(d) highlights the key feature of an arch, namely, the space between the

supports, handled by the pointer MUST-NOT-MARRY, and finally scene 8(e) suggests

that anything in the class OBJECT will do for the top brick.

When a scene involves groups of objects, this feature is handled by

specifying relationships between typical members. Figure 10(a) shows a

composite column, Figure 10(b) introduces the MUST-MARRY pointer; Figure

10(c) relaxes the object type from BRICK; Figure 10(d) emphasises SUPPORTED-

BY by changing it to MUST-BE-SUPPORTED-BY; through Figure 10(e) the notion of a

group (a group implies at least three members) is emphasised by changing the

pointer on the arc to GROUP from ONE-PART-IS to ONE-PART-MUST=BE, and Figure

10(£) generalises the number of objects by introducing the node INTEGER and the

relationship NUMBER-OF-MEMBERS, allowing a column to have any number of objects

greater than 2,

Another example of the use of the GROUP node is the table shown in Figure

ll(a). "Near miss" scenes are shown as Figures 11(b) to Figure 1l(e).

What we have been looking at are examples of structural descriptions

generated by a program developed in the early 1970's by Pat Winston at M.I.T.

 



 

 

 

 

Each description was constructed by feeding the program with examples and near

misses. We can view his program as one method of building prototypes for use ir

a visual recognition system.

Matching

We turn now to look at another probiem, that of matching a structural

description of a scene with a stored structural description of prototype

objects to achieve recognition.

Since structural descriptions can be viewed as graphs, our initial

inclination is to compare pairs of graphs (or subgraphs) either by

discovering that tney are isomorphic or by generating a maximal clique of the

match graph. Unfortunately, both methods are computationally expensive. Also,

the graphs being compared may differ due to imperfect edge evidence, missing

parts, extra parts, distortion due to scene perspective, and so on.

We turn, instead to consider methods based upon decision tree matching.

Decision trees are useful when it is known that certain features are more

reliably extracted than others, and that certain relations are easier to

establish or are more germane to the success of a match.

1. Matching structural descriptions
 

We begin by considering how Winston's program ‘recognised’ structural

descriptions derived from typical blocks world scenes containing single

objects. Basically, the program compares the unknown description with each

stored description (ordered by degree of similarity), and generates a set of

‘difference descriptions' to characterize the discrepancies. Recollect that

Winston's structural descriptions contain arcs such as MUST-NOT and MUST-BE

expressing forbidden or mandatory relations. If one of the these essential

relationsnips is violated, a match is not permitted. These outright rejections

are easy cases. In practise, the harder cases are those where the unknown

description matches more than one stored description. This is dealt with by

associating numerical values with elements in the descriptions and computing a

weighted sum of differences to express the degree of match in each case.

Scenes containing more than one object are harder to handle since evidence

may be missing from the input description due to occlusion. Winston's program

makes use of two heuristics:



 

1. Objects that seem to have been stacked and could be of the same type are

judged to be the same.

2. A match is not rejected if an essential property is missing from the input

description since its absence may be due to occlusion.

One result of the latter is that the program sometimes misses the best match in

favour of the first possible match.

2. Backtrack search

Next, we consider the approach taken by Nevatia in a program that

recognizes instances of biological shapes (horses, dolis, snakes etc).

Prototypes are segmented into parts, eacn with a central axis and a cross

section. They also record information about the connectivity of the sub-parts,

and descriptions of the shape and joint type of the parts. The prototypes

(i.e. models) are generated by the machine by the same process that later

extracts descriptions of the image for recognition purposes.

The matching process is essentially a depth first tree search, witn initial

choices being constrained by "distinguished pieces" of the image. Nevatia uses

the example of the doll, snown in Figure 12, to illustrate the process. In its

case, the head and trunk are the "distinguisned pieces" because they are the

widest parts. Before the input description is matched to a prototype, a

connection graph of its pieces is formed, as shown in Figure 13. Due to noise

in the input data, two of the joints are missing.

On the basis of the distinguished pieces in the input instance, which match

those in the prototype, the program decides that the instance could be a doll

or ahorse. Both possibilities are carefully evaluated. A schematic view of

tne match between the input description and tne doll prototype is shown as

Figure 14, The final choice between candidates takes account of both the

connectivity relations, and the quality of the matches between individual

pieces. When the input description was matcned with the horse prototype, some

parts were missing from the input description. However, this did not rule out

the horse since the missing part might have been hidden from the camera's view.

When compared with the doll prototype, the piece matching was superior so this

was the ‘preferred’ solution.
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The examples that we have considered above both involved matching the input

description to the full set of prototypes. However, if the number of stored

models in memory is large, this approach is impractical. Instead, there is a

need for an invocation mechanism that will select a candidate subset of the

storec models. Typically, object features, such as the connectivity of

distinguished components and their type (remember Robert's approach), are used

tc compute an index (cue) into the model database. Each stored model is

equipped with an index. So, given an index computed from an object in the

image, a list of modeis with the same index is immediately available. Also,

several indices may be computed for a single model, to ease the invocation

task. In practice, this invocation problem is-harder than it might seem, and

is a subject for much needed research.
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