—ay p—— e ——=

AI-2 VISION NOTES 1987/88

J A M Howe

D.A.I. TEACHING PAPER NO. 6

CONTENTS

1. INTRODUCTION TO MACHINE VISION

2. LIGHTING AND VIEWING

3. CAPTURING THE IMAGE: BUILDING THE GRAY-LEVEL DESCRIPTION
4. PROCESSING BINARY IMAGES

5. DETECTING EDGE INFORMATION

6. HOW SEE SEES

7. EXPLOITING PHYSICAL CONSTRAINTS

8. APPLYING LABELLING TO CURVED OBJECTS
9. REASONING ABOUT SURFACE ORIENTATIONS
10. KNOWLEDGE GUIDED SEGMENTATION

11. MODEL-BASED SEGMENTATION

12. RECOGNISING 3-D OBJECTS

These notes supersede Occasional Papers Nos. 20, 31, 35 & 50.

Revised Edition February, 1988.

Copyright (¢} J A M Howe, 1988,

¥] £ i f 1] L} |13 L4 E L} | E___3 E__ 4 E__¢] L ¥ 1 k [1 E 4 (| L { 1] { i i L

— iy ey rt— p——y —— —— =

-

pr—— e

DEPARTMENT OF ARTIFICIAL INTELLIGENCE
UNTVERSITY OF EDINBURGH

AI2 JIM HOWE

i e i T T e e Rl e S i S e e e

Introduction to Machine Vision

Definition: Relationships to Image Processing, Pattern Classification and

Scene Analysis,

The Machine Vision Association of the Society of Manufacturing Engineers
defines machine vision as "the use of devices for optical non-contact sensing
to automatically receive and interpret an image of a real scene, in order to
obtain information and/or control machines or processes". The references to
'automatic interpretation' and to 'real scenes' are critical parts of the
definition since they help to distinguish machine vision from three closely
allied fields

* Image Processing

* Pattern Classification

* Scene Analysis

each of which has contributed useful techniques,

Image Processing (often referred to as image enhancement) is concerned with
the generation of new images from existing images. The techniques used,
mainly derived from linear systems theory, are concerned with noise
reduction, deblurring and edge enhancement. The end result is still an

image, for interpretation by a human observer.

Pattern Classification 1is concerned with the identification of objects by
means of their features, such as total object image area, perimeter length,
ratio of perimeter squared to area. The value obtained for a particular
feature becomes the co-ordinate of a feature point in a feature space, a
multi-dimensional space in which there is one dimension for each feature
measured. An unknown object 1is identified by comparing the distances
between 1its feature points and those of various object types. The most
likely identification is given by the smallest distance. A simple example

is given as Figure 1.

The approach as explained assumes that sample feature combinations from images
of real objects form uniform, multi-dimensicnal Gaussian clusters around the
ideal points 1in feature space. Unfortunately, analysis 1is not straight-
fforward; for example, features may interact producing elliptical
distributions, clusters may not look Gaussian, so much more mathematically

complex classification methods have been developed (see Pattern Classification

and Scene Analysis : Duda and Hart),.

Finally, the startirg point for Scene Analysis is a low level symbolic

description, such as a line representation of plane faced objects. The
objective here is to transform the low level description into a higher level
description that 1s in a more useful form for the task in hand. This might
contain information about spatial relationships between bodies, their shapes

and their identities.

Application Areas

There are three broad areas of application for machine vision systems in

industry:

% Inspection. This s the most important area. In particular, automated
inspection is frequently the only practical way of checking products to the
standards imposea by product liability law which, in some countries, imposes
penalties on manufacturers whose products are found to be cefective, without
any need for prcor of regligence on the user's part. Tasks include not only
visual examination for defects, but also measurement of dimensions, counting

items, checking cf orisntation, and so on.

® Guidance. This 1s probably the most rapidly growing application area.
It 1includes control of manipulators and unmanned vehicles, and so on, 1in
parts handling, sorting and transport. The vision requirements are quite

different from those of inspection.

% Recognition. In the industrial environment where parts delivery is highly
organised there 1s relatively little need for systems which recognise parts
from their shapes. tlowever, with increasing emphasis on automated assembly
of small batches of objects, vision systems which can quickly recognise

unsorted parts will become more and more important.

| ey ey emmemma, pem et

Py p—— e—

In 1983, the size of the North American market for machine vision systems was
$30m. Today, it is around $150m, and is estimated to rise to approximately
$850m in 1990. This rapid rise in practical applications is almost wholly
attributable to the steeply declining cost of computing power. First,
machine vision 1is greedy for computer memory. Typically, an image 1is
512 x 512 picture elements, with each element representing one of 256 grey
levels (i.e. each pixel requires one byte of memory}, leading to a need for a
quarter of a Megabyte. Second, machine vision techniques are greedy for
processing cycles. For example, an edge detector may require a thousand
computer operations per picture element, implying more than 250 million
operations on a single image. A moderately powerful machine, capable of
executing a million operations per second, would take about five minutes to
apply such a filter to an image. In an effort to produce machine vision
systems capable of processing images in real time, much time and effort has
been devoted to the construction of special purpose parallel processors. For
those based on cellular arrays, as Figure 2 shows, there has been an increase
in processing speed of a thousand fold every ten years. However, these
devices are still expensive. By and large, practical applications have been
restricted to the simplest possible tasks. The paradigmatic situation is
that of a single object, presented against a high-contrast background, with
lighting controlled to eliminate shadows, highlights or other features that
would make analysis difficult, An object 1is recognised by extracting
features from a 2-D image, and by matching these features against 2-D object
descriptions stored in memory. This limits the system's recognition to
known objects observed from standard viewpoints. Many tasks naturally fit
these constraints or can be readily engineered to do so, using special
lighting arrangements and other artifices. Some examples include picking
parts off a moving conveyor belt, bonding leads to semi-conductor chips and
inspecting bottles for misaligned labels. Case studies of other
applications are given in Automated Visual Inspection: Batchelor et al., pp
479-534; Machine Vision Sourcebook: Braggins et al., pp 287-343.

So, in summary, the limitations of current industrial vision systems can be

stated as a set of requirements:

High contrast between cobject and background

No szhadows ’

Single objects (no overlaps, i.e. no occlusion)
2=D object descriptions

Rigid objects

Standard viewpoint

Some examples of tasks beyond current limitations include:

Bin picking

Recognition of parts suspended from an overhead conveyor
Recognition of non-rigid objects

Fault detection

Robot vehicles

Bin picking, for example, is hard because parts of objects in a jumble have
low contrast, and ccclude each other, making it difficult to isolate separate
parts in an image. Inspecting parts on a finished assembly is difficult for
the same reason, and is less amenable to engineering simplification, such as
dumping the contents of a bin on a surface to separate the individual parts.
Swinging parts on an overhead conveyor are not constrained to maintain a
standard viewpoint. Non-rigid objects ¢can assume a continuum of
configurations and thus do not lend themselves to-characterisation in terms of
fixed 2-D prototypes. Similarly, it is impractical to model in detail the
appearance of all conceivable flaws (dents, scratches, blemishes, and so
forth) in a fault inspection task. An archetypical example of a class of
tasks that are inherently difficult to sustain are those involving robot
vehicles in outdoor environments, such as construction site clearing,

forestry and underwater maintenance of o0il well equipment.

Content of course

We will begin by considering techniques for image capture, including lighting
and viewing techniques. Next, we will consider the problem of characterising
binary images of two-dimensional objects to achieve identification, using both
connectivity and boundary tracking techniques. Thereafter, we will consider
techniques for extracting edge points from the grey level representation and
for combining them to produce an edge representation of the object(s) in a
scehne. This 1leads to the problem of segmentation: splitting up the edge
representation into separate bodies, i.e. scene analysis. Our final task
will be to consider the problem of generating and using 3-D models to identify

instances of objects, beginning with Roberts' classical approach.

I
4

1

——— ey e =

REFERENCES

Batchelor, B.G., Hill, D.A. and Hodgsen, D.C., 1985, Automated Visual

Inspection (Eds). Bedford, UK : IFS Publications.

Braggins, D. and Hollingum, J., 1986. Machine Vision Sourcebook. Bedford
UK : IFS Publications.

Duda, R. and Hart, P.E., 1973, Pattern Classification and Scene Analysis.
New York : Wiley.

Nevatia, R., 1982. Machine Perception. New Jersey : Prentice Hall.

i 3 O D B2 2 B0 B2 >0 0 00 OO 3 33 3 A3 3 4

—_—

Minkmum difmenaion of
surounding reciangle
Number of holes
8-
a4 4
[]
]
2 s e
& Arsa
} } >
8 18
Figure 14 A feature space. An unknown object is identified according to the

distances between the unknown and the models.

‘o|‘l
Clipd
Clip3
wP
0 80-stage ?
cytocomputer 4
- LA <
g aIP ona @ //;Hp"
g w0
3 PICAP —
PR -
£ i aoPR | . o
] Toshiba
10° pa:;:ld pl:rl;:l':;or T:,._. =]
tus minicomputer host _.L-- 1
e P A gl Approximate trend lins for
- B k" machine-coded CLOs on large
_— eyl general-purpose computers
Celiscan
10° g1 1114 s Loy g b0
1960 1985 1970 1975 1980 1985
Your

Figure J. Opersting rate of cellular iogic machines versus tme {from Preston (39]).

Source: K Preston, "Cailular Logic Computers for Pattern Recognition,” IEEE Computer, Vol. 18 Ne. 1,
Januery 1983, pp. J0-50. ® 1983 IEEE Used by permisaion

| N B T

e

L)

|13

I

i |

|13

1=

=

E__d

—J

DEPARTMENT OF ARTIFICIAL INTELLIGENCE
UNIVERSITY OF EDINBURGH

AI2 JIM HOWE

Lighting and Viewing

In any machine vision problem the quality of the lighting is extremely
important. Frequently, through poor choice of methods, key features are

obscured by glare or the light intensity at the detector is too lowi

Illumination equipment

This can be considered in two broad categories,

(i) lamps
{ii) eguipment for regulating, manipulating and directing light

from these lamps.

Types of lamps, their characteristics and uses are summarised in Table 1 (from
Batchelor et al., 1985). Equipment for matching a lamp to the system's

requirements are listed in Table 2 (also from Batchelor et al., 1985).

In choosing a lamp, one has to take account of the:

wavelength required

intensity required

area to be illuminated

reflectivity of the object

transmission efficiency of image acquisition system
space available.

* Kk %k ok ok %k

Two of the most important factors are spectral distribution and shadowing.
Besides visible 1light, most of the lamps in Table 1 radiate considerable
amounts of infra red. Each has its own characteristic continuous spectral
distribution: some of these have one or more spikes while others have near
Gaussian distributions. Also, the tungsten filament lamps tend to project
shadows of their filaments on to the viewing surfaces. Finally, while
fluorescent lamps do not generate shadows, their light is not uniform along
their length.

Factors which have to be taken into account in choosing devices for

manipulating the light include

Defects

Transmission efficiency
Filter characteristics
Diffuser characteristics
Condenser characteristics
Reflector characteristics
Intensity requirements

Wk Mk Kk W Kk

Finally, some typical illumination problems and possible solutions are given
in Table 3 {from Batchelor et al., 1985}.

Optics

In most machine vision applications, an object's image will be formed on the
sensor by a lens, where the sensor is typically a television camera. The
sensor's size, its resolving power and the system length determine the initial
optics design. Since the majority of sensors have a resolution limit
expressible in terms of a number of picture elements per picture height (or
width), normally a magnification value is selected that matches the detail 1in
the image to the sensor's resolution. Having decided upon the magnification
required and the system's length, the focal length of the lens is calculated

by means of the lens formula

1
&P —
v

11
f " u

8
n
cl=

where f is the focal length, u is the cobject-to-lens distance, v is the image-

to-image lens distance, and m-is the magnification.

Some examples of the use of the simple lens are given in Figure 1 (from
Batchelor et al., 1985). Particularly when working with images of 3-D
objects, the depth of focus is imparant. The lens should be chosen such that
the objects are within the distance defined by the depth of focus divided by

the square of the magnification of the system. This is known as the depth

of field. Since u and v have a non-linear relationship, the depth of

field is not symmetrically disposed about the object plane (as shown in
Figure 1b).

I 1
L

ey e g pe—

Relationship between resolution and contrast

The 1image quality of a lens is specified as the relationship between

resolution and contrast, where contrast is defined as the difference between

the intensities in light and dark areas of the image detail normalised by the

difference between white and solid black areas. By using an increasingly

fine pattern of black and white stripes (a grating) as test object, the image

of the stripes will gradually become grey making them difficult to distinguish.

This is due to lens defects called aberrations which blur the image. Under

monochromatic light, typical types of aberration include:

® Spherical aberration. Different focus points for 1light rays passing
through the lens centrally and off-centre.

® Coma. Comet-shaped images of point objects produced by oblique, off-centre
light rays.

& Astigmatism. Different parts of image in focus at different distances from
lens.

% Field of curvature. Variation in focus across image when a flat sensor is
used since the surface of best focus is domed.

If white light is used, chromatic aberrations also occur:

% Longitudinal chromatic aberration. Colour fringes appear on each image
plane, since 1light of different colour comes to a focus at different
distances from the lens.

%#Transverse chromatic aberration. Oblique rays of different colours strike

the image plane at different points, causing differences of magnification.

The above problems can be minimised by using a narrow colour band of light and
stopping down the lens so that only its central portion is used (provided
sufficient light is available].

Examples of lighting and viewing techniques

Sixty three methods of lighting and viewing scenes are described by Batchelor
(Batchelor et al., 1985). Some of the most useful are:

Method 1 - to provide uniform, omni-directional
illumination (see Figure 2);

Method 2 - to view silhouettes (see Figure 3);

Method 3 - to acquire 3-D shape information
(see Figure 4).

Relationship between scene and image

Since we will be dealing either with 2«D silhouette images or with 2-D images
of polyhedral objects, the relationship between the scene and the image is
relatively straightforward. To further simplify the analysis, we will start

by considering scenes containing single objects.

The purpose of the lighting and viewing techniques described above is to cause
light reflected from the scene to be focussed on to the sensitive surface of a
photo transducer where it forms patches of light and dark. It is the
transitions in luminance that carry information about the features of the
objects in the scene, i.e. the bordering edge in the case of a 2-D silhouette
image, and the external and internal edges in the case of 2-D images of

polyhedral objects.

In the case of incoherent illumination of laminar objects, the intensity
profile of a light-to-dark transition in an image formed by a perfect lens is
shown in Figure 5 (from Batchelor et al., 1985). Notice that the true
position of the edge is at the 50% intensity point, and that this is
independent of the degree of blur. However, the actual position may vary
from this point due to the effects of electronic noise, lens aberrations, and

30 oOn.

The intensity profile across an edge of a laminar object is somewhat different
when the light is coherent, as shown in Figure 6 (from Batchelor et al., 1985)
where the edge is located at 25% full intensity. In this case, the edge is

sharper than an edge generated by incoherent light.

Note that thick edges cause further degradation of the ideal edge intensity
case, making it impossible to analyse except in simple cases. Figure 7 (also
from Batchelor et al., 1985) illustrates the intensity profile for a perfect
thick edge, and shows how focusing can remove spurious reflections. However,
the majority of thick edges are unlikely to be perfect, so the intensity
profile will be significantly degraded.

Ideally, one would like to examine each transition in image luminance and
classify the type of edge producing that transition. What the above analysis
shows is the difficulty of doing this due to degradation introduced by factors

outside the user's control.

[
I
J
1

Also, the luminance transitions might not necessarily specify the edges of
surfaces of objects in the scene at all. Instead, they might be produced by
highlights, shadows, texture gradients across surfaces, dirty surfaces,
surface markings such as scratches or printed letters on a box. In other
words, the information in the luminance distribution 1s not specific to its
source, i.e. we cannot determine unambiguocusly which property of the physical
world is represented by a given luminance distribution. Most of the time,

much of this information will act as extrinsic noise. In other words, the

information will not be relevant to the visual system's immediate purpose:
it will merely mislead and distract it, and lengthen processing time. For
example, printed letters on the surface of a tin are '"noise" when the
perceiving system's goal is to extract contour information; but when it is
trying to identify the contents of the tin, the noise-versus-information

relationship is reversed.

In conclusion, no matter now much care is taken in setting up lighting and
viewing conditions, and matching them to the characteristics of the sensor
{see next note), noise in images is a fact of life in the real world. It is
usually not possible to remove all of it, though some can be got rid of by
judicious pre-processing technigues which will be encountered in the next

note.

REFERENCES

Batchelor, B.G., Hill, D.A. and Hodgson, D.C., 1985. Automated Visual

Inspection (Eds). Bedford, UK : IFS Publications.

E

5

10

|

i=

B

|

L4

—_

E

|

o ——

l’obiri !rpuolbch-chummnmmduuz

44

Watisge end] Envelope Other ; inspection
Types of iamp dimensions Chiatactiribics shapes spphications Vacations upes
Tungsisn 0.25-1000 W Non-uaiform powt sowrte Cyhndncal - instrument panels Lens ong - Minigtures
Hlgment* 25180 mm aia Fiva shape primaniy depends submiupiure Fibre-ophic sensors Miniglure fypes SUrrGURding § Cames
Besm sgie 10- on Blgment shape sl mwrnature Vehicles Cloar. opaland lens
2 Moderats sifvoancy Buibous - Domestic kghting evloursd Borsecopes
N beem wth misg and dhaplay op s
lons lprge weitages spothghts Bowi refiector Occasonslly hghi
Rough servce Boxes
Low intensity
Whamingteon
Bhortger-——Fawhitm sl
atariais
Quare halogen® 10-1500 W Non-uniform point and kneer Cyh - 4 P Smooth Borescopas
44-300 mm long Soutces shortendiong imenor desplay mullifacet Microscopes
Enveiope lenpersture 350°C+ length, Cine prog dech Fibre-optic light
Moderiis efficency Photography Intepral lens :
Ph T antf Profile projectory
Fioodhghing Iongtuch High-
Theatre stoges Glaments Hurmnation
Panstratron of spmi-
transiucent
Flvonscent® —128 W Even hinear o Cyh - Ofice Crewlar with Light boxes
{lowpressure 3002400 mm Low intensny long. straght Shop dwmeters from Larpe long obyect
déscherpe) long Low lempersiure and cguiar Horel 151-340 mm #lumination
High sticsency fubhas intersor displey Peripharal
Long life Domesie dluminatron
Circuisr obyects
540 W Long-wave uitravioiel Ciiindncal - Forganes integral wood Crack deiecyion with
2751200 mm medim food contemungtion pises filter dys penairsnt - iow
long Buibous - smal Minersiogy ntensity
125 W bulbous and large Gemmaology
waftages
Tabie 1 continuved
Waltage and < Envaiope Orher ;g inspection
Types of lamp g phsih Charsctenistics shapes applications Variations
Are idischarge)
High 00w Short bright aic of ‘Dlack light” Cylndrnicai - Laboratonies Other wattages Fibre-oplic light
pre firpvioh pesking i 366 nm madium length not spphicaible source with light
mrcury J0 mm dia, ciamater 2 mm max
100 mm long
250 W inignse vigibie pic. Crlsmdricei = Special mecroscopes
Both need Dallasts megium length
Xanon Hew High sptensity Cyindncal - Fiashiubes Other . Sp ¢
Instant response medwm lgngih Sirobes nol spplicable
3 mm long src Beacons 2000 W
Nawds conirol geas hghthouses
Ermiis uv and short-wave
mifrared
Rasembles dayhght
LED 1 20-40 mA Faurly even beam of low Button instrument Infraced ang Small, thin
fhght-emiting 2-15 mm dis. ntansidy Rectangie illumination wvis:bie red. green, irensparent obyects
diods) 2-3 x 6 mm Long life Opto-siectromcgnd yallow with sensing
rectangle fibra-pplic 3angors camares

* May by hmmed

I Aihough thay sre Aol livnpa. they sve used foe sliummaton

TR

Z

s -

e 2 of b

Table 3, Operations which msy be performead to make 8 lamp compatible with
othear parts of an ingpection system

Operation Description Component/attachment

Absorbing Retsining light of certain wavelengths so thst Filters (Note, differentisl
only desired waveiengths reach the object absorption sffects image

scquisition)

Bifurcation Dividing light from a single sourcs into two Twin arm light guidas
branches which may be aligned at the Swan (goose) necks with or
user’'s discretion without focusing lenses,

filtars and polarising caps

Branching The multiple version of bifurcation Multibranch light guides

Chopping Strobing or breaking the beam into short bursts Shufters

Rotating discs

Collimating Producing a cylindrical or rectangular ‘column’ of Planc convex lens
light

Coliecting Gathering light from a lamp and focusing iton s Spherical or cylindrical lens
smaller ares = usuaily biconvex, sspheric

or plano convex

Condensing Collecting the radistion from & source and Aspheric or biconvex lens
removing unwanted slements, 8.g. shadow

Diffusing Spreading out light from & source evenly over an Diffusers (see page 50)
ares

Interfering Praveanting the passage of light other than that of Filters
selected wavelengths

Polsrising Eliminating all light waves except those in one Polarising filter
plane

Realigning Rercuting light frorn & source to an object with Light guides
the facility to negotiste obstacles and align at the (see Table 4.5}
user's discrstion

Redirecting Rerouting light from 8 source in single steps at ~ Mirrors
predetermined angies dependent on the Reflectors
component used Lenses

Plastic. glass quartz rod

Smoothing Removing the intensity ripple effect associsted dc supply
with an electricity supply High frequency ac

Splitting Dividing & beam of light into two paths, Beam splittars
e.g. transmission end reflection at predetermined
angles of bifurcation

Spreading See Diffusing

Stabilising Compensating for electrical, chemical and In-circuit photoelectric cell
physical changes which cause the intensity of a
lamp to vary

Stimuisating Activating s chemicai so that it emits Ultraviolet lamps with or

Transforming

wavelengths of higher order than those received, without quartz fibres
6.g. by a crack detection dye penetrant : Filters

Changing the shape of a sourcas, Cross-ssction converters
8.g. circular 1o linear

——m

oy

g,

e

™ ¢ LS R et RO S W

Coloursd rings on peviphery of illumination especiatly i
ncorrectly focused

1w Ak '!
fabba Buminsiion problems snd solutions
Cause Aflactnd Problermn Possible solution
componeniiobject
m' degradation Paomed
Uitraviotet fiter: Uitraviniet
Mws;n Gigas or uv degradatron resistent Rbre
Lamp Filprmant decomposition Panned
Compensatron by stabilisstion
edipthon Al componenis Nuciasr ragiation causes browming of plaes Wﬂm
Elecencs!
Fracture Migh-pressure lamps Desruptive fracture of emveiopes Suitabie enclosure
AUCTUStOND Lamps Varigtions in due 1o voltage M ond Stabilmation with in-circull photoslectric colt
lamp ageing
Nie Lomps Failyre dunng iABPechon Cycie Planned repiscament
Ausomatic changeover 0 slanddy lsmp
Enviconmental
fort Al comp Rach in i ¥ Continuous purge by pood quality sir
Changes in opticsl charectersics, v.p. glare spois [
Diyect Superimposition of iaise image. 8.9 starmpsnd mcre Clesming
shadows Homogenous kght
goses Eloctrical Mydrocarbons in stmosphere could be ignited by intrinpcally safe bgpht sources
{poisonous] Cortpin ipemps Crone Suisbie enclosurs
insccessibility Obyect insufficeant apace for lemp to llumenate obsect Fibre optice, murrory, peisma, lenses
adequately
‘mizsiles’ AN components Paris beeng manuisciuvrad sscaping from Proigctive maietisls]
Otwect handhng sysiems High impect ressiante Malecils,
&.§. polycarbonsts
Mechanical
bending Light gandes Overbandsng incresses sttenuahion snd may Dbservation of design hma, 1.e. bending radns
Teanaparent rods cause fracture = (= diarnater approximately
Scitabie outer acked
Baxi ight guides L/ o bending causes i i, Avoid Rgxing or p o repl] within
i Lo design kmit, i.9. 500,000 Rexes
— s il = PP . [e J - - el - -
Tabis 5 confinued
Affected g :
Cause Vot Probiem Possibie solution
tangion Light guedes S ing tensie bey of Suitable jacket
assembled opticyl hbres
Oprical
aberration Object and lenses Correct focusing

Lens large in gize io be compatibla with sysiem
Achromats

contrast Otyect Fi mavge into backg d, i.e. beck of Reslig of Hiuminahion syste
Colpured and polarised fiters
dratnbuteon Lamp snd pbyect Shadow superrmposed on obyect Diffugers
Condensers
Change lamp Durning position
homogenaity Lamps Uneven drstribution (iar 10 distnbution prod
Fibeg-optec atiachments abovel
light scatter Obyect Transparent obrects may collect ight 5o thet lsetures Realignment of il)
Dbecome inckstinguishabla Diftysers
Matt black background
flectinty Pri g P S ion mekes iIMage inthstingurshable due 10 Rheostats
genaral and obsect Drghtness Oeaphirsgrs
{excess) ND hiters
Reatig of ifh
deguacy) Pr " SGUD F distingurshable due (0 daseness incrasse illurminstion
and object Use more sensitive camers
Aoctivity - Pr g Glinting Focusad snd recirected Kpie
locat and obyect Rsalig of dlumi
{excess) Filters
Diugers
Remaval of dust
transiucency Obpect (See light scatter)
foncess)
finsctoquacy! Object internal festures and defects nesr surf] ik in o vigibie

Try short wave infrared i

e R

A

4

|

“

g

=

10

]

o]

-
Depth of field Depth of focus
|
N — A
A u | v___‘mege
’ Object
(c)
u=2f 3 v=2f)
I N i
{a)
L u . v &l
P " i
(e)
| f
f—]
Fig.1 Image forming basics: (a} image of distant object, (b} demagnification,

{c) unit magnification, (d) magnification, and {e) collimation of light source or distant

image forming

fa)

Scattering

surface on
inside of \
hemisphere

To camera

Object under
examination

Reflector

Lamp

Fig. & Omni-directional lighting: (a) cross-section through the hemispherical
diffuser, (b) view of & bright coin in omni-directional light, and (c] the same coin in

ordinary light

-

——

i
@’” ~ s
-~ - ~
Lamp i

g Direction of mouion
1
o

Lightbox opisctunder ~~~ _ Ughtbox guociumsed ™

Axaminptmnimen; = examnation fmatt) Tt

Camera Linescan
{sres-scan} camera array axist

’ f
fc} fC } ————

‘ Iong | 2= N OOTTET ST fN a e
Lens, Object under
(4 focal examination
- ‘point’ aperiure length {f) {shiny)
2 3 &
i Collimator
F
{dl {8
; Background
i Edge
: points
)
‘E" Object
@ Suggesied
2 threshoid
i pownt
g

Ime;m'ry

Fig.8 Viewing silhouettes: (a) simple technique suitable only for matt objects and
using an area-scan camera, (b} viewing matt objects using a linescan camera,

fc) viewing shiny objects such as polished metal, (d) typical histogram of a
back-ifluminated opaque object (thresholding can be achieved successfully by using a

parameter derived from the position of the ‘valley’ in the histogram/, and
{e) silhouette of a glass vial

e P I TR NI A YT TR B

T

£

=

T T R Sty e ——r—r \

Collimated

(a) .
To linescan camers light
4
Knife-adge
Exact height Bright
indeterminate This corner may glint
here due to \A /H oh determined
shadowing R ‘/h:‘rg t accurately detarmin
B E— Slideway
Would be dark
if object were not
present
{b
) Position of sensor
ABCD EFG Image plane
{plane of sensor array)

Pin-hole

camera

aperture

Object
Fig. 4

m
LJ

™

sl

|

Ll

e

{d) To linescan camera

Beam 1 T — Beam 2

sheets of

/\

If object is not present
both beams converge in

view of the camera

Fig.4- Structured light, binary method: (a) optical arrangement (single light-dark
adge), (b) ray geometry (cross-section through the linescan camera and knife sdge),
{c} height map of the component in {©} == it is @ sSimple matter to threshold
such an image, and (d)} twin-beam method avoiding the shadowing problem
{cross-sectional view) .

Internasaty (sgpont)

optical intensity profile at bast
focus itransisted into electronic
1.0 __LIGHT detector signal)

igher f.no or more defocus

"7 . DR .

™~ DARK

\

4 ! ﬁ—{ e
P / H

true position Distance

{time or pixel!
afedge I D \ number}

i
)

. & Edge definition and measurement - incoherent illumination

Intensity (signal)

P \ coherent case

/
10l =
\N_/
0.5 incohe~ent case
- [SIS D GRS S— —— -—ﬁ
025 _ o o e
| — 7~ .
' 4
true position———""_ Dance
of edge {time =1 pixex
numoer:

ﬁgé

Edge definition and measurement - coherent illurrnation

ol

p— p—— pe— p— p— p———

(8}
> 10
‘%
<
2
|~
~ 05
/
Distance
ib)
/
//
(c)

/
/

Fig. q' Intensity profiles for a perfect thick adge: (s} profile for a perfect thick edge,
{b} the eflect of spurious reflections, and {c¢) elimination of spurious reflections from
the dark half of the image

ES 0O 3 B3 (O 20O B0 B2 0O B0 OO b £33 BB B3 3 3

Pl s s v T N bl

DEPARTMENT OF ARTIFICIAL INTELLIGERCE

Capturing the Image : Building the Gray Level Description

The first step in gathering information is to convert the 1light from the
scene into useful electrical signals. This is done by scanning the image,
and digiting the resulting data to produce a data structure called the gray
level description which contains numerical values, each of which represents
the luminance at a defined position in the scene (or its image) (see Figure
1.

Two operations must be performed to obtain this data:-

1. The positions of the leocations must be defined, and a method for visiting

these locations must be devised. This is called scanning.

2. The image intensity must be measured at each location, and expressed as a

numerical value. This is called quantization

Scanning

There are two general approaches to scanning. First, a focussed beam of
light, such as a laser beam, is moved across the scene in a controlled
manner, and the light reflected from the scene is recorded. This is known as

the flying spot scanner approach. It assumes that there is no other 1light

source competing with the moving beam (see example of welding system below).
The second approach is to control which spot is looked at through a moving
peephole or aperture, and to record what is seen through the aperture at each

instant. This is the flying aperture technique.

Two methods which fall into the former category are the drum scanner and the

laser scanner. In the case of the drum scanner, a photographic print of a

scene 1is fastened to the surface of the drum which 1is rotated

discontinuously. While the drum is stationary, a moving carriage containing

B

i
t2
.

g

264 s

> % e

ASIOEY BerLE - moA et

LS St ot AU A

T AR T

s P . e e PR RN T

a light source and a photo-dicde detector traverses across it. The X-Y
position values are obtained from shaft encoders linked to the drum and

carriage respectively (see Figure 2).

At the heart of the laser scanner is a rotating mirror which deflects the
beam in one or two dimensions. Reflected light is picked up by a sensitive
detector. Again, X and Y position values are obtained from encoders attached

to the mirror drive mechanism (see Figure 3).

Turning now to flying aperture techniques, these encompass television systems
and the more recent charge transfer devices (CTDs}. While there are a
variety of detector devices for generating television images, the vidicon 1is
the one most often used in machine vision applications. In a wvidicon tube,
the image is focussed on a photosensitive screen and scanned with an electron
beam (see Figure 4&4). Typically, its spectral range is from 400 to 750
nanometers, wWith peak sensitivity around 5%0 nanometers. Unfortunately,
electron-beam deflection varies in a non-linear way across the screen, so the
position information is inaccurate and non-repeatable. Also, the image drifts
around the screen surface due to temperature and voltage fluctuations.

Finally, the vidicon tube suffers from image persistence.

CTD technology offers a number of advantages over conventional tube-type
cameras, including light weight, small size, low power consumption, high
sensitivity, wide spectral range (from 450 to 1,000 nanometers) and 1lack of
persistence. There are two main classes of CTD's - charge coupled devices
(CCDs) and charge injection devices (CIDs). For imaging purposes, the CCD is
an array of closely packed MOS capacitors forming a shift register (see
Figure 5)}. Charges on the array are transferred to an output register either
one line at a time or one frame at a time. An example of the use of a CCD
array is given in Figure 6 (from Clocksin, 1985). This shows a MIG welding
torch packaged with a sensor system, part of a visually guided arc welding
device. In this application, infra red light is the best choice for
illuminating the work site since the most significant spectral components of
scattered 1light from the nearby arc are in the visible and ultra violet
bands. With this in mind the sensor components used include a pair of
rectangular CCD cameras (488 x 380 elements) fitted with narrow band optical
interference filters having a spectral bandpass of 10 nanometers centred at

830 nancmeters, and four infra red laser diodes emitting at 830 nanometers.

I" al
o

i

1

pE—r

i-n 41'

AR A SR SRR b i T T L AT
The use of infra red light also gives improved transmission throughjimoke and
fumes produced in the course of welding. In the CID device, charges are not

transferred at sensing. Instead, they are read using an X-Y addressing
technique similar to that used in computer memories (see Figure 7}.

Quantization

Regardless of which method is used to convert from the analogue image to
final digital form, each cell (pixel) in the sampled image will assume a
value between some minimum luminance value representing black (usually 1) and
some maximum value representing white {minimally 16 but up to 256). This is
the quantization process which is usually performed by the hardware

interfacing the sensor to the computer.

A simple, image-processing system 1is shown in Figure 8. Like the drum
scanner, 1t uses a photocell mounted on a moving carriage which scans the
cell ®across the image from left-to-right and from top-to-bottom. The cell's
measurements of light intensity are expressed as an electrical signal whose
magnitude varies according to the value of the light intensity. This
analogical signal 1s transformed into numbers by an analogue-to-digital
convertor, the size of each number representing the light intensity at a
partizular 2-D position in the image, e.g. O for black, 15 for white. These
numbers are stored in a 2-D array in the computer's memory. We can look at
the contents of this array, either by printing out the numerical values or by
feeding these values to a full-tone printer to produce a gray-level image in
which each square represents one pixel of the stored gray-level description,
and each square's gray level directly shows the intensity of the associated
pixels.

Data Acquisition Problems

There are two characteristics of this image data acquisition process that
give cause for concern. The first is the precision of the process. This
refers to the spatial resolution of a given system (Figure 9). Both sampling
and quantization determine whether or not the digital representation captures
the significant features of the original scene. Although a very course
digital representation contains enough information so that a person can
recognize a face (see Figure 10, from Harmon, 1973), machine vision programs

usually work with digital images at higher resoclution.

o G

1]
i
|

——

o

The second characteristic of the process is its accuracy. This refers to gray
scale resolution. What we are interested in here is the data degradation that
might have occurred in the data acquisition process, and some measures for
compensating for that degradation.

One form of degradation is intrinsic noise, in the form of isolated pixels
whose gray-level values are radically different from those of their
neighbours. It can be caused by defective phosphors in photosensors, or
round off errors in the analog-to-digital conversion process, and so on.
Spurious values could pose problems for later processing methods. High
values are likely to be interpreted as feature points which a system will try
to account for at some later stage in the processing (in vain!); low values
are likely to be interpreted as belonging to the scene background, producing
gaps in the feature data. To eliminate these spurious values, a local
transformation operation, called "smoothing", can be applied. It is a local
operation since it is applied at each point in an image.

Basically, smoothing operations rest on the assumption that the actual scene
consists of areas that are much larger than the area represented by a single
pixel. Accordingly, pixels that differ markedly from their immediate
neighbours are errors that ought to be removed.

The following is a description of a simple smoothing operator:

If any point in the picture is brighter than all of its eight immediate
neighbours, its luminance value 1s reduced to make it the same as the
brightest of its neighbours; if any point in the picture is dimmer than
any of its eight immediate neighbours, its luminance value is increased to
make it the same as the dimmest of its neighbours.

Notice that this operation is conservative in the sense that it removes some
of the noise without reducing the amount of information in the representation.
In particular, it eliminates isolated noise points, but has no effect upon
nolse that occupies two or more adjacent image points.

A simpler, more liberal smoothing operator that would reduce the significance
of larger regions of noise is:

™

I

b

P
[

S—

pr—
[

SAng Metaswetalviam

Y Y

32 B r o a1

A A BN - R Y Nl A i 3 R A s = 0 okt

Replace the luminance value of each point by the average of the luminance
values of its eight immediate neighbours.

Unfortunately, the application of this operator to every point in an image
will have the effect that every edge will be blurred. Indeed, several
successive applications of the operator would wash away the entire picture.
Clearly, therefore, smoothing operators are useful, but must be carefully
chosen to try to eliminate whatever kind of intrinsic noise 1is present in a
set of digitized pictures, without also removing significant features of the
pictures themselves.

A global transformation that might 1improve accuracy is histogram
equalization, where the histogram is a bar chart of an image, with the X-axis

representing pixel intensity levels and the Y-axis the number of pixels at
each 1level. From information theory, it can be shown that a uniform
distribution of pixel values results in maximum information content in the
description. In other words, a histogram with roughly equal numbers of
pixels at each level 1is the optimum situation. Histogram equalization
defines a mapping that stretches contrast (i.e. expands the range of gray
levels) for gray levels near histogram maxima and compresses contrast in
areas with gray 1levels near histogram minima (see Figure 11, from Hall,
1979). Further details of the technique can be found in Hall: Computer Image
Processing and Recognition, 1979, pp 166-173.

REFERENCES
Clocksin, W.F., Bramley, J.S.E., Davey, P.G., Vidler, A.R. and Morgan, C.G.

1985, An Implementation of Model-Based Visual Feedback for Robot Arc
Welding of Thin Sheet Metal. Int. J. Robotics Research, 4, 13-26.

Hall, E.G., 1979. Computer Image Processing and Recognition. New York :

Academic Press.

Harman, L.D., 1973. The Recognition of Faces. Scientific American, 229,
70-83.

E I F—3 F 1 mu [3 [3 | S |

| |

E3 3 E3 £33

il

oA TN

ey

| o S P —

W Ll R . W

—

—— | (COluMNS) —e | (columns;
1t 2 3 4 S5 6 7 3 4 5 6 7 8 9 w

1° l 85| 34| a1] 0| 74|121{126]128
2| 27| 31l &4 66{115 (129|124
& i (rows)

(-)
L -
-
[~
-

—
—t

5

B~
=

5 20| 27| 59109)117|126
1101136 | 145 [138 | 102 | 112|115
124 {103 226 | 238 | 243 | 240 | 104 | 1031191

i frows) 2
]
H

127|117 | 69109 | 221|230 1091 101 | 107
&
85

B|la|&|&

25
130 | 127 T8|118{210|205| 83| 85]103
134 | 134 7311291175 (190|125 99100
138 {135 133|193 | 60| 94] 98)104]1051108
139 (136 | 133|129 1126 122 [112 | 119|139 [171

e

w o N o U A W N
L O N o U A W N

-

L]
ot
o

Figure 1. The first step of digitization is to partition the image into cells (pixels) addressed by row and column, shown (exoggerated)
on the left. Within each pixel, the digitizer measures and assigns a number corresponding to the imoge brightness (right).

SIGNAL

LINEAR
MOTION

ROTATIONAL
HOTION

ngut't 2: A drum scanner produces high-quality results by moving the pkotograph
rflamn to the sensor. lIts drawbacks are that it requires precision mechanical construc-
tion, works very slowly. and the signal it produces is not video-compatible.

R i o T ol e —

Laser and
beam
shaping
optics

Fig. 4— The vidicon.

s

311 Vieo ot == st

Vertigel toon generaior
Treremistion gates
1
»
$
-;
Outpurt shift register

l'.
Horiz.
clock

s

Fig. s A CCD array (line wransfer}.

Fig. G Cutaway sketch of laser combinarion. Not
the torch/sensor package shown is the duplicate set of
showing the optoelectronic components on the opposite

componenis for one camera/ side of the torch axis.

CCD CAMERA CHIP
) ‘/
A g
vy
] I Il
iF NARROWBAND FILTER
‘I ' b,
LiseR piope] i LEvs
: ? ’,/ 2
1.5.\'5...\\ : t
' BN
',I. |~ INpOw
[]
1
1,
‘ 3
SHROUD ~e__| P!
1
|

ELECTRODE ~.. "

| O,

—— | S [o~

out

= Yideo

1

NN

NN Y e
N

SRR

L
0juisuel uess |ENLeA

Fig. q‘- ACID array.

-~ -+ - -
R [S —

|- -y — -
ek e d

. lleubis enbojeue, ue)

soaa00) I Alisuau by ey o1 Buipsodoe
sauea spnpubew asoym (gubis [eN0819
U® £8 DISSIUXP 9.8 BIUBWBINSEAW By]
efswi gy} jo wod yoea je by jo Asusiu
oyl ainseaw o] (smoue eouay) adeuwn induy)
@Yl JDAO YR PRACW 9G UED M 1By} 05 (UMOyS
10u) xaap ebeiued B uo palunow __uuﬁn.ocm

r4
uaaiIds
wannjsuegi e o) |
vo abieus indw
{umop-apisdn)
S28N20) U8 §
849
S$.2dwod 8y
Haduioyd 1ty
8)Qed |ndut
jeubss jeuda3
anbojeue ay) jo
AUE Yy SR
RBQUING 3| JISAL0D
10 3s Ay reubip-o|
$43QWnNu Gl -anBeieuy
way) suuojsuen - p
pue yasoioyd
woi) sjeulss
1BD11]0912 SaAday

g @Jndryg

abeus jnduw

@Y1 o vondudsap
[ELETET L E TS
8UIIS JoUm Iyl 10|
SIAWINY 353Y| jO
uoI23103 4y |
ss315:69) pajed sadmop
Aowaw ui

Mo wod epbp-o)
-anbujeue ayj woy
$13qwinu S810)§

Apsuan ybuy jo
siawid ssaqunu abiey
‘Apsuaiu moj jo siexd
8pad SiaqunU ||ewsS
wonduosap |ane) Asi6
3yl jo0 19xid auo O
Aususiui ay) Sauep
quinu yoe3y inding

et
glojofojojojofofofojO]O
ojofofo|ojojo{o[0!0]0O]}0
0)0 |0 [secissLjaszieszimz|sszi 0 |0 | O
0|0i0|0|Dj0[0j0 |0 |0 |0
olojolofo|ojo|ojssjo|0|D
0|0|0|0[0|0|0|%s|ozi0iO]|0
Q[0 |0[Qsejscriszzioozisc| g |00
010 |0 fsezjoozios |6 (0l0|0|0}0
(0|0 0|0}0|Osx|O[0]|O
O[O |0 (szisey Q| Q |®Hjo0z| Q0|0
0/0|0|0|osisszjovelazs|os| Q0|0
0/0|0|0|0|0[0{0]|0}jO|[0O)|O

(iapmadA| 212319
‘6 a) iund Indino
suawnueydiy

Il g irs

Pt an laat s L o v

T T AT

PR Ny M

ARwgr da o LFCRPY
it e s i .

Figure Effect of reducing precision. () 60 by 60 resolution. () 30 by 30
resolutioh.

Figure [© Low-precision picture of a familiar face. (Leon Harmon, Beil Tele-
phone Ldboratories.)

i

]

= ¥

R -t | S

ey il

T WL S SN e e

e e g

* e g s et By 0 g WAl Oda bl e el bir T WAL Sl e T

i g g g by P iy R
PoE K D bt b
f |

o 1oy o faesbll bl S

o cibesrt O e e

WA, PR e SR N

M P P
v 5 5 % T
s |
¢ =
s Tt g -
Hutogram
Iy

Noremalired Printe/Level

Data Magnitude Range
(b}

Histoprum

02

018

Normalized Poists/Level

0 kK 63
Data Magnitude Range

() (d)

Fi ! Pictorial example of histogram equalization (s chest x ray): (a) bistogram of
origi::'ch'estx ny.(b)oﬁﬁndcbmxny.(c)hiswgmolmhneedchm:ny.nd(d)
enbanced chest & ray.

3

s,

I T T o o et e g e it et i | e e G T
: e s - Lt (] o oy e g
: . #

. : o Bt g Ty
. L ,‘,“??v Seid

Hustogram

Normalized Points/Level

Dats Magnitude Range
(b)
) :

Histogram

02

- 018

f ————

2 o W

% - 'Y

= =~ R

Z 006 -

000 -
Data Magnitude Range
(c) {d)
Figure " Pictorial example of histogram equalization (a chest x ray): (a) histogram of

original chest x ray, (b) original chest x ray, (c) histogram of enhanced chest x ray, and (d)

enhanced chest x ray.

E = i I - T=) g T = - B =
Tl J,,;. + “rg P ﬂ-;w@q

=2 %M‘““ Ky “:ﬁ'%\ ¥k iéﬁ?ﬁ%ﬁfm& mw AR m&’mt w—qw

R g ARTMENT. OF ARTIFICIAL INTELLIGENCE = EERH PR
UNIVERSITY OF EDINBURGH

- — - —— — — —————— —— - ——— -~ - —— - -

Processing Binary Images

In many industrial applications, objects can be successfully discriminated by
means of shape parameters derived from 2-D binary (silhouette] images. In
this note we will begin with the generation of binary representations.
Thereafter we will consider the problem of extracting and interpreting shape

information from the binary representation.

Building the binary image

Qur starting point is the gray-level description of the scene of interest.
The binary image is made by setting a threshold value. Cells in the gray-
level description where the luminance value exceeds the threshold value give
rise to 1s in corresponding positions in a new two dimensional array, and
those below the threshold give rise to zeros. Note that it is a matter of
choice whether 1 and O represent bright and dark cells, or dark and bright

cells. An example of a binary image is given as Figure 1 (from Horn, 1986).

We have glossed over the problem of selecting the threshold value, It could
be chosen by human eXxperimentation: select a value, build a binary
representation, then convert the binary representation into a binary image on
a graphics screen, for examination by the human experimenter. However, an
automatic method of selecting the threshold would be preferable to minimise
time and cost. A popular approach is to use histogramming techniques as
tools for selecting threshold values. These include the gray-level histogram
(see Figure 2, from Horn, 1986) which records the numbers of picture cells at
different gray-levels, and the cumulative gray-level histogram which records

the number of cells at or below a given gray-level,

The prototypicel situation is an object of uniform brightness 1lying on a
background of unifeorm brightness. Owing to the presence of noise, the gray
level cells corresponding to the object will not have exactly the same value.
The same is true of background values. In both cases, there will be a spread

of grey scale values and a median value. Provided the spreads are small

e WBRGL

= o ket A e Gy f T ey o e o
- VRAS B He T N e e T ,’r"'-"*"i Vag o N T B
SR A S AT R R o
%
D 2

enough, it should be possible to identify a value separating the two groups of
gray-levels, In the histogram, this would appear as two peaks separated by z
valley, where one peak corresponds to the object and the other tc the back-
ground. In an ideal case, there will be a gap between the peaks, but ever

when there is some overlap the threshold can be set where the histogram has

a minimum.

The technique suffers from three main difficulties. {1) The first difficulty
with the method is deciding the width of the histogram's bins. If each gray
level value is given a bin, the histogram is likely to be too flat and ragged.
On the other hand, if the bin is too wide, the gray-level resolution will be
too low. (2) The picture cells bordering an object introduce the next
difficulty since they will have intermediate gray-levels (see discussion of
edge characteristics in earlier note). Their effect is to smear and merge
the skirts of the two peaks in the histogram. The magnitude of the effect
depends upon the fraction of cells that fall on the boundary, where that
fraction is inversely proportional to the square root of the ratio of the area
of the object to the area of a picture cell, {3) The final difficulty occurs
when the image area occupied by the object is much larger (or much smaller)
than that occupied by the background, since the smaller peak may become
submerged in the larger peak's skirt. Also, there may be no detectable

minimum value for setting the threshold.
When the fraction of the area occupied by the object is known, the cumulative
histogram can be used. In this case, the threshold is set at the gray level

value corresponding to that fraction.

Processing the binary image

We will begin by considering a binary representation of a single object. We
will refer to the group of contiguous pixels of the same colour that represent
the object in the binary representation as a blob. Also, we will assume that
our objective is to recognise the blob as an instance of a known object whose
features have been recorded and stored as a set of parameters. The
task, therefore, is to derive a feature description of the unknown blob and

match that description with stored descriptions.

IA400 ‘%:,‘tl'f;‘-wmi

H{"1a

[}

L

o
— .

p—

rd
z

=

]

A variety of global feature parameters can be derived, depending on the
method used to describe the shape. They include simple measures such as

area, perimeter length, area to perimeter ratic, compactness (ratic of

perimeter to square root of area), and more complex measures, such as maximum
and minimum dimensions, for which area, position and orientation data are
required. The latter information is usually obtained by forming a series
expansion of an exact representation of the shape, and then using the first
few terms of the series. The co-efficients of these terms constitute the

description of the shape,. But more of this later.

We will start by considering two methods of finding blobs in the binary

description.

% connectivity analysis

® boundary tracking

Connectivity analysis 1is concerned with the local connectivity around each
pixel in the binary description: blobs are built up on a pixel-by-pixel
basis using run-length coding. Boundary tracking on the other hand infers
the connectivity of pixels by following the boundary of a blob to determine
its autline. If the object has hole(s) in it, or if more than one object
is represented by the binary description, the former method is more efficient
since all the processing is done in a single raster scan whereas the boundary
tracker alternates between boundary following which reguires random access to
the image and raster scan search for new blobs. The main advantage of the
second method is that it produces a chain-code description of the boundary of
each blob. As we shall see later, a number of complex shape parameters can

be derived from a chain-code description.

Definition of connectivity

These two methods share a common problem, that of the definition of
connectivity. Adjacent pixels are connected if they are of the same colour.
But which pixels should be regarded as being adjacent to the one of immediate
interest? In a rectangular grid, the usual connectivity relationships are
4-connectivity and 8-connectivity. These alternatives are shown in Figure 3
(a) and (b). Unfortunately, neither of these methods is entirely
satisfactory. Consider the binary description of a closed curve, given in
Figure 4. If we apply 4-connectivity, the result will be six separate

blobs, two made up of zeros (background and central blobs) and four made up

TELE

e el] R T CIOE DA PP DRty LR

from pairs of adjacent 1s! If, instead, we apply 8-connectivity, the result
will be two blobs, one comprising the background and the central areas (0s)
and the other the continuous curve (1s). The problem here is that linking
the central area of the background is a breach of the Jordan curve theorem
which states that a simple closed curve should separate the image into two
simply connected regions. For the purposes of automated recognition, the

central area is a feature of the object, not a part of the background.

One solution which is often adopted is to use 6-connectivity, as shown in
Figure 3(c). However, this alsc fails when applied to Figure 4, since it
will yield three blobs, one made from Os {background and central area) and two
made from 1s (two halves of the closed curve). Another solution to the
problem 1s to apply 4-connectivity to one colour and 8-connectivity to the
other colour. If these are background and object colours respectively, the

required connectivity relationships can be obtained.

Connectivity analysis

Connectivity analysis is achieved by combining one of the above methods with
run-length coding. This latter method exploits the fact that along any
particular scan line there will usually be long runs of zeros or ones,
Individual bits can be replaced by numbers indicating the length of such
runs. Typically, each run of consecutive Os or 1s on a line is encoded as =2
three word record where the first word encodes the starting position (in x
dimension) of the run, the second the number of pixels in the run, and the
third the name of the blob that these pixels belong to. Each line of the
binary description can be described by a list of these run-length records
(see Figure 5).

The connectivity analysis algorithm scans the images from left to right, top
to bottom, updating the descriptions of each blob which intersects the
current scan line. At the end of each run of Os and 1s, the run-length list
is wupdated and blob statistics are computed. If any pixel of the run just
completed is connected to a pixel of the same colour on the previous line, an
existing blob is extended to include this run and its statistics are updated.

Otherwise a new blob record is allocated.

—— e pe———ny e,

—my

A blob may have more than one name associated with it (see Figure 6). The
two blobs 1 and 2 will not be combined to form a single blob until the scan
reaches line A. At that point, the statistics for blobs 1 and 2 are
combined. The nesting relationship between the larger and smaller blobs in
Figure 6 can also be described. In this case, the second blob might be
characterised as CHILD of the first blob since it is wholly enclosed within
the first blob. Such relational descriptions are wuseful, and will be

discussed in more detail in a later note.

Value of run code method

The value of the run code method is the ease with which a limited set of
measurements can be generated. Whereas area is easy to calculate (by adding
run lengths), centre of mass and perimeter are hard to calculate.
Accordingly, Batchelor (1985) recommends that the method should be used for
cbjects that can be characterized along one dimension. He gives the example
of a bottle, as shown in Figure 7. This is described quite adequately in

terms of:

& simple diameter measurements (e.g. comparing values z lines from top
with y lines from bottom)

® maximum/minimum diameter

® straightness

% uprightness

® minimum-area rectangle enclosing shape.

The run code method described above is restricted because the measurements are
derived from the row data, ignoring column data. Recently, Horn has suggested
a method for calculating the column values from the projection of the first
differences of the rows of the binary image, as shown in Figure 8 (from Horn,
1986). This enables first and second moments to be calculated by summing I,
Jy 12, IJ and Jz. From these totals, position and orientation can be

calculated (see below).

Boundary tracking

A similar procedure 1is followed in the case of boundary tracking. The
essential difference is that a tracking algorithm traverses the boundary of
each bleob in the image, starting from the first boundary point detected in
the raster scan of the binary representation. When the tracking algorithm

returns to its starting point, the raster scan is resumed, and so on.

T T

6
The boundary tracker operates as follows. First, each pixel is viewed as a
unit square, bounded by four edges. A boundary pixel is one which has one
or more edges in common with a pixel of a different colour, The boundary of
a blob is a sequence of directed boundary segments (composed of boundary
pixels) identified by means of a chain coding scheme. There are two chain
coding schemes, one with four directions and the other with eight directions,
as shown in Figure 9. The boundary traversal is carried out in a clockwise
direction with respect to the interior of the blob. At each step, the
tracking procedure has to decide whether to turn to the left, or to the right
or to continue straight ahead. In the case of four direction chain coding,
this is determined by examining the two pixels that lie ahead and on either
side of the current boundary segment. The decision rules are shown in
Figure 10 (for 4-connectivity: rules for 6- and 8-connectivity are more

complex).

Value of chain code

Blob statistics are obtained as the boundary of the shape is traversed. At
each point, partial sums can be calculated for the perimeter i.e. the length
of the chain. For 4-connectivity, this 1is a simple <calculation; for
8-connectivity, links coded as 1,3,50or 7 add J 2 to the length of the
perimeter. Chain height and chain width (i.e. the height and width of a box
drawn round the shape so that the outline touches on all four sides) can also
be easily calculated by taking differences between maximum and minimum

co-ordinate values in both dimensions.

However, the real advantage of chain coding is that a variety of analytical
measures of a shape's area, position and orientation can be derived from the
boundary description by generating its moments. While we can generate an
infinite series of moments, the low order moments are the most robust. In

particular, the first six moments can be used to obtain:

]

—niy

erd
L

b ’ﬁf L L S tert)
& Boo - number of points making up the shape, i.e. area
s+ My
— x value of centroid of shape
m -
00
051
L - y value of centroid of shape
m
00
orientation of
1 2(m00m11 = m10m01l = shape's major
¥ gD (mogpp = @71} = (Mg, = @7} 3 &

axis

Moments of odd degree, such as My

balance of gray levels between the left and right, or upper and lower,

planes; moments of even degree, such as L and LAPY provide information

and LAY provide information about the

half

about

the spread of gray levels away from the y or x axis. The major axis 1is the

line through the centroid about which the spread of gray levels is least.

In the context of boundary tracking {(using 4-connectivity) moments are

calculated according to the following formulae:

Moo {Area) = P1

my, (XI) = By/2

m, (&3) = P2

m, (21°) = P,/3

m, (2IJ) = (2Pg-P,)/4
ny, (L3%) = B3

where the terms P1,P2 etc are accumulated according to the following

formulae, where the value of each term is computed from its previous

and the current pixel edge co-ordinates;

value

AR AR At 55- S

g v LT T T4

If boundary code = O

X = X +1
_ 2
P3 = P3 - Y
P7 = P7 - Y
If boundary code = 1
Y = Y + 1
P1 - P1 - X2
P2 = P2 - X3
Pq = Pq - x2
p. = P. -XY
5 5 -
P6= P6+X
If boundary code = 2
X = X -1
_ 2
P3- ‘r"3+Y3
P7= P7+Y
If boundary code = 3
Y = Y+ 1
P.I = P1+X2
P2 2 P2 + x3
P, = P, + X%
4 4 >
P = P. + XX
5 5 >
P6= P6+X

More about moments

The purpose of obtaining these feature measurements is to compare them with

stored measurements. However, this comparison is made much easier if the

feature parameters are converted into a form that is not affected by a blob's

position, orientation or scale, This is achieved by generating

moment-invariants.

The first step is to generate central moments by shifting the co-ordinate

system so that 1ts origin co-incides with the centroid (X,¥). For a
uniformly coloured region, R, its (p+qlth order central moment, /.qu is
defined by:

(x - ©)P(y - ¥)%xdy

JApa

Thus, /,{00 = m00 = 728
5 4

3

2
Jhag = Uyg X
= m,, - UXy
/Un 1n -,
-2
Moo Mg -/uy , and so on.

Using these, for example, the variances in X and Y directions can be

6x :P%‘)L;’] 6y =P%)’i

The angle e which the major axis of the shape makes with the horizontal

computed

direction can be calculated:

24,
/“20_/“62

B - 4 arctan

Finally, the eccentricity is given by the expression:

l
/Unpcoseg +'/U?Osin29 - _}JLnsin29 A
/u.ozsindgt /‘Qéocosdg + /u.‘ 1cosZB

(L B, R A ¥ FACRE

10

To achieve size and orientation independence, as well as position
independence yielded by the central moments, the second step is to generate
the moment invariants. These are:
M= Moo tSea
M, = . 12 4 4@
: /20 = oz VRt
M, o= (- 3T B, -)2
3 Fag = Iy 21 = o3
Moo= 5 12 . " e
4 /‘30 Vst Mot Mos
and so on.
The first six moments, M1 to MG’ are invariant under rotation and reflection.
{For further details, see Levine, 1985, page 526)
Using 2-D shape measures
One example of the use of 2-D shape measures is given in Cheng et al., 1986.
Each shape 1s enclosed by a rectangular box, from which a number of

dimensionsless values are generated. These are recorded in a lock-up table,

for a range of orientations of the shape. An unknown shape is identified by

comparing values extracted from its binary description with values in the

look-up tables.

Another example of the use of 2-D shape measurements is given by Kruger and
Thompson, 1981,

They were:

Seven features were extracted for each type of object.

X Perimeter

"

-~ O N W N

Square root of area
Total hole area

Minimum radius

LT o . 1

Maximum radius

Average radius

o

>

Compactness (x1/x2)

7]

[¥]

I Y
[S—

£ T r - r Y r
e] [— e

—
[—

—_——
-——

Qe S

[t
)

These features were abstracted from the foundry castings shown in Figure 11
and analysed by the decision tree shown in Figure 12.

Limitations of chain code

In conclusion, the advantages of chain coding is that it is compact, easily
constructed, easy to understand and useful for 2-D shape recognition.
However, it does have some limitations. As we saw earlier, a shape cannot
be chain coded in a single raster scan of the binary description. This is a
drawback when trying to analyse changing scenes in real time. Also, some
basic operations, such -as rotations and scale changes, are difficult to

perform.

REFERENCES

Cheng, R.M.,H. and Montor, T., 1986, Synchronization of an Industrial

Robotic Manipulator Using Camera vision. In Proceedings of Conference on

11

Intelligent Autonomous Systems, Amsterdam

Horn, B.K.P., 1986, Robot Vision. Cambridge, Mass. : MIT Press.

Kruger, R.P., and Thompson, W.B., 1982. A Technical and Economic Assessment
of Computer Vision for Industrial Inspections and Robotic Assembly.
Procs. of IEEE, 68, 1524-1538.

Levine, M.D,, 1985, Vision in Man and Machine, New York : McGraw Hill.

A

il

0 4

| SO

E 3 B3 £33 B3 3

L e m e SR U g g Py =t o

Roat GORR, e araialy
(SRR

Figure 4 If the background is bright, with little light falling on the subject
of interest, a binary image can be obtained easily by thresholding the brightness
vaiues. This particular picture may lead us to believe that mere silhouettes can
convey a great deal of information about three-dimensional objects. The artist’s
carefully chosen viewpoint and our familiarity with the subject matter conspire
to give this impression. Silhouettes of unfamiliar objects, taken from randomly
chosen points of view, are typically quite difficult to interpret. (Reproduced from
Sithouettes, edited by C. B. Grafton, Dover, New York, 1979.)

n{E}

1 | £

Figure 1 A histogram of gray-levels is sometimes useful in determining a
threshold that can be used to segment the image into regions. Here n(E) is the
number of picture cells that have gray-level E,

(35

XXX X X

() (b} (c)

Figure 3 The x's indicate which pixels in a 3 by 3 neghborhood
are connected to the center pixel using (a) 8-connectiaty, (b) 4-
connectivity, and (c) 6-connectivily.

Figure 4. Connectivity in digital plane

]

P

e . Q\El[ﬁsuoz"’l_z RO I T3 31 =1

i

"

(T T

&)

0l—=391
!I-f——v.!]!'-o—q‘ T2 =38 ".

2 |

=

Figure S—The blob finding algorithms generate a run-length list
which encodes each run of consecutive 0'sor I'sonalineasa
three word record. The run-length list data structure for the
connectivity analysis algorithm is shown in (a). Assuming the
background is blob 1 and the object is blob 2, the three numbers
in each record are interpreted as the start of a run, the number
of pixels in the run, and number of the blob these pixels belong
to, respectively. Part (b} shows the data structure for the
boundary tracking algorithm. In this case, the second word is the
right end of the run rather than its length.

Frgure‘) In the connectity analysis algorithm, separate blob
records are maintained for the components labeled 1 and 2 unnl
the raster scan reaches the point labeled A, at which point the
two records merge into one. When the scan reaches point B, it
discovers that the same biob has surrounded an interior hole.

TR YO

TNV

ata

MBS P G ey ey §

Yiog ey

[P G Y PGy Ay S T

o o5 e

Minimum - ares

I / rectangle
! |

s | c— o—

SN
z !
—_
Straightness ! :)
computed fr:{:m ! Masiin.) Diameter dfz)
angle/areaoftriangle _ - 5 o
de?ined by ? \“: ¢ d:ani'rerer Diameter diy)
three edge points |
— |
¥i
—t f _ — _Datum
F ™
[Tiltangle
\Medr‘alﬁne

Fig. }-. Simple shape
measurements defined on a
bottle silhouette. The medial line
is computed by finding the
centre points of two horizontal
chords, say y rows from the base
and z rows from the top

o]
d{ojo -
stlojojoio{-

9 |- mloflo]o]ol
st{olojoflofo]o|o]
s{ojojojofolo]o]|-
safjolofojolojo]|-

s1{ofo]-

O

J

Figure 8 .
from the projection of the first differences of the rows of the image. The vertical
projection itself can then be found by summing the result from left to right.

The first difference of the vertical projection can be computed

iy

CRG o AL

1 2
é
[3 } :
4 0 4 .= e
5 7
J 1
3 6
a) b)

Figure q The boundary tracking algorithm uses a four direction
chain-coding scheme with the four directions numbered as
shown above in (a). The numbering for eight direction chain-
coding 1s shown for comparison in (b).

t

ol |9 |
— o

=10

X !
111 1111

FIGURE 1o, RULES FeR SELECTING
NE*T BouNpARY SEGMENT (o:ﬁac&c.-floowb)

Cylinger hesd (1;
on wae

Piston sieeve (2;
[on soe

Braxe caliper (1)
fying hat

Figurs || Eage-omectes parts on a conveyor.

Source: AP. Kruger and W.B. Thompeon, “A Techmical and Economic Azsessment of Computer Vision lor industriat
ingpectiony end Robotic Assembly,” Procesd:ngs of the IEEE Volume 65, Number 12, December 1882 Figure 10. page

1530. ® 1982 /EEE. Used by parmussmon.

Ne

Head 2 Measure

. b

1 Slesve 2 §

{upright)

Brake caliper (2)
fying on side)

Piston sieeve (1)
{upnght)

Caliper 1 Sleave 1

Figure ‘l Tras-parsing recog-
nition process.

Source: R.P. Kruper and W.B.
Thompsaon, “A Techn«cal and Economet
Assessment of Computer Visson for in-
dustnial inspections and Robotic
Assemdly.” Proceedings of the IEEE
Volumne 69, Number 12 Decemper 1982,
Figure 10, page 1530.® 1982 IEEE Used
by perruzgon.

O Caliper2

Cylinder head (2) -

|'1

= |

DEPARTMENT OF ARTIFICIAL INTELLIGENCE
UNIVERSITY OF EDINBURGH

Detecting edge information

Having dealt with the recognition of 2-D shapes, we are going to work through
techniques which will enable us to program a computer to recognise polyhedral
objects. Our task will be broken down into four levels of analysis:

® The first level 1is concerned with extracting features, in
particular the positions of discontinuities in the gray-level
description.

% The second level is concerned with the construction of edge
descriptions.

® The third level deals with segmentation of the edge descriptions
into separate edge groups corresponding to distinct bodies in
the scene.

The fourth level is concerned with recognition of these bodies.

In this note, we will tackle the first level, extracting edge information from

the gray-level description. This task can be broken down into two sub-tasks

® [ocating candidate edge points
® Grouping candidate edge points together to form continuous edges.

We will start by considering methods for locating candidate edge points.

1. Detecting edge information: templates

Having built a gray-level representation of a scene, the next step is to
extract interesting "local" features of the picture, i.e. features that can
be discovered while 1looking at only a small portion of the entire
representation. We will begin by considering how edge information might
be extracted. The method that we will look at first of all combines the
task of detecting the presence of edge segments and measuring their
orientation. It is based on the use of an edge template, which is

matched to the shape of a straight edge in the gray-level representation.

The template takes the form of an n x 2 array of cells, corresponding in
size to an n x 2 sub-array of cells in the gray-level representation of the
image. If the dark patches are represented by low values and 1light
patches by high values, this template will detect a left-to-right
transition of dark-to-light along a vertical edge. The template region
labelled "low" would have values near the dark end of the gray scale, and

the region labelled "high" would have values near the light end.

2

1

H .

L .
I .

o .
G .

W .
H .

n

The system's task is to search for sets of values in the gray-level
representation which match the sets of values in the template. It does
so by applying a match rule. Suppcse the luminance values in the
representation lie in the range 0 (black) to 15 {(white). Suppose, also,
that we choose to use a 3 x 2 edge template. We will assign 10 as the

value of the high region and 5 as the value of the low region.

=)

L4

= |

§

*1

The system chooses a 2 x 3 sample of luminance values from the digitised

representation

Next, 1t compares the values in this sample with the values in the
template, using a match rule. One example of a suitable match rule is

as follows:

"Add 1 to the value of the match for each cell which corresponds spatially
to a high value cell in the template and has a luminance value of 10 or
more, and add 1 to the value of the match for each cell which compares
spatially to a low value cell in the template and has a luminance value of
5 or less. The entire template is said to match at any position for

which the total value of the match is 4 or more".

Given that a match is established, the description obtained is in the form
of (x,y) co-ordinate values of the end points of each edge segment, and an

associated orientation value of 90°,.

Separate edge segments are linked together intoe larger segments,

corresponding to edges of objects, by applying grouping rules:

If the end point of one segment is adjacent to (e.g. above,
below, to-the-left of, to-the-right of) the end point of another
segment, and

If the orientation of the first is the same as the orientation
of the other, and

If the combined segments (combined points) are collinear

Then link the segments (to form a larger segment).

Note 1. "Same" must be given a value in practice.

2. The collinearity test must be assigned an error threshold

Junctions (corners) are detected as follows:

If the end points of two (or more} segments are adjacent, and
If the orientation of one is different from the other(s)

Then combine the segments (to form a junction).
Note "Different" must be given a value in practice.

At first sight, this method is attractive but the major difficulty is that
different templates and/or different match rules are needed for left-
vertical edges, right-vertical edges, horizontal edges, bright edges, dim
edges, sharp edges, fuzzy edges and edges at arbitrary orientations. In

other words, the process of using templates is computationally costly.

. Detecting edge information: Gradient operators

Detecting evidence of the existence of an edge in an 1image involves
estimating the magnitude and direction of the gradient at various positions
within the gray-level description. The gradient 1is a vector, whose

magnitude G and orientation © can be expressed as

Gix,y) = {(6f/ &x)2 + (&f/ 8y)?}

tan~! (8£/ Sy)/(SF/ 6x)

elx,y)

For obvious reasons, the process of registering abrupt changes in the gray-

level representation is known as sharpening, edge-enhancement or spatial

differentiation.

{1) Cross Operator

Our first illustration of spatial differentation is the approach taken by
Roberts (1965). He used solid polyhedral objects, namely cubes, wedges
and prisms. These were specially prepared and specially 1it so that the
surfaces were very homogeneous. In other words, he was trying to make
sure that the 1luminance variations in the image due to the object/
background boundary would resemble the luminance variations produced by a
step change in intensity. Since his objects were specially prepared, no

initial smoothing was attempted.

-

r
L

Because he had taken so much care to optimise the transformation from image
feature to gray-scale description, the gradient was measured over the

smallest possible area of the gray-scale representation, a 2 x 2 window:

i,] i,j+1
e,y | 110
1%1

by computing the sum of squares of the differences between diagonal pixels:

R(1,3) = J(f‘(i,J) - Pliel, j+1))2 + (£(141,5) ~ £(1,3+1))2

Notice that Roberts is taking the difference between diagonal elements in

the window

i,] i,j+1

i+, fi+1,j+1

Because of this, the operator is popularly known as the Cross Operator.
Notice that since diagonal neighbours are‘ré times as far away from (i,j),
a diagonal difference in the magnitude of the luminance change tends to be
larger than the magnitude of the luminance change taken in a horizontal (or
vertical) direction, given that the slope components in the different
directions are equal. This is compensated for by taking the square root

of the differences.

Let us consider the operator's qualitative behaviour. If the point (i,j)
is 1in a region of uniform luminance, the value R(i,j) is zero. If there
is a discontinuity between columns j and (j+1), then R(i,j) has a large

value, and similarly if there is a discontinuity between rows i and (i+j).

In practice, this technique constructs a new representation whose points

lie between the points of the original picture {(e.g. i+3,j+3).

In passing, we should note that the cross operator is often simplified for
computational efficiency by using absolute magnitudes rather than square or

square roots. The operator becomes
R(i,j) = |£(4,3) =Flie1,5+1) | « |£(1,5+1) =£(i+1,3)]

So by applying this cross operator to the digital representation, he
produces a new representation, called a gradient representation. This
contains a set of candidate edge points. Obviously low values correspond
to areas of uniform luminance whereas high values are associated with
changes in the luminance which may correspond to edges in the original

scene.
In passing, note that the direction of the gradient,a , can be computed as
follows for each candidate edge point

m = fli,j+1) - £li+1,3)
@ = - 5+ tan fli+1)(J+1) - £(i,3)

Since the direction of an edge is normal to the direction of its gradient,
edge direction must be computed for each point. These values are stored,

for later combination to generate edges.

As we saw, Roberts took great care to minimise data degradation. He did
this for the simple reason that the cross operator is not able to cope with
poor quality data, either in the form of isolated noise points or blurred
edges.

(2) High Pass Filter

We turn now to look at another method of spatial differentiation which is
less susceptible to the effects of noise than Roberts' 2 x 2 operator.
The way in which this is done is to combine averaging and differencing.

]
o]

| —

4 |
— el

This has led to the development of a number of gradient estimators using

windows of various sizes and differing weights.

As an example of a gradient coperator using a 3 x 3 window, consider the
following operator which is usually referred to as a high-pass filter
{introduced by Prewitt):

a b c
d e f
g h i

We define Dx by

Dx = {c+f+i) - (a+d+g)
and Dy by
Dy = (g+h+i) - (a+b+c)

\
Then we define the gradient at the point e by either Ge =(\?x‘ + D{:,)

or if we want a more computationally efficient definition
Ge = |Dx| + | Dy |

The direction of the edge, 9, is given by

- -1 [Dx
@ = tan (Dy

For example, suppose a small portion of a digitised array carries the

following values:

Columns A B

Rows 11 1 1
12 i 1
13 1 1

- = o
o w | o
oV o | m
yioovo o m
(€ S)N N o]

If we pass the 3 x 3 window across the whole array we obtain the
following values:

Biz2 Dx=1, Dy=1 G=2 -
Ci2 Dx=11,Dy=0 G=11 = 84°
Diz Dx =12,Dy=1 G=13 o = 85°
E12 Dx =2, Dy=2 G=4 -
Fi2 Dx =0, Dy=0 G=20 -

Larger weights may be given to the pixels adjacent to the central pixel
(e}, as in the case of the Sobel operator:

a | 2b c
2d e 2r
g | 2h i

Note that these operators, and the Roberts' operator, are not perfectly
isotropic, i.e. edges of the same strength but differing orientations give
different edge magnitude outputs. Also, the selection of candidate edge
points is done by setting an a priori threshold and eliminating any points
whose gradient value is less than the threshold value.

e

p— e ge——

(3) Laplacian operator

The problem of threshold selection ¢an be avoided by using an operator that

computes the second derivative since the zero crossings indicate edges:

INL____ ?‘(x\

Taking first differences in the x and y directions as

fx(i,3)
fy(i,j)

f{i,j) - fli-1,3)
fli,j) - f(i,j-1)

where f is the image intensity and i and J are row and column co-ordinates,

the higher order differences are derived by repeating the first order

differences:
fxx(i,j) = fx(i+1,3} - f£x(i,]J)
= f{i+1,3) + f{i-1,3) - 2f(i,))
fyy{i,j) = £li,j+1) + f£{i,j-1) - 2f(1,]3)

The sum of the second order differences, V? {the Laplacian!} is

vifr(i,j)

fxx(i,3) + fyyli,3)
[fi+1,3) + £{i=1,3) + £(1,J+1) + £(1,j=-1)] - &4f{i,]))

The second differences can be represented by the one dimensional windows

and the Laplacian operator V? by

Note that the Laplacian operator is isotropic.

The disadvantages of the Laplacian are:

(i) Useful directional information is not available.

(i1} It doubly enhances any noise in an image.

The operators discussed above have assumed (almost) perfect edge data.
However, as we have seen earlier, edge data is often far from perfect.
This means that an edge can be distributed over a number of pixels in the
gray-level description. Such an edge will not be "seen™ by the operators
described above. Instead, operators with larger windows are required.
Now, 1it's commonplace to use a range of these operators to process the

description at several levels of spatial resolution.

10

11

Extracting edges

The second problem is that of grouping candidate edge points to form a
continuous contour that can be segmented into 1lines and junctions.

Several methods are available.

(i) Tracking

In the last note, we discussed methods for tracking the boundary of a blob.
A set of decision rules can also be developed to track through candidate
edge points, using 8-directional chain coding. Some of the more important

are as follows:

A point with no neighbours.

X
- Isolated value.
= Example of point with one neighbour
- at edge. This is an end point.
X[x| x . .
- Example of point with two neighbours
X
X | X ~ Example of point with three or more
X neighbours. Fork.

Their application is illustrated in Figure 1.

Some problems with the above include:

(1) the implicit assumption that the edge contour is but one
pixel wide

{ii) due to noise, false edge elements are found, as are gaps
in the edge

(iii) tracking is a local process which is difficult to control,
bridge gaps, etc. See Shirai's approach in a later note
on Knowledge Guided Segmentation.

(2) Grouping/line fitting

In his classic program, Roberts uses grouping rules to combine candidate

edge points into edges.

The rules are:

If two edge points are adjacent, and

If the orientation of one is the same as (i.e. within + 10°)
of the other, and

If the new point is collinear with the existing points (as
judged by fitting a straight line to the data wusing a
sequential least-mean square-error fitting routine).

Then link the new edge point to the existing point(s).

These grouping rules produce a network of edge segments which must be
thinned, for example:

All dangling segments (i.e. connected at one end only) are removed.
Quadrilaterals are replaced by lines linking connecting points (A and B).

After thinning, the edge description may be cleaned up by re-applying the
line fitting algorithm, filling in gaps, locating junctions where two or

more lines share a common point, and so on.

12

&

{(3) Hough transform

To detect edges, the Hough technique can be used in preference to the
grouping operations described previously. The basic concept underlying this
technique is that by transforming input data from the (X,Y} domain into a
different domain, related features in the input data will show up as clusters
of features. The advantages of the Hough technique are that it is relatively
unaffected by gaps in the edge data and by noise (both of which can only be
handled in an ad hoc way by the earlier grouping techniques by introducing

additional rules to relax the adjacency criterion, etc.).

We begin the explanation by applying the technique to the detection of points
lying on a straight line i.e. points satisfying the equation y = mx + <.
Since m might be infinite, the normal form equation of the straight line is

preferred, viz:

X cos@ +ysing =r

where O is the angle made between the x axis and a normal to the line, and r
is the length of this normal. A graphical interpretation of this equation is

given in Figure 2,

Consider, now, the edge element 1%, in Figure 3, which has four collinear
points. Although an infinite number of lines can be drawn through each of

these points, let us suppose that line 1 , through (x', y'}), is a typical

line, As explained above, it can be characterised by the two paraemters (@,
r). Thus, we can see that any arbitrary point (x, y) on line 1 Iis
constrained by the equation x cos@ + y sin@ = r. Suppose we fix (x, y) in

the equation at (x',y'). Now, the equation will define a relationship
between © and r. This function is sinusoidal, as shown in Figure 4.

Each (0, r!} pair in the graph parameterizes one of an infinite number of
straight 1lines passing through the point (x' y'}. This can be verified by
imagining 1line 1 rotating around (x',y'), whereupon @ will change through
360% and r will vary between two limiting values, In other words, the point
(x',¥y') in the original X-Y image space has been projected into the (O,r)
Hough transform space as a sinusoidal curve. If the transform is applied to
all four points in Figure 3, the family of sinusoidal curves shown 1in
Figure 5 1is generated. Since each of the points lies on the same straight

line 1' parameterized by (@,r'), each of the transformed curves must pass

13

through the point (8',r'). The intersection characterizes the value of (@,r)

which defines the line passing through all four image points.

To discover the point clusters produced by the intersecting lines, an
accumulator array is set up, with bins corresponding to the different possible
combinations of discrete parameter values. For each candidate edge point, a
'vote' 1s placed in every bin whose corresponding parameter set could have
given rise to that instance. At the end of the voting process, each local
peak 1in the accumulator array will correspond to a group of collinear edge
elements in the image. The parameters on the line onwhich the elements lie
will be given by the indices of the peak, and an estimate of the number of
points on the line by the sum of accumulator values at, or very close to, the
local maximum. In the case of Figure 2, the array cell (@',r') would

register a count of 4; all other cells would register a 1 or a 0.

Obviously, the performance of the Hough transform method is affected by the
quantization chosen. If it is too coarse, it will fail to distinguish lines
that are close together. If too fine, it will be intolerant of errors in
collinearity. Also, in cases where the orientation of candidate edge points
is known, the technique can be simplified. Then, a single point, rather

than a sinusoid, can be computed in the (r,0) space for a given edge point.

REFERENCES

Nevatia, R. {(1982). Machine Perception. Englewood Cliffs, New Jersey
Prentice Hall.

Roberts, L.G. (1965) Machine Perception of Three Dimensional Solids. In
Optical and Electro-optical Information Processing, Chapter 9. Boston,

Mass : MIT Press.

14

=}

e

[S

—

5

Y

-

—] -y = — Py ey
o = = e

Ty

| | I 1 P = | prom————1

;-s-nn—dﬁ..\‘;u,.....oﬂ

S
.

B

& “TYoEs «F PowTs

Ye f 2 3 & § & F & 9 0 M
|

|En

%. .

V//ﬁ. 150 ATED

Noolf % % 7///, %

2 ,

M DM.F

ﬁju..g‘ . DE\SEW Q“‘U:-S

S
\A = Yus@fj sin B
Q] =CY\‘$)
3
e
6 c;\ x
Fiquﬂ&' 2
p

v
l
),y)
P
¢
Fileure 3
P
b
0. p"
w3 /l.\"._\")
7,
Fieure 5

DEPARTMENT OF ARTIFICIAL INTELLIGENCE
UNIVERSITY OF EDINBURGE

JIM HOWE

- e e e e e TR S R D A O WD S e e e e e e e e e e e D A e D O e O G e e e

How SEE Sees

So far, we have only considered single outline shapes. Now we want to

handle more complicated scenes, containing multiple, overlapping bodies.

When we look at a line drawing of blocks world objects, we can readily see
which regions (corresponding to surfaces) belong to each of the bodies present
in the scene. The task of partitioning a set of regions into bodies is known
as the segmentation task, and the difficulty of the task in the case of poly-
hedrz depends upon the degree of overlap between bodies, i.e. it depends upon
the amount of occlusion in a scene (the amount by which one region is obscured

by another one).

One of the earliest programs developed to tackle the segmentation problem
was Guzman's SEE (Guzman, 1967). We will examine SEE in some detail since it
was the first of a series of programs, each of which built on the ideas or
experiences with the previous one, gradually reducing the need for ad hoc rules

by providing a better theoretical justification of the underlying processes.

In SEE, Guzman assumed as starting point the existence of a perfect edge
representation of a polyhedral scene. A typical example is the scene called
BRIDGE, shown in Figure 1. This is input to the program in the form of
unordered lists of object regions, background regions and vertices. Notice

that the program does not have to separate objects from background: this

information is provided by Guzman.

To parse the scene into bodies, SEE follows a two part strategy. First,
it collects evidence for linking regions. Then second, it evaluates this

evidence and groups regions to form objects.

We will begin by considering the first part strategy, namely collecting
evidence. It is based on the fact that some places in a picture contain more
information than others, namely the points at which several lines meet - the
vertices or picture junctions. Guzman noticed that the shape of a junction
was a pretty reliable indicator of its three~dimensional significance. For
example, a three-line junction which looks like an ARROW-head is usually the
corner of a convex object, where only two out of the three surfaces of the

body are visible. In practice, Guzman classified junctions into four basic
types:

1. Vertices where two lines meet, e.g. L

2. Vertices where three lines meet, e.g. ARROW, FORK, T
3. Vertices where four lines meet, e.g. X, X

4, Other vertices, e.g. PEAK, MULTI

Examples are shown in Figure 2.

With each type of vertex there is an associated set of links which
constitute the evidence for conglomerating adjacent regions in the scene,

These links are of two types, namely strong and weak links. The strong links

associated with each vertex are as follows:

1. Ls, Ks, MULTIs and single Ts have no links.
2. FORK, Links are planted between the three regions, meeting at

a vertex of the FORK type, except

(a) if one region is the BACKGROUND no link is placed;

(b)Y if one of the lines is connected to an L, or to the
barb of an arrow, or forms the bar of a T, the regions
on either side of that line are not linked,

3. ARROW. |Links are placed between the two regions on either side
of its shaft, except

(a) if the shaft of the ARROW is connected to an L, the regions
on either side of the shaft are not linked;

(db) 1if the shaft of the ARROW is connected to a background FORK,
or to the stem of a background T, the regions on either sides
of the barbs are linked.

4, X. Two cases are distinguished.

(a) 1f the X is formed by the intersection of two lines,
no links are planted.

(b) If the X is formed by four lines, two of which are
collinear, the regions on either side of the collinear
lines are linked.

5. PEAK, All regions, except the one containing the obtuse angle,
are linked to each other,

6. T pairs, Facing pairs of Ts with collinear stems are linked,
provided the area between the bars is not BACKGROUND.

7. 3-parallel T, The regions on either side of the stem of the T

are linked in the case of a 3-parallel T.

Weak links, planted in addition to strong links, are associated with
the type of vertex called LEG.

LEG is an ARROW where one of the barbs of the ARROW is connected to an
L which has one line parallel to the shaft of the ARROW (if necessary through
a8 chain of matched Ts).

e.g.

e \"\@

w

7

/

/
/ /

—— —

Examples of the links associated with these junction types are given in

Figure 3.

Having classified the vertices in the scene, as shown in Figure 4, the
second step is to combine and group the link evidence to partition the scene
into its constituent bodies. The evidence for the scene BRIDGE is shown in
Figure 5, in which the regions are depicted by circles. Strong links are
represented by solid arcs; weak links by dotted arcs. All the links to
the background (:30) have been deleted since the background cannot be part

of any body.

Now the program attempts to form nuclei, where a nucleus is either a
region or & set of nuclei which has been formed by the following rule: if two

nuclei are connected by two or more strong links, they are merged into a larger
nucleus by concatenation, For example, in Figure 6, regions :24 :25 :27 :12

and regions :21 and :9 are put together. As a consequence, nucleus

$24 325 :27 :12 has two links with nucleus :21 :9, so they are combined in
turn to form a new nucleus :24 :25 :27 :12 :21 :9 as shown in Figure 7.
So, the nuclei are allowed to grow and merge until no new nuclei can be formed.
When this is the case, the scene has been partitioned into several "maximal"

nuclei: between any two of these, there are zero or, at most, one link.

The program has still to consider the effect of weak links. The rule is
that if a strong link joining two maximal nuclei is reinforced by a weak link,
these nuclei are merged, as shown in Figure 8. For example, in scene BRIDGE,
the following weak links exist: :13 to :15 :14 to :15 :3 to :17 :7 to :4
:8 to :11 :10 to 4 :5 to :6 :28 to :29 :18 to :19 :25 to :27 :22 to :26
:23 to :26

Notice that nucleus :16 is linked to nucleus :18/:19 by a single strong

link. This invokes another rule to the effect that a strong link joining a

nucleus and another nucleus composed by a single region is sufficient evidence
for the nuclei in question to be merged if there is no other link emanating

from the single region. This yields the final parsing shown in Figure 9.
In summary:

i. Form nuclei from regions connected by two or more strong links.

ii. Amalgamate nuclei joined by two or more strong links until no new

nuclei can be formed.
iii., Amalgamate nuclei joined by one strong and one weak link,

iv. Amalgamate a nucleus joined to a single region nucleus by a

strong link.

Ignoring the single links between nuclei which remain after parsing,
the program returns the results
(BODY1. IS 224 :9 :21 :27 :12 :25)
(BODY2. IS :22 :26 :23)
(BODY3. IS :17 :3 :20)
(BODY4. IS :1 :2)
(BODY5. IS :14 :15 :13)
(BODY6. IS :19 :18 :16)
(BODY?7. IS :29 :28)
(BODYB. IS : :11 :5 :6 4 :10 :7)

How good is SEE? Since it requires two pieces of strong evidence to
join two nuclei, it is conservative, i.e. it will almost never join two regioms
that belong to different bodies. Its errors are almost always of the same
type: regions that should be joined are left separate. This suggests that
more heuristics should be added to provide additional linking evidence. The
problem is that adding a heuristic can cause repercussions: it may solve the
difficult case but in turn cause other difficulties. Rather than continue
to derive rules in an ad hoc way, it would be preferable to derive them from
an explicit 2D/3D representational theory which takes into account the overall

geometry of polyhedral bodies. This is what we will consider next.

References

Bundy, A. et al. (1978) Artificial Intelligence: An Introductory Course.
Section 4.3, pp.l4l-147.

Guzman, A. (1967) Decomposition of a visual scene into bodies. A.I. Memo 139,

Artificial Intelligence laboratory, M.I.T.

Nevaria, R. (1982) Machine Perception.
New Jersev: Prentice Hall, Chapt. 5, pp. 41=45.

Figure 1. 'BRIDGE'

The long body :25 :24 :27 :21 :9 :12 is correctly identified.

<A

L FORK

&

ARROW T

Y

PEAK

Figure 2, Junction Types,

M

M|
L

M
b

¥

L .
T ¥
* o
LewS
[F%]
W
8ecCRoun D

)
' RaaceRouw

NHuLTy

“Tor FoRIC on
b ccounn BACKGRoUND
INHBS ARRoy
3-ParaeEL T

ON BRCGround

fijw 3. fLanTiNe kS

\p

A0 Ly

T ivmeTs
R

L owvedims
R K,

riguwre4d '8 R 1O G E'.

Fievne

Strong link
Weak link -————-

Figure 6, 2 strong links

=

il

L

Figure 7.

2 strong links.

20

22 23)
26

Figure 8.

4 6 7
£ 8 10
11

28 i

29

/
-

1l strong and 1 weak link.

Rl

=

20

17

22

Figure 9.

23
26 /
24 2% \\
28 27 12 !
29 21 9

Single region nucleus with 1 strong link.

3 EFE 3 B3 £33

10

0

E

E

4

E_

4

DEPARTMENT OF ARTIFICIAL INTELLIGENCE
UNIVERSITY OF EDINBURGH

Al2 JIM HOWE

Exploiting physical constraints

When we discussed Guzman's program, we found that its rules for linking
regions depended on the shape of the local junction. In contrast, we turn
now to consider later work by Huffman, Clowes and Waltz who realised that by
devising rules for deseribing and linking junctions, not only could they
obtain a segmentation of the scene into bodies, but they could also derive
information about the 3-D shape of the bodies.

As we have already noted, SEE made most use of trihedral vertices - the
so-called ARROW and FORK junctions. Now, a trthedral vertex is a point of
intersection of three planes which partition the surrounding space into eight
octantse. This is shown graphically in Figure 1. Some of the ways in which
these octants can be filled by three surfaces which meet at a vertex are shown
in Figure 2, where the number of octants actually occupied yields a type number.
For example, type 1 is like Guzman's ARROW, and type 7 is like his FORK junction.

Imagine now that you can view a vertex from each unoccupied octant. The
possible views for the four vertex-types are shown in Figure 3. Labels are

associated with lines in these drawings. Let's see what these labels denote.
1. a '+' marks a comvex edge which has both corresponding planes visible.
2. a '-' marks aconcave edge which has both corresponding planes visible.

3. an '<' marks an occluding edge where one plane is hidden, the vieible
plane being to the right of the direction in which the arrow is
pointing.

By understanding the three-dimensional nature of the scene, we are able to
apply the labels of the drawing. The important question is ean a program use
line~labelling to help it to understand the three-dimensional mature of line
drawinge? The answer is that it can do so by applying to the vertices imn a
drawing the set of labelled line configurations which we obtained by labelling
the possible views for the four-vertex types. The set of twelve possible
configurations is shown in Figure 4. Notice how this approach limits the
number of labellings for the different configurations. For example, given
four labels, there should be 16 ways of labelling an "L" junction but there
are only 6 legal labellings shown.

Huffman (1971) was interested in showing that the use of the labelled-
line configurations (which we will refer to as corner models) would enable
ugs to tell when certain kinds of drawings are impossible. If we look at
the picture given in Figure 5, it will be rejected as a possible line drawing
for a plane-faced object because there is no set of labels which will

consistently label it.

Labelling the outer contour is étraightforward - the only allowable
labels are arrow-type labels, If we move on now and consider the two arrow—
type vertices, we find that the contour labelling has assigned arrow labels to the
lines on either side of the shaft in both cases. Inspection of our list of
legal corner models shows that there is only one arrow-type vertex with arrow labels
assigned to bounding lines. Selecting this forces a + label for the shaft
which is entered accordingly. If we now consider the L vertex between the
shafts of the two arrows, we find that each leg of the L has been assigned a
+ label. But inspection of the list of corner models indicates that this
is not a legal corner model - there is no L configuration with plus labels on
each leg so we conclude that the drawing does not represent a three-dimensional

object of trihedral vertices.

Similar considerations apply when we examine the eight objects shown in
Figure 6. In the case of example (a), the labelling of the outer contour
forces us to label the shafts of the arrows with a + since this is the only
legal corner model which can be applied. This forces + labels on all three
lines forming the arrow in the middle, and inspection of the list of corner
models indicates that it is not a legal labelling. Exactly the same problem
crops us in examples (b) and (f), and in the case of example (c) we see a
recurrence of the labelling problem encountered in the case of the drawing
of the incomplete cube, seen earlier. Example (d) is a second example of an
illegal L model, whereas example (e) has an illegal fork junction. Examples
of other types of illegal arrow labellings are shown in examples (g) and (h).

Huffman only considered single objects, using a hand-worked analysis.
Clowes (1971), working independently on the problem, devised a computer program
"OBSCENE" to perform this kind of analysis. Since it was designed to handle
scenes with multiple objects, involving consideration of additional fork and

T=junctions, Clowes' program was equipped with a larger set of corner models.

Working at M.I.T., David Waltz (1975) generalized the Huffman/Clowes ideas

in two fundamental ways:

1. He expanded the set of line labels to capture more information about

5}

M

L3

(& |

Ll

M

e

the physical situation, and

2. He devised a filtering procedure that reduces the search problem by

quickly converging on the possible interpretations.

Waltz's system consists of a working set of computer programs which
categorize the lines in a scene as boundary, shadow, convex, concave and crack
types. In addition, the system groups regions which belong to the same object,
calculates object orientation, and notices such relations as contact or lack of
contact, support, in~front-of, and behind. Not only can it give a 3-D
description of the shadowy scene shown in Figure 7, it can also recognize the

very different picture in the next Figure 8 as representing the same scene.

Line labels

Let's begin by considering the extensions of the system of labelling.
In the scenes analysed so far, the problem of handling shadows has been
deliberately avoided. Waltz, on the other hand, wanted to be able to analyse
less artificial scenes, and decided to try to deal with shadows and cracks .
Shadowe are indicated by labelling the shadow line with a short arrow,
pointing into the shadow. This adds two new labels since a shadow can be
on the right or on the left of a line. A crack appears where there is only
one plane but two faces, and this is indicated by the label, C. These are
shown on the left-hand side of Figure 9. Now that we have 7 labels for a
line, the number of possible combinations at an L should be 49, However,
we already saw that with 4 labels the number of legal labellings was
restricted to six. By a somewhat elaborate process, similar in principle
to the one described previously, the number of legal ways to label an L, given

seven possible labels, is only 9.

The important point to notice at this stage is that the amount of constraint
is increasing as we make our descriptions more detailed. For example, we've
increased the number of line labels from 4 to 7, the number of vertex
possibilities for an L has increased from 16 to 49 but the number of legal
vertex labels has only increased by 3, from 6 to 9. As Winston points out,

the percentage of legal vertices has decreased from 307 to about 20Z.

A further classification can be made according to whether or not each edge
can be the bounding edge of an object (see Figure 10). One effect of doing
this is to increase the number of concave edge types from 1 to 4. What is
the difference between them? The answer is that the difference is determined
by what objects look like when we separate them. If we look back at the
right-hand side of Figure 9, the only change in the case of object (a) is

the addition of the - sign to the bottom edge to indicate the support
relationship, i.e. the edge denoted by the arrow labels is a separable two-

objeet concave edge.

Whereas example (a) was a single object, examples (b) and (c) are in two
parts which can be separated. In case (b), imagine we pull the objects
apart., Previously the concave line between the objects was labelled with a
minue; and the line between the two adjoining faces was labelled as a crack.
Now we see that concave edge corresponds to a separable two-object concave
edge, where the labelling relates to the cube shape, i.e. the arrow points in
the direction which maintains the visible surface on the right. This labelling
suggests either a support relationship, as in (a), or an occlusion situation
where one object partially occludes another object. The crack edge is labelled
with a downward pointing arrow to indicate that the object to the right

partially obscures the object to the left of the edge.

Applying the same reasoning to case (c), the edge labelling of the concave
edge separating the two objects changes to indicate that the edge belongs to
the upper object, and the crack label is changed to indicate the support

relationship between them.

Finally, example (d) explains the third new label - the double arrow, 3

This is used in situations where t/ree objects meet along a single edge, and .

it can be seen that the labelling of the concave edge in example (d) incorporates

the labels used in examples (a),(b),(c). L

Now that we have a clear picture of the way that vertices constrain the M
labelling of objects, can we find any further constraints to help with the N
analysis? Waltz decided to examine the effects on regions of the illumination ri
of the scene. Let us assume that the scene is brightly lit by a single light Led

source., If the light hits a surface directly, it is an Zlluminated surface (I1).
If, however, the body of an object interposes between a surface and the light
source, the surface is a self-shadowed (SS). Finally, where a surface would

be illuminated by the light source if it were not for the interposition of
another object, it is classified as a shadow-projected surface (SP).

To ascertain if there are constraints among region illumination, let us look Lad
at the example in Figure 11 which has already been appropriately labelled.
Consider the lower, right-hand vertex. Let's begin by assessing what we
already know about the situation. First of all, the shadow line implies

the existence of a shadow-projected region and an illuminated region - in

practice, regions C and B. Looking again at the labelling we see the regions
B and A are related by a concave edge which implies that if region B is

illuminated so also must region A.

But what about region D? Again we know from the labelling that one edge
has a plus label. What this meang is that region D could be self-shadowed,
or illuminated but it could not be shadow projected. To be shadow projected,
the edge label would be an arrow, not a plus, so a projected shadow is not a
possible labelling for region D,

What else do we know? Well, we know that the adjoining region C is a
projected shadow, so can D be a projected shadow? The answer is yes, it
can be a projected shadow, and equally it cannot be illuminated because the
edge between C and D is a minus edge. As we already saw, if one side of a
minus edge is illuminated, then the other side is also illuminated. " Consequently

since C is a shadow, region D must also be a self-shadow or projected shadow.

So the relationship between regions A and D suggests that D is illuminated
or self-shadowed, and the relationship between C and D suggests that D is a
self shadow or projected-shadow region. The only possibility that satisfies
both is self-ghadow.

What we have seen is that there is an intimate relationship between edge
type and scene illumination. Waltz took advantage of this to define new
edge labels which included information about the lighting on both sides of the
edge. He was including at the edge level (a very local level) information
which constrains all edges bounding the same two regions. Put another way,
wherever a line can be assigned a single label which includes this lighting
information, then the junctions which can appear around either of the regions
which bound this line are highly constrained.

Figure 12 gives tables relating region illumination types. For example,
if either side of a concave or crack edge is illuminated, both sides of the edge
must be illuminated. These tables were used to expand the set of allowable
junction labels. Prior to the addition of region illumination, the total
number of legal labels in the data base was 717. After including the region
illumination, the total increased to 3,256. The breakdown by junction type
is shown in Figure 13.

Since Waltz assumed that each scene would be of blocks on a horizontal
table top, any line segment separating the background (table) from the rest of
the scene can only be labelled in a very few ways, as shown in Figure 14.
Because of this fact the number of junction labels which could be used to label

junctions on the scene/background boundary can be greatly restricted, as shown
in Figure 15.

We have now dealt fully with the way in which Waltz extended the number
of labelling possibilities for junctions. Out task now is to understand
how possibilities are eliminated to get a unique parsing for an object or

set of objects. The strategy which Waltz follows is in two parts,

1. He uses selection rules to eliminate as many labels as possible on the
basis of relatively local information such as location of a junction relative
to the background or region brightness, We have already seen that only
about one-tenth of the physically possible vertices can occur on the scene
background boundary, whereas all of them can be found inside the scene.

For example, only two of the ten PEAK interpretations make sense on the scene-
background boundary. Consequently, Waltz's program locates this boundary
before attempting any labelling. This can be achieved by finding all the
regions that touch the edge of the field of view and combining them, or by
finding the contour that has the property that every junction lies on or
inside it.

Turning now to region brightness, in theory a line in a scene can be
assigned any of 57 possible labels. But once it is known that there is an
arrow at the end of it, as shown in Figure 16, the number of possibilities
drops to 19. Suppose also the relative brightness of regions Rl and R2 are

known. There are three possibilities:

ie Rl is darker than R2
ii. R2 " Ly " R1
iii, Rl is equal to R2

1f (i) is true, if L-A-B is a shadow edge, Rl must be the shadowed side and
R2 the illuminated side. If (ii) is true, the opposite is the case. If (iii)
is true, then L-A-B is not a shadow edge.

At any rate, if the brightnesses of Rl and R2 are known, no more than 18
and as few as 15 labels remain. Also, if the brightness of R3 is known, then

as few as 5 and no more than 18 labels will remain possible.

All the junctions lying on the scene-background boundary are labelled

first, Next, the program labels the junctions that bound regions that share an |

edge or junction with the background, since these will be more comstrained by
the background neighbours than by their internal neighbours. Finally, the
more central junctions are labelled (analagous to building a jig-saw puzzle
from edge to middle).

2. Next, Waltz filters out labels which cannot be part of any total scene

labelling. To understand the filtering process, we assume that the selection

e,

rules have been applied to reduce the lists of possible candidate models for
each vertex of the shape. The filtering program then computes the possible
lebels for each line, using the fact that a line label is possible if and only
if there is at least one junction label at each end of the line which contains
the line label. |Let's see how it works in the simple example of a cube, shown

in Figure 17.

SteE 1

Compare A and B for mutually exclusive junctions. Since there are no outgoing
arrows in A, we have no ingoing arrows in B.

Eliminate Bl and B6.

Steg 2

Compare remains of B, viz. B2 B3 B4 B5 with C. Since there are no ingoing
arrows in C, eliminate outgoing arrows in B.

Eliminate BS

Now there are no + labels in B, so

Eliminate C3 and Eliminate A3,

Step 3

Compare remains of C, viz., Cl and C2, with D, Since there are no + labels
or outgoing arrow labels in C, there can be no + labels on ingoing arrows in
D, so

Eliminate D1, D5 and Dé6.

Step 4

Compare remains of D, viz., D2, D3 and D4, with E. Since there are no + labels
or outgoing arrows in D, there can be no + or ingoing arrow labels in E, so
Eliminate E3.

Step 5

Compare El and E2 with F. Since there are no + or outgoing arrow labels in E,
there can be no + or ingoing arrow labels in F, so
Eliminate F1, F5 and F6.

Steg 6

Compare remains of F with A,
No further elimination, so filtering is complete.

Optional heuristics can be invoked to select a single labelling from among
those which remain after all the other knowledge in the program has been used.
These heuristics find a "plausible" interpretation if required. For example,
one heuristic eliminates interpretations that involve concave objects in favour
of ones that involve convex objects, and another prefers interpretations which
have the smallest number of objects; this heuristic prefers a shadow inter-
pretation for an ambiguous region to the interpretation of the region as a
piece of an object. Also, special case heuristics deal with the labelling
of non-trihedral vertices, the accidental alignment of edges, and missing

lines in the picture.

The program has reached the stage where it successfully handles scenes
such as those shown in Figure 18, The segments which remain ambiguous after

its operation are marked with stars.

We are now in a position to understand why Guzman's program works. You
will remember that we noticed that it worked best on scenes with convex
trihedral vertices, that is with comver objects. Accordingly, we can eliminate
from Huffman's cormer interpretations all cornmers with concave edges, including
those for the L that imply a hidden concave edge, leaving the set shown at the
bottom of Figure 19, Notice that L, FORK and ARROW junctions now have unique
corner interpretations, where the + labels, which indicate convexr edges, also
match Guzman's links, i.e. we can derive Guazman's links by planting a link at

a convex edge and no link at an occluding edge.
Also, link suppression rules. (no link is placed across a line at a junction

if its other end is a barb of an ARROW, a leg of an L, or the crossbar of a T)
are equivalent to the rule that the opposite ends of a line must have the same
labelling. Indeed, the accumulation of link evidence based on the existence
of two links between surfaces means in effect that both ends of an edge must

agree that it is convex for it to be so taken. If only one end says so, i.e.

one link, there is a conflict which must be heuristically resolved in Guzman's
system.

References

Waltz, D. (1975) Understanding Line Drawings of Scenes with Shadows.
In The Psychology of Computer Vieion (ed. Winston).

Huffman, D.A. (1971) Impossible Objects as Nonsense Sentences. In
Machine Intelligence 6, (eds. Meltzer and Michie).

Clowes, M.B. (1971) On Seeing Things. 1In Artificial Intelligence, 2, 79-116.

Nevatia, R. (1982) Machine Perception.
New Jersey: Prentice Hall. Chapt. 4, pp. 45-50.

(o)
TANT
{oel) .
' OOTANT
: L))
: s - "-"'\-‘.
ke Sl
: b ™. -d-)l
l "
X '
]
OCTANT OCTANT! :
Ca08) {tow :
OCTART
)
o(c'rm-r
109 soTANT
{oi18)
FIGURE 4

Firera s illestrnting the fmn iypes of veriices: (2) a fireplace and Liarthy (B e
{0ar AN 1y RS '

(a)

(b)

()

Ficure 3 Complete 170 of possible piciures

of vertices: fa) 1ye) vartions:

(b)iapa 3veiees; (6 npa 5 varuces; () pe
{d) 7 verex

VNN VY
VYYY

Flcurc4 Possible labeled-line configurations around a picture node

I
I

(d)

Fizure ‘ Pirtine. o7 objects fo

rwhich theie is o labelling nossible

&

FIGURE"

& 3:n913

............................

ey vemmeony, o

INTERPRETATLON ¢

i -~

AN I'NSEPARABLE CONCAVE EDGE; THEE
OETJECT oF WHICH R1 IS APART [OB(RL))

2 IS THE SAME A% OB(R2Y].
RL - A SEPARARLE TWo-OBIECT CoNCAVE EDGE)
——4"‘22 Erf‘ [cB(RL] IS ABOVE [0B(R2)] THEN
OB(R2)| SUEFORTS [ob(R1Y].
RL .~ SAME AS ABGVE;IF Ri IS ABSVE R2,THEN
Re 2 [PB(R%)) CBSCURLS (oB(R1))CR (OB(RL))
SUPPORTS [0B(RD).
RL = A SEPARARLE THREE-OBIECT CONCAVE
R EPGE; NEITHKER [0B(R1)) NcR [OB(R2))
R2
CAN SUPPORT THE CTHEE..
RL C A CRACK EDGE; (OB(R2)] IS IN FRONT oF
Rz [OBIRY] TF Ri T8 ABVE R2,
RL C A ¢BRACK EDGE; [oBRY] surPoRTe [0B(R1))
R IF R1 IS ABGVE R2,
SEFARATIONS:
] - + - Hi
-~ — CA —r 4l A
Y - Y ™ Y+

FIGURE §©

r 1 = 4 = ~

- s
L . Ao L | =

k=

gﬁmi i

g o

’
A
-

]

R

d

2 —— 5% —=

1IN T S ¢S e e - s

%PNZNWB .-*-EF 3 5
)1 | YES| No | No _ _ :

1 12 — £ S FE e
SP | No |YES | YES 3 -22 e
8S | No |Yes [Yes | 8 o5 %

£ .

i : had ss ¢« T + X *ﬁ
CONVEX Y Y —F * 55 °* T
1+l?- | LES| ‘1; PR S

'SP | No | YES|YES e,

¢s | Yos | Yes [YeS

N1 se g
c.cx*

2 |2 No |Yee| No)

g t Sy

-t’ ¢F |No | No | No

de |No |No [|No
SHAvon| 1 NEEEAE

oL

412 I |No |No [N> s;

SP {Yeg| No { No

48 | No | No | No *cC:fI: gﬁ&mzngmckmsn;

Figure 12

8P €8

sS

Yes| No | No

112 |g¢g

¢ sp

Figure 12 (cont'd)

b’i“—) '»ii ri: é& 12‘}-4 -'é’f% Ht: j‘% H}H

1] 2

“BACKGROUMD ScEND

CAN oNLY BE 1LABELED N
ONE OF THE TFOLLOWING WAYS:

TIE Ii8P 288 Tl Tlp 1sP
E R

Figure 14

TOTAL NUMBER OF LABRLS IN DATA BASE

FOR EACH JUNCTION TYPE

sucrion: [REEe tess [
TYPE §E§%W£oﬂ R UMINATION
1 24 q9Z
ARROW 24 86
T 91 623
FORK 116 826
PEAR 10 10
K 42 213
X 129 435
XX 10 128
MULTI 96 160
KA 20 20
KX 60 1
KXX 28 121
SPECIAL <40 466
TOTALS L7 5256

Figure 13

KH'OTAL NUMBER OF TRIHLDRAL
JUNCTION LABELINGS WHICH
CAN ATPEBAR ON:

EETE H:{Ef:mo& OF ?cig'na 4

JUNCTION |4 SCENE! %gﬁrégﬁ%?
| 92 16
ARROW - 86 12
T 623 96
TORK, 826 26
PEAK 10 2
K 213 2
X 438 72
XX 128)
MULTI | 160 8
KA 20 S
KX 76 8
KXX - 121 —
SPECTAL S TAA —s
TOTALS | 3256 g i<

Figure 15

/C
*) &)
A " A

—B

S7 LABELS ARD
PosSIBLE FoR. LA D

ONLY 19 LARELS
ARE ToSIIRLE TOR
1-AD I LT IS8
KNoW To BE THE
MITDLE BRANCEH
OF AN ARROW.

C C
/u 2
\Qz 'R-SYZ
D

IF THE BRIGHTNESS TV THE BRte:-rmsss
IS KNoWwN FCOR R1i OF RS> IS ALSO
AND R2, THEN No KNOWN , THEN
MORE THAN 18 AS TEW AS §
AND AS TEW AS ANTD NO MORE
1S LABELS wild. THAN 1 LARELS
REMAIN PSSIRLE. WILL REMATN
POSSTRBLE.

Figgre 16

g
R |

n\.

Fipure 17

1

SECORNBE)

(49

(48 STCONDE)

Figure 18

e, e ey ey 7

\\/ AV \/ \V4 \‘\/ \\/
NAVAV 2 A

\‘;/z \/

Figure lq'

— 2 £33 (3 3 & EO0 2B O B3O B2 4O BEeEe3 /22 /43 B3 &3 A & i3

s oy

Al 2

DEPARTMENT OF ARTIFICIAL INTELLIGENCE
UNIVERSITY OF EDINBURGH

JIM HOWE

2,

3.

4.

Applying labelling to curved objects

Here we describe work by Turner (1974).

The consequences of handling surfaces which are not planar are as follows:

Surfaces. One cannot tell from a line drawing just what type a surface is.
Curved surfaces may be locally described as parabolic (e.g. cones, cylinders),
elliptic (e.g. spheres) or hyperbolic (e.g. torus) but many change from one
type to another without any trace appearing in the line drawing. The simple
geometric properties of planes and the absence of any other surface type

contributed significantly to the success of Waltz's program,

Edges. Curved surfaces introduce another edge type, known as the generator
edge (Figure 1). It corresponds to some invisible line in the surface (around
outside of sphere, cylinder etc.). A disturbing feature of curved edges is
that they may undergo transition in interpretation without any visible change
(Figure 2). Waltz's program relies on lines being ascribed the same inter-
pretation by the junctions at each end: this is not true in general.

Finally, polyhedral scenes give rise to lines connected at both ends to other
lines, with each pair of junctions connected by at most, one line. Curved

objects also violate these rules, as shown in Figure 3.

Corners. Junctions may be attached to only one line, and may be joined by
more than one line (Figure 3b). There can even be lines without junctions
(outline of sphere). Generator edges give rise to a new kind of junction,

where a generator meets another generator or a true edge (Figure 3(b)).

Illumination. The reflected intensity is (ideally) the same at all points

of a plane surface, This is a powerful binding force in Waltz's program
since all the edges round a surface must assign it the same illumination
label. In contrast, a curved surface may receive all possible types of
illumination (Figure 4). Also shadow lines may be non-existent (e.g. in
Figure 4, the line separating the illuminated and non-illuminated halves of
the cylinder) or may peter out along their length (e.g. in Figure 4, the

shadow cast across the cylinder).

These problems indicate that curved objects cannot be treated by a straight-

forward extension of polyhedral techniques, Instead, various restrictions were

imposed.

1. Background The background is assumed to be an illuminated plane with

no holes.

2. Lighting Illumination is by a single point-source of light (producing
sharp shadow edges).

3. Viewpoint The scene is contzined wholly within the picture, with fixed

viewpoint.

b4, Surfaces Surfaces are smooth and opaque: creases are not permitted.
Surface points must all be of the same type (i.e. parabolic,

elliptic or hyperbolic). No surface marking is allowed.

S. Cracks Cracks are not permitted so separable edges are not handled.

(Cracks are rare with curved objects).
6. Corners Only corners enclosing a single volume in space are allowed.

The mechanism for generating curved object function labels is based on the
observation that two planes may approximate a curved surface in the vicinity of
a corner. A corner composed of both plane and curved surfaces may therefore be
approximated by a purely polyhedral one. Note that a convex (concave) surface
will give rise to a convex (concave) edge, and that the convexity (concavity) of
the other edge will be preserved. This process may be applied in reverse, a
polyhedral corner being regarded as generating one with curved surfaces. The
fact that convexity and concavity are preserved means that the labels of the non-
planar corner can be easily derived from those of the planar one. To determine
the labels for a certain class of curved objects, the procedure is to obtain the
labels for the appropriate polyhedral cornmer and apply a plane-to-curved trans-
formation. For example, in Figure 5, a 3-positive FORK (depicting the corner
of a cuboid with all the surrounding faces visible) can be transformed into a
2-positive curve with a notional junction in the middle, the stem of the fork
having got lost as the cuboid is transformed into a cylinder with no vertical
edges. So, in a sense, the program has not only to identify and label vertices

explicitly present in the picture, it also has to "see'" junctions that are not

there as such,

In practice, junction labels must be generated for the cases of corners,
tees, shadowed corners, shadowed tees, shadows cast on. surfaces and shadows
cast across edges., Junction labels have also been derived for certain inter-
actions between planar, conical, cylindrical and elliptical surfaces. Some

typical labellings are shown.in Figure 6.

As indicated above, the illumination over a curved surface may vary
from directly~-illuminated to self-shadowed. Also shadows cast over a

convex surface may peter out. This means that illumination information

=1

—_— — s s——y —_—

must be associated with lines, in the neighbourhood of junctions, rather
than with areas of the picture. This does not eliminate the problem since
the nature of the illumination may vary at opposite ends of a line, as may
the types of edge. The solution is to relax the consistency requirement
that the interpretation of a line must be the same at all points along it.
Instead, transition rules are used which specify how illumination and edge
labels can sensibly transform into others along the length of an edge.

Example transitions are shown in Figure 7, together with the rules which
deal with them.

Finally, Figure 8 is typical of the kind of scene that can be analysed
by these methods. The program takes about four times longer than Waltz's
program does to analyse a polyhedral scene. This speed difference stems
from the increased size of the label data-base, the greater complexity of

the consistency rules, and the diminished value of illumination information.

Indeed, ignoring illumination information does not give rise to much ambiguity

with curved objects: consistency of surface type is the main cohesive force.
But irregularly curved surfaces would be more difficult to handle, and
illumination might become a significant cure once again if Turner's program

was expanded.

Reference

Turner, K J (1974) 'Computer perception of curved objects using a T.V. camera.

Ph.D. Thesis, University of Edinburgh.

g2 B S

3

K|

Figure 1:

U

s

(

Generator edge labels

Figure 2: Edge type transitionms.

(a)

Figure 3.

>

_/

(v)

1111111111111111111111111111
-t - ol o -

=

o

m
[

il
=2

A E) .
-+ + + .y
c S ¢
A i J, /L >~ v
A &

N

As the cuboid is transformed into a cylinder, the actual junction at C becomes
the notional junction at C'. Line CD disappears. Lines AB and EF, which are
both genuine edge-lines depicting physical discontinuities in the cuboid, are
transformed into lines A'B’ and E'F', which (as the double arrow labels mark) do
not correspond to “real’’ edges in the cylinder, but merely to the visible outtine

of it.
Figure 5.
%
-
4 [
EEY : - v
+ planar surface -

)

&%/ %~ convex/concave conical or cylindrical surface

.*o/+ convex/concave elliptical surfzce

Some _rerresentative lubellings

Figure 6.

Some edge~ and

illuminution-tvpe trersstion rules

Figure 7.

FiEure £,

™

—

DEPARTMENT OF ARTIFICIAL INTELLIGENCE
UNIVERSITY OF EDINBURGH

Al 2 JIM HOWE

Reasoning about Surface Orientations

Line labels are subject to two limitations.
1. Line labels provide a qualitative shape characterization. While the convex
label + indicates that two plane surfaces meet and form a convexity, it is

unspecific about the angle at which the planes meet,

2. Legal labellings can be generated for line representations that are not

realizable as polyhedra. For example,

Rl and R2 camnot make
convex edges at both
AB and CD

In addition to the syntactic constraints introduced by the labels, geometric

constraints are required. The use of gradient space for this purpose was proposed

by Huf fman and used by Mackworth in his POLY program. Before describing POLY, we

will define the gradient space.

Gradient space

We begin by assuming that the viewer is at the origin of the projection system,
and that z-axis is the viewer's optical axis, and that the picture plane is at 2=0

and parallel to the x~y plane.

e

Let us denote a surface in the space as
d ; : .
~z = (%) x +(% y + 3, assuming c is not 0,wvhere -z is the depth of the

b,

surface point. An increase in -z represents an increase in the distance from the

viewer.,

The gradients of the z components of the points in the plane in x and y directions

c 0%z __a c 8z __b
are (R E R E N N ENENERSENESNESREENSENHNHRH:RH;NHN] x &. c y ry c

The gradient measures the instantaneous change in the depth of a surface
at a point (x,y) or it measures the tilt of the surface at that point with
respect to the z-axis. (G Gy)may be viewed as a two-dimensional gradient
space, the orientation of each plane in the (x,y,z) space being uniquely
represented by a point in the gradient space (p,q), except when C is O.

A point at the origin of the gradient space represents a plane parallel to the
(x,y) plane; a point on one of the axes of the gradient space represents a
tilt of this plane along the x or y axes, and a set of points in gradient space

represents a curved surface.

Consider the following illustration:

450 450
P2 P1

G, = (<1,0) PO Gl- a,o
GO = (0,0)

The depth (-z) of P does mot change, so its gradient G = (0,0). Plane Py

tilts away from the viewer at 650, so its gradient is (1,0). The gradient space

representation is:

i ,-’(pz‘fqz)

'.'/ (p,q)

tan" ! (q/p)
_‘. i ‘:' p
G G,

Note that the axes of this space are p and q, not x and y, where the p-axis
represents surface rotations about the vertical y-axis, and the g-axis
represents surface rotations about the horizontal x-axis. Combinations of
p and q rotations are represented by points lying off the p and q axes,

e.g. (p,q). The direction of the vector from the origin to (p,q}, i.e.
tan'1(q/p) describes the direction of steepest change in the depth of a
surface; the distance to the origin i.e. ,l(p’+q’), is the rate of change
of depth along the direction of steepest change.

Line labels and gradients

Although the gradient space representation does not make explicit the
actual depth of the surface plane nor the spatial extent of the plane, it

does describe the concave/convex relationship between adjoining surfaces.

For the remainder of the note, we assume an orthographic projection,
i.e. no foreshortening when a point (x,y,z) in 3-D space is projected to a

point (x,y) in the image plane.

The relationship between line labels and gradient space is that if two
surfaces meet along a concave or convex edge, their gradients lie along a

line in gradient space that is perpendicular to that edge in the image.

This is known as a "dual line". For example, if two planes intersect at a
vertical edge in the image plane, the gradients of the two planes must lie in
a horizontal line in gradient space. Furthermore, if the gradients of the
surfaces are on the same side of the edge as their causing surfaces, the

edge is convex; if the gradients of the surfaces are on opposite sides of

the edge from their causing surfaces, the edge is concave. (See Figure 1.)

In this way, the line labels can be related with properties of the
gradients. For example, the convex corner (below left} is represented by

gradients in the dual space representation (below right).

Gl - D

Fd
s

R1

R3 G

3
W
|
I
[o
)
A
|
C

C

Suppose the gradient of R1 is at G1. Becuase R1 and R2 are linked by a
convex line AB, the gradient of R2 must be on a line that passes through G1,
perpendicular to AB. Suppose it is at G2. Region R3 is connected to both
R1 and R2 by convex lines, BD and BC. So, its gradient G3 is given by the
intersection of lines extending from G1 and G2, perpendicular to BD and BC
respectively. Then G1, G2 and G3 form a triangle of a particular shape.

In fact, the location and scale of the triangle are arbitrary, but the shape
and orientation are strictly determined by the lines in the image. These
are exactly the constraints that the labelling represents.

Similarly, the concave corner (below left) is represented by the dual space

representation (below right).

POLY

For an object to be physically realizable it should be possible to construct
a consistent dual for it. This is the task tackled by Mackworth's program, POLY.
Note that POLY checks for consistency only over connect {(convex or concave} labels
and uses them to assign the sense of occlusion to non-connecting edges. This is
because connect labels are much more constraining than occlusion labels:
reasconing about connect labelling involves the solution of numerically simple
simultanecus equations whereas reasoning about occlusion involves consistency
checking of relational structures expressing such concepts as 'in front of' and

'behind' which are not readily represented in the 2D of gradient space,

Let's see how POLY handles this example:

It begins with the background surface, A, and arbitrarily assigns a gradient
(0,0} (origin of gradient space) to it. Next, it takes region B. Surfaces
A and B are bounded by lines 1 and 2. Line 1 is considered. If it is a

connect edge (either concave or convex), the gradient of B must be on a gradient-

™

L)

™

space line (perpendicular to line 1) that passes through the gradient of A,
The gradient of B is placed at unit distance from the origin (the origin and

scale are arbitrary):

T

GR

GA

Next, line 2 is considered. To establish it as a connect edge, GB must lie on
a line perpendicular to 2 through GA, But this contradicts the previous
situation where GB lies on a line perpendicular to 1 . Thus line 2 is not a
connect edge, but an occluding edge (assuming line 1 is a connect edge}.

Next, line 3 is considered. If line 3 is a connect edge, GC must lie on a line
perpendicular to line 3 through GB. Hegion C shares lines 4 and 5 with region
A. So both cannot be connect edges. The interpretation in which lines 1, 3
and 5 are connect edges and 2 and 4 are occluding edges is rejected by the rule
that three non-collinear points in space (corners a, b, c) cannot simultaneously
lie on two planes (A and B). So a legal interpretation is that lines 1, 3 and
4 are connect edges, but lines 2 and 5 are occluding edges. Now the situation

in gradient space is one of two possible cases:

&8 o -G e

v e
“ Ge /\G—B

Now, POLY describes convexity or concavity of connect edges by making use of

the gradient-space constraints established so far. For the left-handed case
(above), lines 1 and &4 are concave and line 3 is convex, whereas, for the right-

hand case, lines 1 and 4 are convex and line 3 is concave.

Finally, POLY looks at the non-connect edges {lines 2 and 5}. If edges
1 and 4 are concave and 3 is convex, on the right side of line 1, B is always
in front of A. Because of this, occluding edges are known to belong to

surfaces B and C respectively.

POLY yields one other interpretation, in which lines 2, 3 and 5 are
connect edges and 1 and 4 are occluding. Thereafter, it yields inter-
pretations with fewer connect edges, e.g. line 3 as connect and lines 1, 2, 4

and 5 as occluding.

Whereas the gradient space method eliminates some of the impossible objects
that were correctly labelled by Waltz's program, such as those shown in Figure 2,
it is not foolproof. For example, Figure 3 is an instance of an impossible
object that is accepted, using gradient space, because its inconsistencies are
not captured by the technique. The essential difference between Figure 2b
and Figure 3 1s that the edges on either side of the notch in the latter shape
are parallel, The gradient space method does not distinguish between the duals
of parallel and collinear lines because (1) the gradient space does not represent
parts of plane surfaces, and (ii) dual lines represent only the orientation of

edges. Hence, surfaces A and B are represented as points on a single dual line.

Reference

Nevatia, R. Machine Perception, Chapter 4,

-\
A

(1)
A B
.
GA GB
A B
A B
3 J o = Cp
/\) B
—— o
Cp Ca
(2) 3)
Figure 1
(1) Image

(2) Surface arrangement (plan)

(3) Gradients

4

a ' - b

Figure 2 Labelling problems for Waltz’s algorithm. (a)°

Anomalous (physically impossible) interpretation
of a possible object. (4) False acceptance of an
“impossible object.” (Source: Adapted from Huff-

man, 1971.)

7

Figure 3 An impossible figure
“accepted” by gradient
space. (Source: After
Huffman, 1971.)

DEPARTMENT OF ARTIFICIAL INTELLIGENCE

UNIVERSITY OF EDINBURGH

AI2 JIM HOWE

Knowledge guided segmentation

The programs which we have been reviewing so far have a hierarchical
structure. First, they find feature points in an entire scene; next they make a
complete edge representation using these feature points; finally, they segment
the edge description to form separate bodies. This approach is susceptible to
errors in the early stages (due to noise etc.); so later analysis based on the

earlier results is likely to lead to serious mistakes.

What we will look at now is an attempt to overcome the limitations of the
hierarchical structure, replacing it with a more flexible structure which
abandons the rigid ordering in favour of a strategy of using knowledge to guide
the processing. The particular research that we will be considering was carried
out at M.I.T. by Shirai.

More about detecting edges

In the work considered previously, we assumed that the edges of bodies
were represented as step (or near step) edges in the grey level representation.
This was an over simplification. Typically a blocks world scene contains a
variety of different kinds of edges. Besides the object background boundary
edges, wusually of high contrast {our step edge of before), there are lower
contrast (more blurred) internal edges between adjacent surfaces of an object,
and so on. The operators considered previously (e.g. Robert's cross, high pass
filter) were designed to suit step-like edges: they perform relatively poorly
on blurred edges which are characterised by luminance gradients which extend
over a larger area of the grey scale representation. If we had a method that
could factor out the different kinds of edges from the visual data, this
information could be used by higher level processes to segment the scene into
bodies, without invoking a labelling process. In fact, Shirai's program does

exactly this. Let's examine how it does it.

Consider an intensity profile of n points taken along a band perpendicular
to the direction of a step edge:

2 Direction of line segment

y Direction of intensity profile

The intensity profile is represented as follows

The contrast function is calculated as follows. We define the
contrast function of the ir'h profile point, to be the difference between

the sum of the m subsequent points and the sum of the m preceding points,
where m is a parameter. Graphically,

|

m f m LA N 3 n
ith profile point
i-1 i+m
51 - T S, =%
r=i-m r=i+l

The contrast function at the ith profile point is F(m) where Fm(i) = 5, -82

M i P p—— ——m —_— —

But there are (n-2m) points for which values will be obtained, yeilding
a contrast function of the edge.

F(m)

123 1213

Intensity function Contrast function

So much for the step edge, but as pointed out above not all real edges
have similar cross-sectional intensity (luminance) profiles. Herskovits
and Binford classified edges into three types, namely, step, roof, peak (or
spike), according to the shape of their intensity profiles.

I, 1
0 - - n 0 = _ = — n
steB
I 1
: |
i ;
! - o P - -
o - -~ - = - n o n
roof
1 1

]__
!
!
H
ol T

peak (spike)

Intensity profiles

—— e e

The step edge (first derivative), encountered previously, occurs at

a high contrast boundary between regions of relatively homogeneous intensity.

The peak (or spike) edge (second derivative) occurs at boundaries representing

a sharp highlight, or representing a crack where one object rests against

another one.

The roof edge (integral of second derivative) occurs at

boundaries between regions whose intensity profiles vary almost symmetrically

across the boundary, for example, texture edges.

these profiles are:

The contrast functions for

Il F(m)
Step
0 n 0 n
Intensity profile Contrast function
I F(m)
/\ —./) Roof
0 n 0 n
Intensity profile Contrast function
1 F(m)
Peak
0 n 0 n

Intensity profile

Contrast function

Returning now to the problem of detecting feature points, there are
two questions still to be tackled:

a) Given an arbitrary contrast function, how do we decide whether or not

it represents an edge?

b) Given that a contrast function does represent an edge, how do we

decide what kind of edge it is?

The answer to the first question (a) is that an edge is represented
in the contrast function as a good peak. A good peak is defined as a peak

which is sufficiently high in an absolute sense, as well as being sufficiently

high relative to nearby troughs,

F(m) > Ta where Ta is threshold on absolute height
F(m) - F(x) > Tr
F(m) - F(y) > Tr

where Tr is a threshold on relative height.

The answer to the second question is that the type of edge is determined
both by the number of peaks in the contrast function and by the relationship
between peaks. For example, in the case of single peak contrast functions,

a positive peak represents a step edge where the intensity profile crosses

from a region of relative brightness to a region of relative darkness, whereas
a negative peak represents a step edge with a converse bright-dark relation-
ship. When both positive and negative type peaks are detected in the contrast

function, if the difference in the height of the two peaks is not greater than

757 of the height of the largest peak, the feature point represents a highlight

in the case of a negative-positive pair, or a crack in the case of a positive-
negative pair. A roof-type contrast function could be detected by examining

the width of the peaks, but is usually ignored in blocks world analysis since

texture information is usually less valuable than the edge, highlight and crack

information.

Besides Shirai's program, this method of detecting candidate edge
points has been used quite widely, to good effect. One aspect of its use
which we must consider is the choice of thresholds. Up till now, we have
accepted a crude approach to the problem of thresholding: the choice of a
single threshold value a priori. But if boundary edges are of higher contrast
than internal edges, the single threshold causes problems. If set high
enough to exclude spurious boundary points, some of the internal edge data may
be missed. If lowered to capture all the internal edge data, a great deal
of spurious data in the neighbourhood of the boundary edges will be captured

in the candidate edge point representation.

Clearly we want to use different threshold values for detecting object/
background edges and surface/surface edges. The answer is to use dynamic
thresholds which are automatically adjusted as processing proceeds. In
other words, the threshold is set in accordance with local rather than global
luminance values in the grey level representation. This practice was adopted

by Shirai.

As we shall see, a difference between an edge-finding program and Shirai's
edge proposing program is that the former examines each and every grey scale
value in an attempt to determine if it is a candidate edge point whereas the
latter examines a subset of grev scale values selected on the basis of the
program's knowledge of the properties of bodies in its world: e.g. that edges
are parallel, Being more specific, Shirai's program continually proposes
the most plausible edges according to context, and actively searches for them

by means of a set of edge seeking procedures.

Let's look at the program's main features. It analyses blocks world
scenes, comprising evenly lit convex bodies with well defined edges. The
most obvious intensity gradients in these scenes are the "contour" edges
which separate the white body from its black background. The next obvious
intensity gradients are the "boundary'" edges which separate one body from
another, and the least distinct are the "internal" edges which separate one
face of a body from another face of the same body. The program has implicit
knowledge of these differences since it is designed to detect contour edges
before boundary edges, and boundary edges before internal edges. These
edges are represented as lines on the program's graphical output so we will

refer to them as "lines"

A typical scene, input to the computer by an image dissector device,

comprises 100,000 grey scale values. As indicated above, the program's

initial task 1is to find the contour edges between object(s) and background.
Rather than inspect every value in the grey scale representation, the program
examines a sub-set of values. The grey level representation is divided into
8 x 8 subsets: one value is selected from each subset, making about 1500 in
total. To find a contour edge, the program searches through this reduced
data set until it finds a high contrast point. Using this point as starting
value, it tries to locate the position of a contour edge segment, using a
procedure called tracking. Briefly, the contour tracking routine uses the
step-edge detector operator described earlier, with the threshold adjusted to
the average value of the contrast function, to search for points along a
hypothesised edge and to check that they are collinear, i.e. lie on a straight

edge. The collinearity test checks
a) that the number of edge points exceeds a threshold number Tn

b) that the deviation E of the points in line fitting with the least
square method must be less than a threshold TE'

In this manner, a set of contour points is found. Then, the remainder
of the data is scanned until a new contour point is found; tracking is
repeated, and so on until the entire data subset has been examined and all

sets of contour points are known.

Next, the program returns to the high-resolution grey scale representation
and matches the sets of candidate contour points with particular values in
the representation. Using them as starting points, it derives a refined set
of contour points, by applying the contour tracking procedure once again.
Next, the program forms a polygon by connecting the contour points one by one.
The curvature of the polygon, i.e. the position of the vertices, is computed
to yield a final contour which can be used for the next stage in the analysis,
namely finding boundary lines. But a boundary line is a line on the border
of an object. So contour lines are boundary lines, except where objects
overlap. 1In that situation, there will be one or more boundary lines in the
scene. If these boundary lines can be located, the program will be able to

segment the scene into its constituent bodies.

Suppose the program's task is to analyse the scene showin in Figure 1 (f).
As indicated above, it will begin by locating the contour lines AB, BC, CD, DE,
EF, FG, GH, HI, IJ, JK and KA (Figure 1 (a)), But since the program's world

excludes concave polyhedra, contour (boundary) lines which form a concave vertex

can be interpreted as the boundary lines of two different bodies. The obvious

strategy is to try to locate the rest of the boundary lines, using a peak edge

™

L
[1
™M

Ll

)

L=l

Lal

9

detector tracking operator. In fact,this is the first of a set of ten heuristic

rules which embody knowledge about where lines are likely to be found. Details

of these heuristics are as follows:

If two boundary lines make a concave point, try to find collinear extensions
of them.

® This heuristic is tried for the concave points G and J. However, the
position of G is not precise enough to find the extension of FG. On the
other hand, a line segment is found as an extension of the line KJ. KJ is

extended by tracking, as far as L (see Figure 1b).

If no extensions of the two boundary lines are found, try to find another

line starting from the concave point using a circular search technique. If

only one is found, track along it.

¥ This heuristic is invoked for point G. One line segment is found and
extended until tracking terminates. Thus, line G' M' is obtained (see
Figure 1b). This line is interpreted as an extension of FG. The positions
of the points F,G,L are adjusted so that line G'M' becomes line F,G,L (as

shown in Figure 1c}.

But notice that this means that two bodies, B1 and B2, have been identified
by the creation of the boundary lines GL and JL. Consequently, the first
heuristic can be applied again, at point L, provoking the extension of line
FL as far as M (see Figure 1d}). LM is interpreted as an extension of FL
but the end point M is not connected to any other lines. Thus, the vertices

F,G,L and end point M are adjusted to form the new line LM.

If both extensions (of the boundary lines) are found, try to find a third
one and track along it.

* This heuristics is not invoked.

If an end of a boundry line is left unconnected, try to find the line
starting from the end point by circular search. If multiple lines are
found, try to decide which line is the boundary. If a boundary line is
found, track along it.

® This yields three lines, as shown in Figure 1d. MN' is classified as a
boundary line and extended by tracking. When it terminates, the line is
connected to boundary line BC at N (as in Figure i1e). Now, body Bl splits
into bodies, Bt and B3. At this stage, it is known that B1 is hidden by B3,
and B2 is partly hidden by B3 and partly by B1.

10.

10

If no boundary line is found by circular search, extend the unconnected
boundary 1line by a certain length and test if it is connected to other
lines. If not, apply circular search again, as in (4}, If necessary,
repeat the process until a solution is found.

bd Since heuristic 4 was applied successfully, the fifth one was not

invoked.

At this point in the analysis, all the boundary lines have been found. The
task now is to find the internal lines.

Select the vertices of the boundary that might have internal lines starting
from them. If a line is found, track along it using the step edge tracking
procedure,

® Notice that the selection of vertices is based on heuristics such as
selecting the upper right vertex rather than the lower right vertex. Also,
the system locks for internal lines that are nearly parallel to boundary

lines (using its knowledge about blocks).

This heuristic is invoked and is applied to bodies B3, B? and B2 (starting
with the most complete body since it is the easiest case to deal with).
Internal 1lines CO and MO are found and connected at vertex 0 (see Figure

1e), as are AM and IP (see Figure 1f).

If no line is found (by 6), try to find one by circular search between
adjacent boundary lines. When one is found, track along it.

® Since the sixth heuristic was invoked, the seventh was ignored.

If two internal lines meet at a vertex, try to find another internal line
starting at the vertex (using circular search, if necessary).
% This is applied to vertex O and a line segment towards E is identified.

This is extended by tacking as far as E' (see Figure 1f}.

If an end of an internal line is not connected to any line, try to find
lines starting from the end by circular search. If lines are found, track
along them, one by one.
® This heuristic fails.

If no line is found in (9), extend the line by a certain length (as in 5
above) and test if it is connected to other lines. If not, try circular

search again. Repeat until successful.

ol

- |

11

& After a few trials, line OE' is extended to connect to vertex E, giving

the final analysis shown in Figure 1f.

Strengths and Weaknesses

Notice that Shirai's ten heuristics are ordered with respect to their
likelihood of success in finding useful cues in the scene. Also, their results
are continually tested for consistency with previous results, so the program is
less 1likely to be confused by small imperfections in the input. For example,
when an unconnected line fragment is found, the program checks if it could be
extended to intersect with another fragment already found, or whether it could
be the continuation of an existing line fragment. In such a situation, the
tracker can be made more sensitive by lowering its threshold. Similarly,
circular search can be made more sensitive and more wide-ranging in the area

covered. In this way, quite faint lines can be detected.

Notice,too, that Shirai's programs can ignore irrelevant lines provided
they do not distort the contour because they do not make sense as
representations of edges in the 3-D scene hypothesised by the interpretation as

a whole.

Notice, finally, that the edge description of the scene is partitioned
into groups of edges which represent bodies. Thus the program achieves a
measure of segmentation. It is, however, possible for the program to miss
bodies. For example, if it is presented with a tower of bricks, as shown in
Figure 2a, it will not propose the cracks between them because there are not
concave points to activate the boundary-line detecting heuristics. Also, when
one object is supported within the face of another object, as in Figure 2b, so
that no part of it touches the contour, it will not be found since the program

does not include heuristics for searching for line segments inside a region.

REFERENCES

Shirai, Y. (1973) A context sensitive line finder for recognition of polyhedra.

Artificial Intelligence Journal, 4 95-120.

Shirai, Y. (1975) Analyzing intensity arrays using knowledge about scenes.

Psychology of Computer Vision (Ed. Winston). New York: McGraw-Hill.

Nevatia, R. (1982) Machine Perception. New Jersey: Prentice Hall. Chapter 7.

|

10

|
]

]

Fig. 1

(a) (e) (f)

Steps in analysis.

Bl

a

(a) (b)

Fig. 2 Situations with a lack of cues.

1 &

113

[13

{=

B

1=

T}

19

| -

3

DEPARTMENT OF ARTIFICIAL INTELLIGENCE

UNIVERSITY OF EDINBURGH

AI2 JIM HOWE

Knowledge guided segmentation

The programs which we have been reviewing so far have a hierarchical
structure. First, they find feature points in an entire scene; next they make a
complete edge representation using these feature points; finally, they segment
the edge description to form separate bodies. This approach is susceptible to
errors in the early stages (due to noise etc.); so later analysis based on the

earlier results is likely to lead to serious mistakes.

What we will look at now is an attempt to overcome the limitations of the
hierarchical structure, replacing it with a more flexible structure which
abandons the rigid cordering in favour of a strategy of using knowledge to guide
the processing. The particular research that we will be considering was carried
out at M.I.T. by Shirai.

More about detecting edges

In the work considered previously, we assumed that the edges of bodies
were represented as step (or near step) edges in the grey level representation.
This was an over simplification. Typically a blocks world scene contains a
variety of different kinds of edges. Besides the object background boundary
edges, usually of high contrast (our step edge of before), there are lower
contrast (more blurred) internal edges between adjacent surfaces of an object,
and so on. The operators considered previously (e.g. Robert's cross, high pass
filter) were designed to suit step-like edges: they perform relatively poorly
on blurred edges which are characterised by luminance gradients which extend
over a larger area of the grey scale representation. If we had a method that
could factor out the different kinds of edges from the visual data, this
information could be used by higher level processes to segment the scene into
bodies, without invoking a labelling process. In fact, Shirai's program does

exactly this. Let's examine how it does it.

Consider an intensity profile of n points taken along a band perpendicular
to the direction of a step edge:

A Direction of line segment

y Direction of intensity profile

?

The intensity profile is represented as follows

The contrast function is calculated as follows. We define the

contrast function of the 1th profile point, to be the difference between

the sum of the m subsequent points and the sum of the m preceding points,
where m is a parameter., Graphically,

123 e

m sae n
i':h profile point
i-1 ism
Sl- z S, =%
r=i-m r=i+l

The contrast function at the :i.th profile point is F(m) where Fm(i) = S1

-S

2

1— 1
L

M
L

But there are (n~2m) points for which values will be obtained, yeilding
a contrast function of the edge.

F(m)

123 123

Intensity function Contrast function

So much for the step edge, but as pointed out above not all real edges
have similar cross-sectional intensity (luminance) profiles. Herskovits
and Binford classified edges into three types, namely, step, roof, peak (or
spike), according to the shape of their intensity profiles.

step

.toof

peak (spike)

Intensity profiles

The step edge (first derivative), encountered previously, occurs at

a high contrast boundary between regions of relatively homogeneous intensity,

The peak (or spike) edge (second derivative) occurs at boundaries representing

a sharp highlight, or representing a crack where one object rests against

another one. The roof edge (integral of

second derivative) occurs at

boundaries between regions whose intensity profiles vary almost symmetrically

across the boundary, for example, texture edges. The contrast functions for
these profiles are:
I, F(m)
Step
0 n 0 n
Intensity profile Contrast function
I F{(m)
/\ P‘/} Roof
0 n 0 n
Intensity profile Contrast function
I F(m)
Peak
0 n 0 n

Intensity profile

Contrast function

Returning now to the problem of detecting feature points, there are
two questions still to be tackled:

a) Given an arbitrary contrast function, how do we decide whether or not

it represents an edge?

b) Given that a contrast function does represent an edge, how do we

decide what kind of edge it is?

The answer to the first question (a) is that an edge is represented
in the contrast function as a good peak. A good peak is defined as a peak

which is sufficiently high in an absolute sense, as well as being sufficiently

high relative to nearby troughs.

L

F(m) > Ta where Ta is threshold on absolute height
F(m) = F(x) > Tr
F(m) - F(y) > Tr

where Tr is a threshold on relative height.

The answer to the second question is that the type of edge is determined
both by the number of peaks in the contrast function and by the relationship
between peaks. For example, in the case of single peak contrast functions,

a positive peak represents a step edge where the intensity profile crosses
from a region of relative brightness to a region of relative darkness, whereas
a negative peak represents a step edge with a converse bright-dark relation-
ship. When both positive and negative type peaks are detected in the contrast

function, if the difference in the height of the two peaks is not greater than

757 of the height of the largest peak, the feature point represents a highlight

in the case of a negative-positive pair, or a crack in the case of a positive-
negative pair. A roof-type contrast function could be detected by examining
the width of the peaks, but is usually ignored in blocks world analysis since

texture information is usually less valuable than the edge, highlight and crack
information.

Lad

Besides Shirai's program, this method of detecting candidate edge
points has been used quite widely, to good effect. One aspect of its use
which we must consider is the choice of thresholds. Up till now, we have
accepted a crude approach to the problem of thresholding: the choice of a
single threshold value a priori. But if boundary edges are of higher contrast
than internal edges, the single threshold causes problems., If set high
enough to exclude spurious boundary points, some of the internal edge data may
be missed. If lowered to capture all the internal edge data, a great deal
of spurious data in the neighbourhocod of the boundary edges will be captured

in the candidate edge point representation.

Clearly we want to use different threshold values for detecting object/
background edges and surface/surface edges. The answer is to use dynamic
thresholds which are automatically adjusted as processing proceeds. In
other words, the threshold is set in accordance with local rather than global

luminance values in the grey level representation. This practice was adopted
by Shirai.

As we shall see, a difference between an edge-finding program and Shirai's
edge proposing program is that the former examines each and every grey scale
value in an attempt to determine if it is a candidate edge point whereas the
latter examines a subset of grey scale values selected on the basis of the
program's knowledge of the properties of bodies in its world: e.g. that edges
are parallel, Being more specific, Shirai's program continually proposes
the most plausible edges according to context, and actively searches for them

by means of a set of edge seeking procedures.

Let's look at the program's main features. It analyses blocks world
scenes, comprising evenly lit convex bodies with well defined edges. The
most obvious intensity gradients in these scenes are the "contour" edges
which separate the white body from its black background. The next obvious
intensity gradients are the "boundary" edges which separate one body from
another, and the least distinct are the "internal" edges which separate one
face of a body from another face of the same body. The program has implicit

knowledge of these differences since it is designed to detect contour edges

before boundary edges, and boundary edges before internal edges. These

edges are represented as lines on the program's graphical output so we will
refer to them as "lines"

A typical scene, input to the computer by an image dissector device,
comprises 100,000 grey scale values. As indicated above, the program's

initial task is to find the contour edges between object(s) and background.
Rather than inspect every value in the grey scale representation, the program
examines a sub-set of values., The grey level representation is divided into
8 x 8 subsets: one value is selected from each subset, making about 1500 in
total. To find 2 contour edge, the program searches through this reduced
data set until it finds a high contrast point. Using this point as starting
value, it tries to locate the position of a contour edge segment, using a
procedure called tracking. Briefly, the contour tracking routine uses the
step~edge detector operator described earlier, with the threshold adjusted to
the average value of the contrast function, to search for points along a
hypothesised edge and to check that they are collinear, i.e. lie on a straight

edge. The collinearity test checks
a) that the number of edge points exceeds a threshold number Tn

b) that the deviation E of the points in line fitting with the least
square method must be less than a threshold TE'
In this manner, a set of contour points is found. Then, the remainder
of the data is scanned until a new contour point is found; tracking is
repeated, and so on until the entire data subset has been examined and all

sets of contour points are known.

Next, the program returns to the high-resolution grey scale representation

and matches the sets of candidate contour points with particular values in
the representation. Using them as starting points, it derives a refined set
of contour points, by applying the contour tracking procedure once again.
Next, the program forms a polygon by connecting the contour points one by one.
The curvature of the polygon, i.e. the position of the vertices, is computed
to yield a final contour which can be used for the next stage in the analysis,
namely finding boundary lines. But a boundary line is a line on the border
of an object. So contour lines are boundary lines, except where objects
overlap. In that situation, there will be onme or more boundary lines in the
scene, If these boundary lines can be located, the program will be able to

segment the scene into its constituent bodies.

Suppose the program's task is to analyse the scene showin in Figure 1 (f).
As indicated above, it will begin by locating the contour lines AB, BC, CD, DE,
EF, FG, GH, HI, IJ, JK and KA (Figure 1 (a)), But since the program's world
excludes concave polyhedra, contour (boundary) lines which form a concave vertex
can be interpreted as the boundary lines of two different bodies. The obvious

strategy 1is to try to locate the rest of the boundary lines, using a peak edge

M

Ll

M
8

9

detector tracking operator. In fact,th;s is the first of a set of ten heuristic

rules which embody knowledge about where lines are likely to be found. Details

of these heuristics are as follows:

If two boundary lines make a concave point, try to find collinear extensions
of them.

® This heuristic is tried for the concave points G and J. However, the
position of G is not precise enough to find the extension of FG. On the
other hand, a line segment is found as an extension of the line KJ. KJ is

extended by tracking, as far as L (see Figure 1b).

If no extensions of the two boundary lines are found, try to find another

line starting from the concave point using a circular search technique. If

only one is found, track along it.

®# This heuristic is invoked for point G. One line segment is found and
extended until tracking terminates. Thus, line G' M' is obtained (see
Figure 1b). This line is interpreted as an extension of FG. The positions
of the points F,G,L are adjusted so that line G'M' becomes line F,G,L (as

shown in Figure 1c).

But notice that this means that two bodies, B1 and B2, have been identified
by the creation of the boundary lines GL and JL. Consequently, the first
heuristic can be applied again, at point L, provoking the extension of line
FL as far as M (see Figure 1d). LM is interpreted as an extension of FL
but the end point M is not connected to any other lines. Thus, the vertices

F,G,L and end point M are adjusted to form the new line LM.

If both extensions (of the boundary lines) are found, try to find a third
one and track along it.

*# This heuristics is not invoked.

If an end of a boundry line is left unconnected, try to find the line
starting from the end point by circular search. If multiple lines are
found, try to decide which line is the boundary. If a boundary line is
found, track along it.

®# This yields three lines, as shown in Figure 1d. MN' is classified as a
boundary line and extended by tracking. When it terminates, the 1line is
connected to boundary line BC at N (as in Figure 1e}. Now, body B1 splits
into bodies, B1 and B3. At this stage, it is known that B1 is hidden by B3,
and B2 is partly hidden by B3 and partly by B1.

10.

10

If nc boundary line is found by circular search, extend the unconnected
boundary 1line by a certain length and test if it is connected to other
lines. If not, apply circular search again, as in (4). If necessary,
repeat the process until a solution is found.

® Since bheuristic 4 was applied successfully, the fifth one was not

invoked.

At this point in the analysis, all the boundary lines have been found. The

task now is to find the internal lines.

Select the vertices of the boundary that might have internal lines starting
from them. If a line is found, track along it using the step edge tracking
procedure.

* Notice that the selection of vertices is based on heuristics such as
selecting the upper right vertex rather than the lower right vertex. Also,
the system looks for internal lines that are nearly parallel to boundary

lines {using its knowledge about blocks).

This heuristic is invoked and is applied to bodies B3, B1 and B2 (starting
with the most complete body since it is the easiest case to deal with).
Internal 1lines CO and MO are found and connected at vertex 0 (see Figure

le), as are AM and IP (see Figure 1f).

If no line is found {by 6), try to find one by circular search between
adjacent boundary lines. When one is found, track along it.

Since the sixth heuristic was invoked, the seventh was ignored.

If two internal lines meet at a vertex, try to find another internal 1line
starting at the vertex (using circular search, if necessary).
® This is applied to vertex O and a line segment towards E is identified.

This is extended by tacking as far as E' {see Figure 1f).

If an end of an internal line is not connected to any line, try to find
lines starting from the end by circular search. If lines are found, track
along them, one by one.

® This heuristic fails.

If no 1line is found in (9), extend the line by a certain length {as in 5
above) and test if it is connected to other lines. If not, ¢try circular

search again. Repeat until successful.

£ |

Lid

M

L4

M

| 4]

11

® After a few trials, line OE' is extended to connect to vertex E, giving

the final analysis shown in Figure 11,

Strengths and Weaknesses

Notice that Shirai's ten heuristics are ordered with respect to their
likelihood of success in finding useful cues in the scene. Alsoc, their results
are continually tested for consistency with previous results, so the program is
less 1likely to be confused by small imperfections in the input. For example,
when an unconnected line fragment is found, the program checks if it could be
extended to intersect with another fragment already found, or whether it could
be the continuation of an existing line fragment. In such a situation, the
tracker can be made more sensitive by lowering its threshold. Similarly,
circular search can be made more sensitive and more wide-ranging in the area

covered. In this way, gquite faint lines can be detected.

Notice,too, that Shirai's programs can ignore irrelevant lines provided
they do not distort the contour because they do not make sense as
representations of edges in the 3-D scene hypothesised by the interpretation as

a whole.

Notice, finally, that the edge description of the scene is partitioned
into groups of edges which represent bodies. Thus the program achieves a
measure of segmentation. It is, however, possible for the program to miss
bodies. For example, if it is presented with a tower of bricks, as shown in
Figure 2a, it will not propose the cracks between them because there are not
concave polnts to activate the boundary-line detecting heuristics. Also, when
one object is supported within the face of another object, as in Figure 2b, so
that no part of it touches the contour, it will not be found since the program

does not include heuristics for searching for line segments inside a region.

REFERENCES

Shirai, Y. (1973} A context sensitive line finder for recognition of polyhedra.

Artificial Intelligence Journal, 4 95-120.

Shirai, Y. (1975) Analyzing intensity arrays using knowledge about scenes.

Psychology of Computer Vision (Ed. Winston). New York: McGraw-Hill.

Nevatia, R. (1982) Machine Perception. New Jersey: Prentice Hall. Crapter 7.

|
|
[

B

1B

|3

1=

«

Fig. 1

{a) (e)

Steps in analysis.

{a) (b)

Fig. 2. Situations with a lack of cues.

AN

13

3=

DEPARTMENT OF ARTIFICIAL INTELLIGENCE
UNIVERSITY OF EDINBURGH

Al=-2 JIM ROWE

Model-based segmentation

Today, we are going to follow a different route to segmentation, namely
segmentation through recognition of the primitive bodies in a scene, This is

the approach taken by Roberts.,

Roberts' thinking was strongly influenced by the work of a psychologist
called J J Gibson (1966). Previously, most psychologists considered vision
as a problem of extracting invariant information about the physical world from
a flat, static, ambiguous 2-D image, We have already seen that an 'edge' is
not invariant information because it does not uniquely characterise its source
in the environment. Instead, it might be caused by a change in illumination or
colour, or perhaps by the edge of a shadow, So an 'edge' does not unequivocally
specify any particular thing. Gibson suggested that the visual system extracts
invariant information about the physical world from transformations of images
over time. Typically, these transformations occur through movement of the
observer, Information about surfaces such as their orientation, their extent
and their inter-relationships is specific to the environment, and can be obtained
by interpreting velocity signals generated by retinal transformations. This is
still a research problem that we will not deal with here. Instead, Robert's
captured invariance through the use of 3-D models stored in the machine. Each
model represents an invariant percept, and each can be identified with any
projection of itself (in 3 or 2-D). Such a system would therefore recognise what

the objects in a scene are without the intervening activity of segmentation.

Like most other programs considered so far, Roberts' system is limited to
handling three types of 'primitive'objects, namely cube, rectangular wedge and
hexagonal prism (see Figure 1). Typical scenes analysed by the system include
simple and/or compound abjects. Simple objects are created by transformationms
which expand a 'primitive' object along each of its co-ordinate axes, rotate it
and translate it, Compound (composite) objects are constructed by abutting two
or more simple objects so that each pair share a common surface. Examples are

shown in Figure 2.

Roberts' program is really a conglomerate of three separate programs. The
first reduces the photograph of a scene (composed of simple/compound objects) to
a line drawing using similar methods to those studied earlier. This program
yields a set of lines, represented by their end point co-ordinates, and a set of
regions bounded by these lines, where the regions are all polygons since the

objects are all planar.

The second program, the interpretation program, handles the task of finding
the models which best describe a scene. It is this process which interests us.
The third program, which constructs a two-dimensional projection of the objects

in & scene, will not be dealt with,

To understand the interpretation program, we have to understand the picture

taking process. Details are as follows.

An image is a direct perspective transformation of a 3~D field of object points,
This transformation is a projection of each object point on to a plane surface,
through a lens. The basic model of the process is shown in Figure 3 where the
camera is represented by a pinhole lens with an image plane lying & distance f
behind the lens. The image of a point V in 3-space is determined by the inter-
section of the image plane with the projecting ray defined by V and the lens centre,

Vp is the image point corresponding to the object point V.

A difficulty with this basic model of the picture-taking process is that the
image is a reflection of the object, i.e. the image is inverted from top to bottom
and left to right. To avoid reflections, the preferred focal plane is placed in
front of the camera and intercepts the projecting ray as shown in Figure 4. Here

the focal plane is really the plane of the print, not of the negative.

This process is called central projection., The z-axis is aligned with the

optical axis, or principal ray, of the camera, the principal ray being the ray

from the lens perpendicular to the image plane. The centre of co-ordinates (0,0,0)
is the intersection of the principal ray with the image plane. Notice that the -
process of central projection is many-to-one: for each image point there is a line 1
in space, defined by the image point and the lens centre, along which the correspondini’

object point must lie. 1

We are now in a position to understand the two questions associated with the -
image making process. First, given an arbitrary object point, the answer to the 1
question, "What is the location of its image point?" is provided by a direct B

perspective transformation from object point to image point., Second, given an
arbitrary image point, the answer to the question, "What is the straight line along |[]
which the corresponding object must lie?" is provided by the inverse perspective

transformation from image point to object point.

Unfortunately, the equations from the direct perspective transformation of
the object point V to the image point Vp are non-linear because they involve
divisions. This difficulty is overcome by converting the non-linear transformations
into linear transformations in a different co-ordinate system in which an object
point (x,y,2) in three dimensions is represented by a vector of four numbers

[xl, Yyr Zps hll. The four components of this vector are interpreted as co-ordinates

2

3

in four dimensional space. In order to transform a point in 3-D co-ordinates

(x,y,z) into this 4-D representation, known as homogeneous co-ordinates, we

merely choose some non-zero number w and form the vector [wx wy wz wl. This

number w is the scale factor or the homogeneous co~ordinate. Since the choice

of w is arbitrary, the homogeneous co-ordinates of a point are not unique., Of
course, & homogeneous point [wx wy wz w] can be converted back into 3-D co-

ordinates by dividing by the scale factor: the point is wa/w wy/w wz/w).

With homogeneous co-ordinates, we can now express the perspective trans-
formations as linear matrix operations. Let's consider a simple example, a
unit cube centred at the origin (0,0,0). In 3-space, this can be described as
a set of eight points, Vl(xl, Yqs zl.) to VB(xB, Yg» zs), representing the eight

vertices, as shown in Figure 5.

This set of eight points in 3=D space can be described by an 8 x 4 matrix
of homogeneous co-ordinates. Co-ordinate transformations and projections,
either with or without perspective, can be done, either individually or in
combination, by multiplying this 8 x 4 matrix by an appropriate 4 x &4 trans-
format1op matrix to give a product matrix of the transformed homogeneous co-

ordinates, as shown in Figure 6.

Returning to the central projection problem, the image co-ordinates are
obtained by multiplying the object co—ordinates by a transformation matrix P.
In similar fashion, the object co-ordinates can be obtained from the image co-

ordinates by the inverse transformation, P 1.

P =

lHOOO'

fo 0 o '
O O = ©
=0 ©O O

' o o O Hj
© O -~ O
=~ O O

0
0
0
1

Note that the first column of the matrix affects only the x co-ordinate and
so contains all the numbers that define the updated x co-ordinate. The same
holds for y and z. A vertex is transformed as follows: To get a new x co-
ordinate, the old x co-ordinate is multiplied by the top number in the first
column; its result is added to the product of the old y co=-ordinate and the
second number in the first column, The sum is then added to the product of
the old z co=~ordinate and the third number in the first column. Finally, the
total is added to the bottom number in the first column, The new y, z and h
co-ordinates are obtained in the same way, using the second,third and fourth

columns,

The perspective transformation applies when the object and image points are
specified in the co-ordinate system aligned with the camera, It may be necessary

to express objects in an independent co-ordinate system, the world co-ordinate

system i,e. object co-ordinates have to be transformed from world co-ordinates
to a system aligned with the camera before a perspective transformation can be

applied,

The models in Roberts' system (cube, rectangular wedge and hexagonal prism)
are also represented by homogeneous co-ordinates. This means that a model can
be transformed to match an object in the scene by applying translation, scaling
and rotation transformations. Indeed the advantage of matrix multiplication
becomes evident when several consecutive transformations are required because
a series of transformations can be done by using only a single 4 x 4 matrix
which is the product of individual 4 x 4 transformation matrices. Note, however,

that the individual matrices must be multiplied in the order in which the trans-

formations are required. ©For example, a rotation followed by a translation does

not give the same result as a translation followed by a rotation i,e., matrix

multiplication is not commutative.

The transformation which translates a point (x y z) to the new point

(x', y', 2') is

T 8-1 0 0 Er
o1 0 O
00 1 0 where Tx’ Ty and Tz are the
Tx Ty Tz 1 components of the'translatlon.ln the
L i X, ¥ and z directions respectively.

The transformation which scales dimensions in each co~ordinate direction

separately is

. .
§=1S 0 0 0
X
0 Sy oo Different scalings along the three
0 0 8§ 0O .
z axes may be represented by noneunit
a9 80 _1_ terms in the diagonal of matrix S

Rotational transformations are more complex: we must determine an axis of rotation,
The simplest form of transformation occurs when the axis passes through the origin
and is aligned with a co-ordinate axis. To rotate about an arbitrary point, we
must concatenate three transformations: translate the point to the origin, perform
the rotation and translate back. To complicate matters, we must cope with axes

of rotation that are not aligned with the co-ordinate axes: 1in these cases we .

have to concatenate several primitive rotation transformations to form a matrix
that rotates about the desired axis,

p——— e——— pemmm—— pe—

The transformations for rotation about each of the co-ordinate axes, shown
in Figure 7, are given below., Note that rotation is measured clockwise about

the named axis of rotation, looking along the axis towards the origin.

Rotation by 6 about the x axis, Rx:

Rx' 1 0 0 :‘
0 cos8 ~sinb (0]
0 sinf cosf 0
0 0 o] 1

Rotation by 68 about the y axis, Ry:

el

RY = cosb 0 sinb (o}

0 1 4] 0

~sinf 0 cosf 0

0 0 0 1

Rotation by 6 about the z axis, Rz:

Rz = cos® -s5in® 0 O‘

s8inf cosB 0 0

0 0 1 0

4] 0 0 1

Now we are in a position to understand Roberts' program. Recognition is
achieved by selecting a model, and by applying a transformation matrix R which

will scale, rotate and translate it so that it matches a body in the scene.

P o e W

OBJECT “MODEL
The question to be solved is 'How is R calculated?'

Recollect that we encountered the matrix P which transforms object to image

co-ordinates:

If we can find & transformation H which transforms model points into
image points, we can calculate R as a concatenation of E and the inverse of
Pi,e. R = HP-I. Heving identified the object, its location can be specified
completely, except for its actual distance from the camera. This distance
is computed by assuming that the most downward facing surface of an object

must lie on the ground plane,

We turn now to consider how H is found. The question now is how does
the program select a model to account for the image data? Obviously, the
space of the three models, juxtaposed and transformed in all possible ways
and viewed from every direction is too large for a blind search. So instead
of generating all possible images of all possible objects until one matches
the input data, the search space must be intelligently structured. Roberts
uses the facts that despite transformation the topology of an object remains
invariant, and within a wide range of viewpoints the topology of the visible
aspect of an object does not change, to reduce the search space to models

viewed from a small number of typical viewpoints.

Let us consider the topology search in detail., It is based on the notion
of an "approved polygon" which is simply one of the shapes of the model surfaces.
For the three models used in the program, the set of possible polygons is
restricted to convex polygons of 3, 4 or 6 sides. Notice that eachvertex on
a cube has 3 quadrilaterals around it; each vertex on a wedge model has 2
quadrilaterals and 1 triangle around it, and each vertex on a prism model has
2 quadrilaterals and 1 hexagon around it, We can now identify the task of
the interpretation program as that of matching regions (polygons) in the picture

description with regions in the model description.

The first step is to select the appropriate regions from the scene
description since not all regions will be convex polygons (1) because of the
effects of occlusion of one object on another, and (2) the presence of compound
objects., To find the largest picture fragment corresponding to a model, the
program applies an ordered sequence of testsyeach one involving a smaller

fragment than the previous one until one succeeds.

Test 1. Find a picture point surrounded by three approved polygons. See
Figure 8a. (7 picture points required). Notice that this test corresponds

to Guzman's FORK rule.

Test 2. Find a line with an approved polygon on each side. See Figure 8b,
(6 picture points required). Notice that this test corresponds to Guzman's
ARROW rule.

r—
-

"

Test 3. Find an approved polygon with an extra line coming from one vertex.
See Pigure B8c. (5 picture points required).

Test 4., As a last resort, find a point with 3 lines coming from it. See
Figure 8d. (4 picture points required).

When a fragment has been identified the program searches the models in
sequence, cube followed by wedge folluwed by prism, to find a model point
surrounded by the same polygon structure as the fragment's image point.

Next, it constructs & list of topologically equivalent image-model point pairs;

it transforms the model fragment and calculates the mean square error of the

fit between model fragment and image fragment, using a threshold to eliminate
any model which matches the image topologically but would require deformation

to fit it. A model with a small error can now be completely transformed to
produce lines and points not part of the fitted area. These points are checked
against the image to make sure they do not fall outside the object's external
boundary. A fit confirms‘ the selection of the correct model and the correct=-

ness of the transformatiom, H.

4 1f some of the model-generated points fall outside the external boundary
of /the image, the wrong model has been selected and another must be tried.
1f, however, they fall within the boundary, but do not account for all the
image lines, the image is probably of a compound object. The points correspond-
ing to the model are then stripped from the image, and the remaining points

are. examined as hitherto,

In Figure 9, we see a typical compound object considered by Roberts. The
topology search finds no fragment from applying Step 1, but two from applying
Step 2, namely lines 2 and 3 have approved polygons on each side of them. The
cube has approved polygons on both sides of an edge so the geometry matcher
tries A and B as surfaces of a transformed cube as shown in Figure 10, but
discovers that the residual error of the least squares fit of the corresponding
object-model point pairs is too large and rejects it., Similarly for line 3.
The topology search then finds a fragment using Step 3, namely polygon A with
line 9 attached. The five points defined by that fragment match a transformed
cube exactly,as in (b). This is removed from the original image and the
process continues by finding the parts shown in (¢) and (d) with the final

compound object shown in (e).

This example also emphasises the importance of perspective, Without it,
lines 1, 2 and 3 would be parallel, as would lines 5 and 6, and 7 and 8. Under
these circumstances, the transformed cube would fit exactly as shown in Figure 10
with disastrous effects on the subsequent analysis. This imposes severe

demands on the accuracy of Roberts' line-finder system whose adequacy is

questionable, Just as with other systems we have looked at, it is relatively
easy to find counter—examples, Mackworth provides one, shown in Figure 11.
This object is simply a wedge on top of 8 cuboid, But it seems that whenever
topology teste succeed, the model suggested will not pass the geometric
transformation test, and so the program fails completely. Details are as

follows:

The topology test finds the two quadrilaterals flanking line 4 but if
one face of the cube is fitted to region A the rest of the cube will fall
outside the complete figure as shown in Figure 12(a). Next, it finds a polygon
with 2 line from one corner, and attempts to fit cubes or wedges. Again it
fails. In particular, Figure 12(b) shows a wedge that might be thought to
fit but it is incorrect as only rectangular wedges are allowed. Finally,
even withdrawing to the weakest test, a point with three lines coming from it,
will not succeed, Looking at lines 1, 2 and 3 of figure 12(c) we can see
that they are the three significant edges of a cube model that could be made
to fit but the program camnot find that context as it only looks for contexts

concentrated at vertices.

Before moving on, a few words of comparison between Guzman's and Roberts’

program might be useful,

1. Guzman's program would segment the scene called 'BRIDGE', shown in Figure

13, into 8 separate bodies, namely:

%ody 1 : (R24 RS R21 R27 R12 R25)
Body 2 : (R22 R26 R23)

Body 3 : (R17 R3 R20)

Body 4 : (Rl R2)

Body S : (R13 Rl4 R15)

Body 6 : (R19 R18 R16)

Body 7 : (R29 R28)

Body 8 : (R8 R11 RS R6 R4 R0 R7)

The question is how would Roberts' program cope with this scene? We

might expect it to arrive at the following conclusions:

(R24 R9 R21 R27 R12 R25) is instance of cube c¢f. Body 1 above
(R22 R23 R26) is instance of cube cf, Body 2 above
(R17 R3 R20) is instance of cube cf. Body 3 above
(Rl R2) is instance of wedgecf. Body 4 above
(R3 R4 R15) is instance of cube cf. Body 5 above
(R16 R18 R19) is instance of cube (or wedge) cf. Body 6 above
(R28 R29) is instance of cube (or wedge) cf. Body 7 above

So far, Roberts' program has made the same segmentation of the scene,
However, at this point its analysis differs. Guzman's "Body 8" is not
an instance of one of Roberts' prototypes. Instead Roberts' program would

decompose it into its primitive parts, as shown in Figure 14 yielding:

(R10 R32) is instance of cule cf. Body 8 above
{R33 R34) is instance of cube cf. Body 8 above
(R& R11) is instance of cube cf. Body 8 above
(R6 R5 R3l) is instance of cube cf. Body 8 above

.So Roberts' program finds three more components than Guzman's program, i.e.
it doesn't matter whether or not all the edge information is present in the
picture description, provided that the outer boundary is intact. 1In
contrast, Guzman's program is highly susceptible to missing/éggfrﬂg ormation,
The reason for this difference is that Roberts' prototypes carry with them
information about 3-D structure whereas Guzman's corner models are derived
from the 2-D appearance of a 3~D scene, and do not carry information about

3-D structure.

2. Notice that Roberts'first test, namely finding a point surrounded by
three approved polygons, corresponds to Guzman's FORK heuristic., Notice

also that his second test, namely find a line flanked by two approved polygonms,
is Guzman's ARROW rule. Finally, notice also Roberts' use of T-joints to

provide evidence of interposition of one body in front of another omne.

3. Although we discussed Guzman's program before dealing with Roberts'
program, in fact Roberts' progrzm was written about &4 years before Guzman's
program¢ Although it doesn't identify objects, it does identify all the
primitive component bodies, e.g. cubes, wedges and hexagonal prisms, and
can name them if required. Because of this, it is referred to as a

recognition program, and is cited by many as an important example of the

10

seeing paradigm which is based on the notion of a stimulus fragment invoking
a prototype model. But in reality, Roberts' program is another special
case segmentation program because it decomposes a Bcene into its constituent
bodies, i,e, blocks, wedges and prisms. It does not recognise objects

made from these components, such as arches, bridges, tables and so on.

References

Gibson, J.J. (1966) The Sensee Considered on Perceptual Systems.

Cornel Press,

Nevman, W.M. 8 Sproull, R.F. (1979) Principles of Interactive Computer
Graphice. McGraw Hill.

Roberts, L.G., (1965) Machine Perception of Three Dimensional Solids.
In Optical and Electro-optical Information Processing, Chapter 9,
M.I1.T.

Nevatia, R. (1982) Machine Perception.
New Jersey: Prentice Hall. Chapt. 3.

L

[&1 |

L4

[|

L=l

(1)

(2)

MODEL

TRANSFORMAT ION

— expanded along the

y = axis

expanded along 2
and rotated

-

OBJECT

_>C ‘;;

- —

- .

axis

rotated and stuck
—”".on to side of cubel

Figure 2

2 x1 cuboid

/

e — —

2 L beam

Figure 3

MebEL OF PICTURE TAXING PRecESS,

L | ——] [= b - L= ol - - [= ol = -

! 1 B3 3 ¢ =3 B3
uﬁ. _ =X]
& uv X NOILYIPOSSMy L, 3SYIMYI DHL I 'agy ‘o

NosAIg Y SIATAN L 33pus FYSNTI-NON S NOUVEYOISPMYYL SHL

z+d) z+}

0=z .ﬂu:.ﬂ dlﬂ.x

Ag ram) 51 (ZRX) Newwvswsy ub A iy ds d\ TOUWT 4L

NOIL>3L 0y THWYLNID y 9Indid

ol SIAg IVINIGO
L e i
I\ SNV
(x*Rix) A e TR >

vB v5
v {1’
| (0,040)
i el
: vé
< 7 vl
/’-‘-/
)C/
// woo T Tw
x
FiEEre 5
— h‘l"” = =
X, ¥, =z i ' v ’ '
1 71 71 1; X Y % h1
! ' ' 1 1
Xy ¥y 2z hy, X Y3 2 Wy
4 x 4
Transformation =
Matrix ' '
Xg Yg Zg h8 ! ¥ yé z hn
= deic I —
8 x4 B x4
matrix matrix
of of
original coordinates transformed coordinates
Figure'6
z z z
.*
y ! ¥
(P |
{
[
8
|
*h..____ __\\
x S

Fig&re 7

1. Find a vertex surrounded by

3 approved polygons.

2. Find a line with an approved

polygon on each side,

3. Find an approved polygon with
an extra line coming from one

vertex,

4., Find a vertex with 3 lines

coming from it,

b)

)

F
=

===
=l

p——
ba

(b)

(c)

(d)

Figure 9

Figure 10 -

m
L

(& |
Li

(& |

L

Figure 11

1
18]

-1

oL

r~"m

L

™

L)

Rae

Qs

Figure 14

K1

3

['§1 8

s

Riy

—y

DEPARTMENT OF ARTIFICIAL INTELLIGENCE
UNIVERSITY OF EDINBURGH

AI-2 JIM BOWE

Recognising 3-D objects

Although Roberts claimed that his program recognised objects, it seems
preferable to think of it as a model driven segmentation program since it
decomposes bodies into their constituent parts. But recognition of objects
also implies the existence of models of these objects which can be invoked,
and matched with a scene description to achieve recognition. The question
is what form might these models take, bearing in mind that they have to

represent object invariances?

Dealing with polyhedral objects first of all, consider a simple arch,
built from three blocks. We know that Roberts' program would recognise
three transformed cubes, but it would not "see" an arch. So how is an arch
defined? The answer is that an arch is defined in terms of the invariant

relationships between the constituent bodies. A convenient way of representing

scenes is to use a directed graph, where objects and object parts are rep-
resented by nodes, and relationships between parts are characterised by arcs

between nodes. In the blocks world, typical objects, and their properties,

include:
wedge brick small
cube object medium=-size
rectangle standing large
triangle lying

and typical types of relationships include:

one-part-is a~kind-of left=of
in-front-of group=-of right-of
has-property-of supported-by married=-to
abut

Let's apply this technique to the HOUSE scene shown in Figure 1(a).
Basically, it is just one wedge on top of one brick. Its graph description
is given in Figure 1(b). The top node represents the scene, while its
daughter nodes (A and B) represent the two parts. The arcs are labelled
ONE-PART-IS to denote the relationship between scene and parts. In turn,
each daughter node has its own daughter node which describes the type of part,
Part 'A' is a wedge and part 'B' is a brick: these are represented by the
relationship A-KIND-OF. Finally, there is one more relationship between

parts 'A' and 'B', the support relationship SUPPORTED-BY,

-

Let's turn now to the scene shown in Figure 2(a). 1Its graph structure
shown in Figure 2(b), differs in one respect: the absence of the SUPPORTED-BY
relationship. If we are prepared to see Figure 1(a) as a HOUSE, but reject
Figure 2(a) as a HOUSE, this suggests that the SUPPORTED-BY relationship between
the parts is an essential feature of a HOUSE. This can be captured in the
graph by modifying the SUPPORTED-BY description to a MUST-BE-SUPPORTED-BY
description, as shown in Figure 3. Again, if we wish to reject the scenes
shown in Figure 4 as examples of HOUSE, the A-KIND-OF description attached to
to the arcs from parts to part types must be altered to become a MUST=-BE-A-KIND-OF

degscription (Figure 5).
Construction of a pedestal model proceeds in much the same way (Figure 6):

i) the top object MUST-BE-A-KIND-OF brick
ii) the upper object MUST-NOT-MARRY the lower

The scene in Figure 7(a) forces the top object to be a brick while the scene in
Figure 7(b) forces the lower one to be a brick, too. Figure 7(c) forces

support and Figure 7(d) forbids the MARRYS relatiom.

The arch scene in Figure 8(a) introduces a wider variety of differences
and produces a more complex graph, as shown in Figure 9. The scene given in
Figure 8(b) indicates that the MARRY relationship is not necessary; the scene
in Figure 8(c) shows that the support relationships are crucial i,e. MUST-BE-
SUPPORTED pointers are required; by placing the standing bricks in contact,
scene 8{(d) highlights the key feature of an arch, namely, the space between the
supports, handled by the pointer MUST-NOT-MARRY, and finally scene 8(e) suggests
that anything in the class OBJECT will do for the top brick.

When a scene involves groups of objects, this feature is handled by
specifying relationships between typical members. Figure 10(a) shows a
composite column, Figure 10(b) introduces the MUST-MARRY pointer; Figure
10(c) relaxes the object type from BRICK; Figure 10(d) emphasises SUPPORTED-
BY by changing it to MUST~BE~SUPPORTED-BY; through Figure 10(e) the notion of a
group (a group implies at least three members) is emphasised by changing the
pointer on the arc to GROUP from ONE-PART-IS to ONE-PART-MUST-BE, and Figure
10(f) generalises the number of objects by introducing the node INTEGER and the
relationship NUMBER-OF-MEMBERS, allowing 2 column to have any number of objects

greater than 2,

Another example of the use of the GROUP node is the table shown in Figure

11(a), "Near miss" scenes are shown as Figures 11(b) to Figure 11(e).

What we have been looking at are examples of structural descriptions

generated by a program developed in the early 1970's by Pat Winston at M,I.T.

l1
kol

(%1 |

L)

L

B T e e T e

Each description was constructed by feeding the program with examples and near
misses. We can view his program as one méthod of building prototypes for use in

a visual recognition system.

Matching

We turn now tc lock at another problem, that of matching a structural
description of a scene with a stored structural description of prototype

objects to achieve recognition.

3ince structural descriptions can be viewed as graphs, our initial
inclination is to compare pairs of graphs (or subgraphs) either by
discovering that they are isomorphic or by generating a maximal clique of the
match graph. Unfortunately, both methods are computationally expensive. Also,
the graphs being compared may differ due to imperfect edge evidence, missing

parts, extra parts, distortion due toc scene perspective, and so on.

We turn, instead to consider methods based upon decision tree matching.
Decision trees are useful when it is known that certain features are more
reliably extracted than others, and that certain relations are easier to

establish or are more germane to the success of a match.

1. Matching structural descriptions

We begin by considering how Winston's program ‘'recognised' structural
descriptions derived from typical blocks world scenes containing single
objects. Basically, the program compares the unknown description with each
stored description (ordered by degree of similarity!}, and generates a set of
tdifference descriptions' to characterize the discrepancies. Recollect that
Winston's structural descriptions contain arcs such as MUST-NOT and MUST-BE
expressing forbidden or mandatory relations. If one of the these essential
relationships is violated, a match is not permitted. These outright rejections
are easy cases. In practise, the harder cases are those where the unknown
description matches more than one stored description. This is dealt with by
associating numerical values with elements in the descriptions and computing a

weighted sum of differences to express the degree of match in each case.

Scenes containing more than one object are harder to handle since evidence
may be missing from the input description due to occlusion. Winston's program

makes use of two heuristics:

1. Objects that seem to have been stacked and could be of the same type are

judged to be the same.

2. A match is not rejectec if an essential propertyv is missing from the input

description since its absence may be due to occlusion.

One result of the latter is that the program sometimes misses the best match in
favour of the first possible match.

2. Backtrack search

Next, we consider the approach taken by Nevatia 1in a program that
recognizes instances of biological shapes (horses, dolls, snakes etc!.
Prototypes are segmenteZ inte parts, each with & central axis and a cross
section. They also record information about the connectivity of the sub-parts,
and descriptions of the shape and joint type of the parts. The prototypes
{i.e. models) are generated by the machine by the same process that later

extracts descriptions of the image for recognition purposes.

The matching process is essentially a depth first tree search, with initial
choices being constrained by "distinguished pieces" of the image. Nevatia uses
the example of the doll, shown in Figure 12, to illustrate the process. In its
case, the head and trunk are the "distinguished pieces"™ because they are the
widest parts, Before the input description is matched to a prototype, a
connection graph of its pieces is formed, as shown in Figure 13, Due to noise

in the input data, two of the joints are missing.

On the basis of the distinguished pieces in the input instance, which match
those in the prototype, the program decides that the instance could be a doll
or a horse. Both possitilities are carefully evaluated. A schematic view of
the match between the input description and the doll prototype is shown as
Figure 14, The final choice between candidates takes account of both the
connectivity relations, and the quality of the matches between individual
pieces. When the input description was matched with the horse prototype, some
parts were missing from the input descripticn. However, this did not rule out
the horse since the missing part might have been hidden from the camera's view.
When compared with the doll prototype, the piece matching was superior so this

was the 'preferred' solution.

1

-4

™

The examples that we'have considered above both involved matching the input
description to the full set of prototypes. However, if the number of stored
models 1in memory is large, this approach is impractical. Instead, there is a
need for an invocation mechanism that will select a candidate subset of the
storecd models. Typically, object features, such as the connectivity of
distinguished components and their type (remember Robert's approach), are used
tc compute an index ({(cue) into the model database. Each stored model is
equippe¢ with an index. So, given an index computed from an object in the
image, a 1list of models with the same index is immediately available. Also,
several indices mav be computed for a single model, to ease the invocation
task. In practice, this invocation problem is harder than it might seem, and

is a subject for much needed research.
REFERENCES

Winston, P. (1975} Learning Structural Descriptions from Examples. In

Psvchology of Computer Vision. New York: McGraw-Hill.

Nevatia, R. {1974} Structured Descriptions of Complex Curved Objects for
Recognition and Visual Memery. AIM-250, Stanford AI Laboratory.

i

|

4

¥ .4 £ 9 t_9

HOUSE

ONE-PART-IS

ONE-PART-IS

MUST-BE-SUPPORTED-BY

MUST~BE-A=-
KIND-OF

PEDESTAL

ﬁﬁuml 2}

NEAR MISS NEAR MISS

>

1%
’:nyue } (o) | st{ }HS)
NEAR MISS NEAR MISS

| =

ﬁjw 16) Fywe }0)

CoLUMN NEAQR MISS
~l]
~]—"
L
%M 10 (a) ’i-:{su.,e_ o (la)
COoLUMN NEAR MISS
\/
~L —
\/
\:‘lju_.q to ©) \:_SM 1o(d\)
NEAR MISS COLUMN
<>
]
~d—
N
~L—
%M \0 Cﬁ) %m o)

- - - — pr— — = —— ey ’
J o - e 3 i >

[

F’\'j“* 1 @)

NEAR MisS NEAR MISS
P
& 1)

ij.g Q&) f-':jw-e n)
NEAR MISS NERR MISS

7 0
1 0L/
szuw. tHdl) Q_SM n Ge)

)

== TN

\
|
Fig. I l A view of a doli. with derived structure,
A
H LL - Ll &
/ ¥
A \

Fiaure 13 CondecTionN
GrAPH oF Dorr .

1

—_— — r——y — m— ey

pr— e e peasmeey

{same as .
leftmost - N
path} \

——

gk SN

{extra input

piece matches

unmatched

reference arm)

%
A< ®0:0 @O:
& A |

~
.

=~
L . 2
o ‘ }:’;
® 2
, , 3 A ° (no matches
2 23 1 now for
- > 1

instance leg)

be:

{leg matched {head (4}: leg (4')
despite match very poor}
shadows)
@) «
6

{both branches lead
to correct match)

Fig. | L}. A pictorial guide 1o the combinations tried by the matcher establishing the best
correspondence of the doll input with the doll reference. The graphic shapes are purely
pedagogical: the program deals with symbolic connectivity information and geometric meas-
urements. Inferences and discoveries made by the program while matching are given in the
diagram. A:B means that structure A is matched with strpcture B, with the numbered sub-
structures of A matching their primed counterparts in B. (J Bc\uw 3 8.—“,..,,«)

fagx

