\relax

AI2 CLASS NOTES: PLANNING
BY MIKE USHCOLD

These notes are very sketchy. consisting primarily of transcriptions of the
actual slides which I used in the ifdectures. Where these are particularly
cryptic, I include additional eXplanation and references which treat the
subjects usually from a somewhat different point of view.

The main references which treat planning are these:

- Charniak and McDermott;
o Means Ends Analysis: pp 300-306
. Planning in General, including|STRIPS: Ch, 9 4£85-527

- Nillson 80; Principles of AIl;
Chapters 7&8 pp 275-360

- Cohen & Feigenbaum; The Handbook of AI, Volume 3;
Chapter XV 515-562 i

- Rich; Artificial Intelligence; ;
Chapter 8 pp 247-277 :

SLIDE 1
'REVIEW,
. Representation - Logic z
Solving Problems ;
* state space f
* problem reductien

x search DFS$: BFS : 'A, A*
GAMES

FLANNING

T, i - R R R R R R R I R I TN IR B,

'SLIDE 2

PLANNING ve EXECUTION

* PUZZLES & GAMES
No real difference E
* “REAL WORLD"

Plans often fail

] 1 1 1 | 1
1 I I 1 | i
j o Yo : : i
! (REJPLAN | i PROJECT ; |-=-~~- Y1 EXECUTE i
| [(mmee u | o
i |] r i 1 I
] | I 1 1 i
. PROJECTION: Predicting What A System Will Do..

[See C&D 485-489% for funther_clarification of this diagran]

SLIDE 4

PLAN REPRESENTATION

]

Serial: Linear sequence of actions (operators)
[state space representations have serial plans]

Parallel: Some actions may to - occur

Partially ordered: Some order constraint

< @ -
m o

__move(8,C) : moveEA,B]

[] , ; [] :
move (D,E) : / Init - ~ Goal

o ;
it doesn’t matter in which order I hake the two stacks. But, the manner in
vhich I make the ABC stack does matter. We say this is partially ordered.

Serial plans are fully ordered. ;

PLAN CONSTRUCTION '

- SEARCH : State space, other methods

- PROJECTION : Interacting subgoéls

When plans are being constructed, wé nust have a way to test whether they will
work. One thing to test is for problematic interactions of suboals. The
achieving of cne goal may cause another to be undone. We will see examples of

~ this later. b
PLAN EXECUTION : Failure & Reqoverﬁ

This phase of planning is largely ﬁnexplored, although people are now starting
to tackle these problems in earnest. . -

3 -SR-S R P B R R S =

SLIDE §

. $TR1PS

J/‘-ywﬂ-

This was the first really significaht planning project. [The best thing to
read on Strips is to be found ih the AIl Problem $Solving Notes which can be
found in the library. Since it is s0 good, I neglect to elaborate on these
siides.] i

H

KEY POINTS

* State space search

* Means - End Analysis: A new search heuristic

. ¥ Operators

* Rich plan representation
% Controlled a real robot ("Shakey")

¥ Lasting impact: Many concepts originating with this project
have and still are influencing much planning
work. In particular, the notion of a STRIPS
operator is fundamentally important.

o n hm e e o md fm d hd r ar lw mr mr T e e b it e s e e e e A e
ol il e e = === =R —

" SLIDE 6 .

SHAKEYEtEQ_robot’s WORLD

H
)

— —
et

BT e |

O
oF ——
L]
ot

P~

ITI

connects(rooml,room2,door I}
inroom(boxa,room2)
inroom(robot,rooml)

connects(Ra,Rb,Da) .is identical to connects(Rb,Ra,Da)

i
TYPICAL TASKS

* Go to roomé :

. * Push Box B to room 1
* Block doorway II

ACTIONS | ;

* go{X,Y) L

* push{B,X,Y)

ot i et et o o i e e e e e e e W

SLIDE 7
STATE! SPACE SEARCH

init state: { at(robot,1-Nu)}
/ \ f
/ \ 5
go(1-NW, 1-SW) go(1-NW,;2 = 5]
/ \

/ \ ‘ ,
/ cae .
push(A,roonl)

I\

Problem -- Explosive search space, No obvious evaluation function.

——

Splution -- New search strategy: Means ends apalysis

SLIDE 7.5

MEANS - ENDS ANALYSTS

Means operators
{actions)

Ends : problems, goals

Analysis : compare current state with goal state to
determine a set of Differences.

Find the MEANS to reduce ;these differences

__,.,,,,,___,__._.___,___._,_..__,,_.__,_,_______H___.,_____._,,,___..__._._._,_._____..__,_.___._
......._,_._-_...._,_._”..,.._._.,..._...___,.....,.._........___......_...__._...m.-_...‘..___.__..—-..-........___

operator

preconditions

delete 1ist:

add list:

ISLIDE 8

STRIPS QPERATORS

name(variables)
{schema)

what must hold for
the operator to Dbe applicagble

what no longer holds
after operator isiapplied

L
i
1 .
[
] effects
: %
what becomes true: i
I
I

EmEE S EEES, e

SLIDE 9
" EXAMPLES
operator preconditions ,delete add
*- t X | |
Logo(X,Y) ! at(robot;X] i at{robot,X) | at(robot,Y)
i ! [1 1
I ! LI t 1
i i . : !
! push(B,X,Y) | at(robot,X) | at(robot,X) | at(robot,Y) |
I i at(B,X) ! at(B,X) 'oat(B,Y) !
Initizl state
ib : ¢! atlrobot,a)
. I Bl . B2z | at(Bi,b)
I) ' b at(B2,c}
] | at(B3,d)
| robot ! B3 |
18 d:
apply operator : gola,c)
Next state
1o ¢! ati{robot,c)
1 Bl : B2 | at(Bi,b)
d : .+ robot } at(B2,c]
% i at(B3,d)
! i B3 |
1@ N di

19
" SLIDE 10

MEANS iMQ_AkALYSI§= Control Strategy

0. Goal Stack (~-- Go [Main Goal]
i. Select Subgoal From Stack g

IF Subgoal Holds In Current State
i
Then IF Goal is main Goal, STOP
Else Apply operator whose
preconditions was

just satisfied,

60TO 1.
ELSE Note differences. ; 6070 2.

... Select An operator which will I“eCILECF.‘ the difference.

3. Place operator preconditions on Gaal Stack @ GOTO 1

T IS RN RS R R RN NN N N T R N T R SRR R R ECT OISR EEERRINERERERERRE

SLIDE 11

EXAMPLE

INITIAL STATE: I
at(robot,a)]
at{Box1,b) I -
at(Box2,c) Co ! robot (13
at(Box3,d) : i
1
1

GOAL STATE :
at (robot,¢)
at(Boxi,c)

I X [11 [12
at(Box2,c) i |

robot [13

at(Box3,c)

OPERATORS :
go(X,Y) : Go from X to Y
pushfB,X,Y): Push box "B" froq X to Y

RN NN NSNS NSNS E NSNS NS ERESSSSSSCEESESREEISSSESSRESSISR
==== R S S NS CEECEEZNERDZEZEESERIZE=ECSE

(SLIDE 12
H
ib. c. ! ib. P c. |
D! {12 1 ; {11 1z |
I } ! robot [}13 |
1 L S b “ |
i ! L X . !
| robot 13 i : 1
la d. | 1a d.!
g I i E
S0 / i \ 60
{ I _ \ Differences
/ | O N ittt
/ { \ * at(bl,c)
/ s0, {Ga,Go} ' at (b3, c)
80 , {61,660} : ' at(robot,c)
1 : .
|
' Relevant Operator
|
L cceecucsasssse——a-
. ! push(bi,?X,c)
[
3 r
s¢ , {62,61,60} , i praconditions
]
i L e EEEEmm———— - —
i apply go(a,b) j 6t { at(bi,?X)
H : { at{robot,?X)
! ' ?2X = b
{61,562} E .
; ; Differences
i apply push(bl,b,c} = | meemee e~
| : * at{robot,b)
{60} }
Relevant Operator
go (2%, 2Y)
Preconditions
. : 62 {at(robot,?X)
: 72X = &

EEEmmE S EESESS oSS oSNNS oSNNS EEsmEs ST SIS ESIEISECSS
gl = = =R =i PR R g g

‘SLIDE 13

MEANS 'ENDS ANALYSIS

- Forward State Space search éfwith packtracking) [You find out what

aperator to apply by trying to .make something in the goal state

true

SEXERCISE 1: How do these heuristics relate to best first search using a

(ie by reducing a difference). The opsrator which can directly be
used to reduce the differenc may not be applicable, so you set up the
preconditions of the operator which you would like to apply as new
differences (subgoals) to be reduced. This is essentially backward

chaining. BUT, when vyou finally find an operator which can be
applied 1n the current state, wou apply it forwards from the current
(perhaps initial) state. You then start over and look for more

differences to reduce. This {'s different from starting with the goal
state and working backwards till you get to the initial state. The

‘difference is that using means-ends analysis, vyou are looking to

reduce a single difference ahd back chain till you find an operator

which is applicable in the current state. Backwards search means.

apply the operators in reverse from a complete goal "state” wait till
the the initial state is reached. At any time, MEA considers cnly
one of many possible conditions which must hold in the goal state (a
difference). 1IN both cases, if you reach a dead end which is not the
state you are trying to reach and no more operators apply, vyou
backtrack to the last state where there was 2 choice of which
operator to apply and continue:searching]

Goal directed Heuyristic {NBE It is NOT & heuristic evaluation
function] Can plan ahead to " use an operator before its actually

gpplicable. :

- Other Heuristics ;

P

* Which Difference to reduce?
Do hardest things first |

* [The intuition: You .eventually have to reduce all the
differences. You could waste a lot of time reducing all the
easy ohes (which by defirition are more likely to be reducible,
only to have to backtrack when it turns out to be impossible to
reduce the hard one. S0, it is better to try to reduce the
harderones first so that ‘if it fails less time is spent chasing
down aqﬁunsuccessful soluﬁion pathl.

* Which operator to apply? -
- The one which reduces most differences. -or-

- The "easiest one" ;
[

kheuristic evaluation function? What exactly are the functions?

ANSWER 1 This is not thest easy, but have fun thrashing around with
kissues, ;

This helps to:

i32

- Find better plans [eg. Sel@cting the op which reduces the most
differences is likely to result in shorter plans. if there’s more
than one way to achieve something, and you pick the easiepr way, then
your plan will involve less work overall.]

- Find plans quickly [Doing hardegt things first often results in less

backtracking]l
SLIDE 14
PRACTEICAL ISSUES
World Model : batabase of éredicates calculus assertions.

- 1

[Eg. attrob%t,c], at(box2,d) etec. 1

Test Subgoals : Automatic Théorem Frover "QA3"

i

-

Finding Differences : Side effect of QA3.
------------------- . What is needed to complete
or continue proof.

Computation Time : Tens of Minutes

e e o e o g o o et e = o Em T

with:

14

'SLIDE 1

PROBLEMS MEANS ENDS ANALYSIS
Initial ¢ A | Goal state
A B =====) B :
wwwww C !
[op3 \ op2 ! Differences
\ I
/ \ ¢ ! * on(A,B)
CAB A B ; on(8,C)
——————————]
lopl ' : Select Operator
] 1
1 I . mEmEmEEmEmmEEEe
i opl move(A,table,B)
A |
. c B New Subgoals
ioph Now, try to satisy | -=) ¢lr(A) (--
] on(B,C) | clr(B)
H i on(A,table)
CAB
lopb 5 Select Operator
I i
I S TEEEmEEEE e
: op2 move(C,A,B)
B op3 movel(,A,table)
C A -
NB : This is a condensed searoh space. I only include world states. The
actual space which is searched has several nodes which correspond to the sanme
world state, but differ in the goal stack. Ie, from the initial world state,
there would be a different node for each -different subgoal The different

subgoals correspond to different‘chdices of which differences to reduce.

This is producing an obviously silly,

H -

plan, which nevertheless does uwork.

15
SLIDE 2

REGISTER SWAPPING

Initial state R1 = 10 RL = 20 Goal State
R2 = 20 ====) R2 = 10
R3 = 2 R3 = ?
/ \
fopl \op2
Y Differences
R1 = 20 RL = 10 emm—eemeee-
R2 = 20 R2 = 10 x R1 = 20

—

assign(R1,R2,10,20)

® [R1 (-~ r2]

In this case, MEA cannot pruduce a working plan. By blindly attempting to
reduce differences and choosing operators which will reduce them, it has ruined
all possibilities of being able to solve the problem.

T T
P 1 i e e e

'SLIDE 3

BUT i

* sipple depth first search works fine!

¥ MEA Works best when operators do hot reintroduce
. differences already reduced. |

* Interferance Among operators.
One operator’s delete list is part of another operators

precondition or add list.

* MEA is "too eager", doesn’t plan far enough ahead.
|
* Finds suboptimal solutions.
* Misses solution entirely!! {shrunken search space)

v e e
== === EECEECSCSEECSEIOERESEEZEERRERE=Esss-

T 1 A 1 - L e e e

PP S WAV U WL WU PHNNY WL SU SR CI I PO N P ST ¢ [UL S ¥ G SR R, T G S S W ——
16

SLIDE 4

Interacting Subgoals

/ \

on{a,b) on(b,c)

“Linearity Assumption': Subgoals are independant, and thus can he sequentially
achieved in some order. i

.

Embodied In MEA: To reduce a set of differences {A,B,...}, remove them one by
~ one. MEA makes this assumption, and that’s why it can get into trouble as we

.‘*lave seen, i

__.__._..«...-___._muuu—-__—;-.._-._-;mhu————=_HHA«———::.A—un-——:_.—ﬂ,_.u——

17

SLIDE 5

Approaches T Coping With Interacting Subgoals

Protection Violation

Once a goal is achieved, it should He protected. We say that there is a
protection violation if such a goal 1is undone by a later action. Planners must

both detect and correct such violatﬁons. Detection involves some form of
bookkeeping. We will consider two approaches ¢to correcting protection

violations.

"

¥ Try Goal Reordering. [Only 10 goal? gives 3 million possibilities]

Even for small problems, trying all orderings is infeasible.

.* Try Interleaving Subgoals.

o !

ab Begin work on on(a,b) ¢lr(a)
i

cab Next : achieve : on(b,c)’

'''' |

b 5

F R P T T - T T T T T 3

[
;18

SLIDE 6

SubGoél Promotion

* Use MEA to start.
* Protect achieved subgoaLsJ
* petect Violations - Note @ffending subgoal

* Promote subgoal to beginning of goal stack
(If reordering fails) :

* gtart over again

Problem : Throws away too much work already done

e e e o e e e T e e e e R M M M R M A RS S S A e e e o = T T S T D DO IEEESRER
T T Tt 1 T 1 1 e b e el

P19

'SLIDE 7

|
EXAMPLE : Subgoal Promotion

Goals Opertaors |

|
-------------- ; c
on(b,c) move (b, table,c) | a b

i

. |

: Vi

! b

| c

! a
on(a,b) ? ‘ '

\i/ .

-

4.' i abc

Violation! The offending subgoal which caused on(b,c) to be undone is "clr(a)’
which 1is a precondition for movingi“a" on to "b". We now promote this subgoal

and start all over:

clr(a) move(c,a,b) i c
Z ' b
on(b,c) move[b,table,c]! ab ¢
on(a,b) move(a,table,b)! a
{ b
G

This method works fine for some examples. However, if much work was done in
solving the problem before the first violation was detected, then it is all for
nought. So this method is too inef?icient in general.

......___...._.___..,...___._._____,_...___....._._.._........_-'_._..,...___.‘....._....__..,..___..,.....__.......
= T Tt o e e e ke

SIS ECSESECSEEERE==S=Es=

R wm a i e e

20

SLIDE 8
|

6OAL! REGRESSION

plan built so far to find an

Move the offending subgoal back throhgh the
acceptable place for it.

We regress a goal through an operator by answering the question
What must be true before the operator is performed to ensure that the GOAL is

true after the operator is applied?
|

1f we can answer this, then we can ehsure that achieved, goals are not later

violated.

i
_,.___.._____,...__._..__.._.._._._.._.__._.,__,_.._..,.......__..__....__._
EEEEZESCDEZESZSEISEERESssEEssREasss

SLIDE 9
|

EXAMPLES: [6oal Regression.
GOAL OPERATOR i REGRESSION
on(a,b) move[c,a,tablé] onfa,b)
onfa,b) nove(a,c,b) True
on(a,b) move(c,b,a) ! False
have ($100) puy(radio) have($100 + price(radio))

. V= a assign(X,Y,a,b) Vv=a & V\=X
B: ¥ =a, Y zl b
X (=Y |

>

N

>

I

o

<
S | S

The answers true and false may seeﬁ odd. What condition must be true before we

move a from ¢ to b in order to ensuﬁe that on(a,b) is true after we make the

move? Since this operator itself adds on(a,b) to the world model, there are no

requirements for what mnust be true beforehand to guarantee the desired

condition holds afterwords. Literally, we would say that the requirement is
|

21

that "true must be true, But this i# always the case, thus a vacuous condition

$imilarly, the literal interpretation of the third example is that false
must be true in order for onf(a,b) to be true after we move ¢ from b to a.
Clearly, there are no circumstances where on(a,b) can hold immediately after

moving ¢ onto a; so it is impossiblel

be true!

Likewise, it is impossible for false to

O W W L W s — s

|22

SLIDE 10

EXAMPLE: Goal Regression

Goal Stack (w/ ops) ! /\ I
__________ ! :
! St
* move(c,a,table) LUl iE
cir(a) ! Bi |
! Gl '
* move(a,table,b) | Of H
' I
. 1
: Li
. on(a,b) (protected) | S IS
—————————————————————— ———— i
. on(b,c)
t**I(ﬂi'l-!*tt***!t***ltt*ltl’xtﬁtt**it !

* move(a,b,?Z) :
clr(b) ;

i

i

* move(b,table,c)

+ on(b.c) * VIOLATION ==> , REGRESS

What must be true before applyirj.g move(a,table,b) to ensure on(

after its applied.

e s i S P e s B P oy e b i s et S S T S O SR ST I -
T L L e T e e ——

b,c) is true

e e S i T T e Sk Pt S e = S = T LT
e L e = —

23

'SLIDE 12

i
EXAMPLE:! Register Suap

X =1
Y = 2
i | X = 2
! assign(U,V,a,b) : ! ! Y = 1
1 assign value of variable V (which is b) !
! to variable U (whose value is a) :
! | 1
i
!
If you find the goal regression heavy going, take heart. There are detalled

explanations with examples to be|found both in Nillson’s "Principles of A"
(pp288-292; 321-333), and in Rich’s fArtificial Intelligence’ introductory text

.pp 267-271). The slides abouei are not meant to be understood without
accompanying explanation.

e e S
24

SLIDE 14

SEARCH SPACES

States Operators

0f the world Transform the world state
Partial Plans Reduce Goals to Subgoals
(Goal Stack) Rearrange goal Ordering

x*x*x:x**xﬁc****x%****94!_:***xx:zi*ix*x:xxxxxx*x*xz

How to find out about world states?
A: Look it up

. B: Analyse Plan i

For an extended discussion of this dfstinction, see the .second planning and
search practical. This was the one thoh did the block stacking.

PLAN REPRESENTATION

Until now, we have been doing state space search to get our plans. The plans
themselves are represented as paths #hrough a space of nodes each representing
world states. Explicit information about the states of the world are kept
around. The state of the world was pecorded in an explicit data structure.

Recall the missionaries and cannibal$ program.
i

91 alternate representation for p}ans is to store a list of actions, and the
order in which they must occur. So far, we have only considered serial plans,
where each action must occur in sedquence, one after the other. MNone may occur
in parallel. MWe say that serial plans are fully ordered. Alternatively, we
can have partially ordered plans, where the ordering of some actions is not
prespecified. Consider the following example:

i

-~} move(B,C)==) move(A,Bb——)
; \ A BCDE ==
| (]
/

™
el e

--} move (D,E) —wwwwwfw——i——) Init Goal
I
|

For state space plans, our nodes were world states and arcs were actions. in
our new formalism, the nodes aré actions and the arcs specify ordering
constraints., This type of represent#ion-is called a procedural net and was
first used by Sacerdoti in a famous planner called NOAH.

In the example, we must put B on C before putting A on B, but it doesn’t matter
when we put D on E. This plan is non 'deterministic. This means that there are
possibly many ways to execute iﬁ. We therefore have & more concise
representaion formalism which can represent many possible plan instances. For
example, consider the following simpﬁe procedural net containing three actions:

[====) [A] ====)\
/ _ \
[]-====) [B] ===-) []

|

i

|

o
\mmee) [C] =mm)/ |

|

There are 6 possible serial plans represeﬂted in this concise format. They are
ABC, CBA, CAB, ete. !

Constructiong procedural nets is somgwhat different than using state space

search for c¢reating plans. Consider the following simple example of a plan
partially constructed. |

Get in Check Start
car Mirror Driving |
[A)----- > [B) ----=) [c]

[
|
I
|
i
|
|
t
|
|
|
|

Qwish to add another action to the »plan, namely that of fastening the
seatbelt [D). The constraint is ﬂhat it must come after [A] but before [C].
Using state space search to construct serial plans would be force a choice
between either ADBC or ABDC. If we use the procedural net, we can avoid making
this choice and represent the plans gs:

[====) [B] ====)\

/ \ i
[A) [c]
\ /

\mmmm) [D] ===}/

This is apvantageous because later in|the planning process, one or the other of
the choices may be forced due to other considerations not being taken into

account in the early stages of plan donstruction., Postponing commitments as
long as possible c¢an reduce the | amount of backtracking necessary. This
approach to plan construction is known as least commitment planning. Petailed

examples may be found in [Cohen and Feigenbaun, 541-550) and [Rich, p271-276].
' |
Note the difference in how we create plans. MWe are searching through a space
of alternatives, however the nodes /in this space are different sorts of
animals. Till now, the nodes havq been world states, and the operators have
been primitive actions which can traqsfohm world states to other world states.
Search stops when a state is reacﬁed which satisfies the c¢criteria for a goal
state. i

|
|
When constructing procedural nets, the nodes in our search space are actually

partial plans. We no longer k%ep track of explicit world states. The
operators in this new search space came in three flavors:

- Reduce goals to subgoals {

i
- Impose orderings on previously ﬂnordered goals
~ Add new actions l

|
|
|
The advantages to this approach are: |

|
- Saves space, world states can bé very large.
!

- Can modify the plan anywhere, not just by adding actions at the end

- Least commitment planning possiqle (for parallel plans)

.e disaauantages are: '
| |
- It is difficult to see what is ﬁrue in the world. When we have a
copy of the world state, we Jjyst look at it. If we do not have it,
we nmust inspect the plan to makq sure it will work. This entails
. |
* Detect interactiing subgoags (ie protection violations) .
|
* Detect solutions (ie is the plan guaranteed to work?)
|
* Determine where new actiond can be inserted. This involves
seeing what conditions Hold in the world at some point in the

B T W0 A T RN H S O SO PSS £ St s e

127

plan.

Projection is the term used for fﬂnding out about these things. More
discussion may be found in the blgcks world practical, and in [Charniak and
McDermott] (pp485-489; 514). i

|

SUMMARY FOR PLANNING

|
|
o
- State Space Search: Finds plans \possibly using heuristic evaluation

. " P . .
functions to aid search. [Eg missionaries and cannibals]

|
- Means Ends Analysis: STRIPS, |Shakey the robot. This is a goal
directed heuristic used in the context of state space search. It

allows a linmited form of planning ahead.
|

- Interacting Subgoals: STRIPS uaséstumped. Two approaches to handling

. this are:

* Subgoal Promotion

|
|
|
|
|
!
i

* Goal Regression

|

- Plan Representation: Serial/Parallel; Procedural Nets; Least
commitment planning

-~ Plan Construction: Alternate search spaces

* Yorld States (State Space) |

* Partial Plans (Problem Reduction)

PREBREM SOLVING AND SEARCH
!

******************x***:k:tx*x*:k**;Hc***s::txkx**xx_x%x*x*:t*xxxx;txxxxxxx)
\.B. Sections 1-3 have been rewritten and incorporated into chapters
1 and 2 of the notes which are available from Margaret Pithie. This
section pertains primarily with the iss%e of search.

Mike Uschold 23 Feb 1987 |

kkkx**xk****xk************‘k*‘k**k*****ktkk*i*i‘k**k********x’(**

4. Search Strategies

|

|
4.1. Introduction !
We have seen a number of problems* and discussed various issues involved in
fimding good approaches for solving then. Even after the appropriate
r“esentation is found, the actual prioblem still needs to be solved. With the
framework in place, we know how to recagnise solutions and we have the machinery
needed to go about looking for thenm. The final question remains: how to
organise this search for a solution? {n this section, we will formalise some of

the discussion in section 1.

Using search for solving problems is altwo step process:

1. Find a search space (ie, choose representation)

SR, T—

2. Search it

We will present the basic search strat%gies in the context of searching the pure

or-trees of the state space representation. In section 5 we will discuss their
application to searching the goal (ie.iand/or) trees of problem reduction.

i
|
We will discuss three basic approaohesito search:
1. Generate & test
|
|
|

2, Uninformed

-~ Depth First Search

- Breadth First Search il

3. Informed (heuristic)

- Irrevokable

- Revokable

4.2. Generate & Test
|

This is a very general method which suﬁsumes the others. The basic algorithm is
outlined below:

1. Generate a possible solution

9. Test to see if it is a solﬁtion

. Yes : Stop

No : Go To 1

|
|
|

The key to this algorithm is the generator. There are three types:
|
|

- Random - No solution guaranted
- Systematic - Solution guaranted to be found if one exists

- Heuristic - Will find solution qu%ckly. (We hope)

We have seen examples of each of these in our discussion of the 8-queens problen
in section 2.2. We informally referred to these approaches as trial and error,

brute force and intelligent. The so called intelligent generators can be a bit
too clever and miss solutions. As such, they may or may not be systematic.

4.3. Uninformed Systematic Search Strafegies

There are two of these:

- Depth First Search - Explore

a path as far as possible before
considering alternatives :

considering any of lengh N + 1.

¢ found in figure 4-1.

|

|
- Breadth First Search - Exploﬁe all paths of length N before

I

The algorithm for depth first search i

|

I

I

1

26

1. Put root node on LIST
2. REPEAT: IF LIST empty
then : FAILED i
ELSE : X (- 1’st Item oh LIST
IF X = GOAL STATE
then : SUCCEED |
ELSE : REMOVE X

ADD SUCCESSORS to Front of LIST
|

i
Figure 4-1: pepth First Search

The algorithm for breadth first searth is exactly the same except for the last
line. 1Instead of adding the successor% to the front of the 1ist, they are added
t the end. For those who are familiar with common data structures in computer
‘nce, the LIST in breadth first search is a gueue (first in first out) and
for depth first search, it is a stack [last in first out). Figure 4-2 indicates

the order in which nodes are visited for thede two strategies.)

N1 Depth First
/ | \ |
/ E \ '
N2 N7 N3
/I \ ' [\ \
/ \ / \ \
N3 N6 N9 NiOD N13
[\ [\ |
/\ [\ |
N4 N5 N1t N12 i
|
|
|
N1 Breadth First
@ T |
/ | \ I
N2 N3 NG !
[\ /A \ !
/ \ / \ \ ‘
N5 N6 N7 N8 NS
/\ /\ }
I\ [\ |
N1O N1l NiZ2 N13
|
|
Figure 4-2: Systematic Search Strategies
' |
_ |
It is useful to compare these strategi%s and discuss any criteria which one
|
|
|
|
|

27

|

|
might wuse in deciding which 1is m&ré appropriate for a particualar problenm.
Depth first search is more efficient 0# both time and space. It turns out that
a stack requires less ccmputetiona} effort than a dqueue, The storage
requirements for breadth first search are considerably greater. I leave this as
an excercise to show.

Depth first search, however, may nevef find a solution. This can happen if the
depth of the search tree is infinite. | For these cases, a depth cutoff is
required. This simply says that if thg.algorithm gets to a certain depth in the
tree, then stop exploring that node anﬁ continue as if there were no successors.
When a cutoff is wused, is is clearly possible to miss the solution. Breadth
first search does not suffer from this|problem. It will always find a solution
if one exists at some finite depth.| If the solution path is long, however,it
can get considerably bogged down by te'ting every possible node which is of that
length or less. Suppose the solution;in figure 4-2 is the second from the left
oamthe bottom row. It is the 5th nodeLexamined by depth first search, but the
‘\ ohe tested using breadth first. 0. the other hand for short solution paths,
depth first can get bogged down. Consider the node one the far right in the
second row. Bfs finds it in four trie%, where dfs takes eight. '

Overall, the benefits of depth first Learch tend to outweigh the disadvantages.
A depth cutoff can be avoided only if the search space is finite, or if there is
a fairly high density of solutions. ptherwise, you will have to risk missing a
solution or use breadth first search.

EXERCISE - Manually execute the algorithms for depth first and breadth first
search on the exanmple 1in figure 4*?. What is the most number of elements on
LIST for each strategy? What are the exact contents of the lists in each case.
(In the case of a tie, use the first o%currence.) What is the average number of
elements in LIST for each strategy. i ’
|
|

4 Informed Heuristic Search
| .

For interesting problems, search spaces are too big. There are simply too many

possibilities to check all of them, rendering the uninformed brute force

techniques inadequate. We need a more|; informed search strategy. The study of

heuristics is the study of finding ways to make intelligent choices during

problem solving thereby reducing the amount of search. The word heuristicis
somewhat loosely wused in AI circles} A good synopsis is found in [--- 84] (p

vii): |
|
heuristics [are] popularly known as rules of thumb, educated
guesses, intuitive judgements, or!simply common sense. In more precise
terms, heuristics stand for strategies using readily accessible though
loosely applicable information tﬁ control problem-solving processes in
hunan beings and machine[s].

e e e e

This is the general use of the word. Alternatively, a heuristic is often used
to refer to an explicit evaluation function which is used to assess the goodness
of a choice (to be made during oroblem 'solving) by assigning a number. I will
first introduce three very deneral heuristics, two of which have seen already.
After that, we will see how to use specific heuristic evaluation functions for
solving state-space search problemsJ It is important to be aware of the
different uses of the word. It will gﬁnerally be clear from context which use
applies. ' '

Three general heuristics:

| .

- Consider the 8-queens problem. I!said it was & good idea to keep your
options open. If there is choice between several operators to. apply,
each taking you to a different state, choose the one which will offer

the most possibilities for future moves. There are a number of ways

. to use this general heuristic fdér different problems or even for the
same problem. We used it as a guideline for creating the specific

evaluation function: The number Qi free spaces on the board (See 7).
| .
- Consider the process of testing to see if an operator applies, it may

be the case that many conditions nust hold. We must decide which
preconditions to test first? A general heuristic to use here is to
test the condition most wunlikely| to hold first. Since all the

conditions must hold, you can stop as soon as any one fails. It would
be a waste of effort testing many|conditions which were found to hold
only to get to the last one and discover that it does not.

- A final exanmple of a general heur#stic is to reason backwards from the
i 4 '
goal state instead of the othet way around . This was discussed in
the context of the monkey and bananas problem. The rationale behind
this heuristic is that there are|often many possible actions from the
initial state, and choosing which{one is likely fo lead to & solution
is difficult. When going backwards, everything you do is relevant to
. the goal state, since you are esenhtially undoing actions which can get
you there. An example of wher? this works particularly well is for
most maze problems that one finds| printed in books or magazines etc.
There are manhy false paths and dead ends when going forwards. But, in
going backwards, there are usuall@ fewer. Note that this is not
inherent in the problem of mazes.. They could as easily be constructed
whth many false paths going backw?rds. In my own personal experience,
they just usually aren’t.

4 ' ‘
Some people be unhappy with this use of the word heuristic, but in my
opinion, it seems to fall under the definition above.

PP U RS TN WS TR VWU W TRUNTU: | WO LU VN /LI LA VR (R i T pm———— S
i .

29

!

|
It is ecrucial to understand the tentative nature of heuristics. They are only
guidelines and can’t be assumed to work in every situation. There are times
when keeping your options open in the short term may a poor strategy. There may
be no way to a priori determine which donditions are "harder’ to satisfy. There
are times when reasoning forwards is the better idea. The frustrating thing is
that it is difficult to know beforehand just how good a heuristic is.

Heuristic Evaluation Functions y

A heuristic evaluation function is a pnocedure which assign numbers to choices
for the purpose of determining what ﬁhe best choice is. Typically, the choice
is among operators to apply, or equivalently, which state to visit next. In the
8-queens problem, an operator is placing a queen in a square, the state is the
board position. In most cases, heurisﬁic evaluation functions assess the state
pectly. There are two common inteﬁpﬁetations for the number associated with a
‘e which are in common use: ‘
i
- How good is a state?
- Cost of attaining the goal state from the current state (eg the
distance from nearest goal state]‘
I
In one case, high numbers are désiréable, and in the other, low numbers. For
the sake of consistency, I shall always assume that the number represents a
cost. If the measure is a measlre of goodness, you can simply negate the
numbers and retain the same point of view. This consistency is desireable since
one algorithm can then be used for both cases.

Consider the following examples::

.— N-Queens: |

* Number of choices for placing next queen
* Total number of ’'free’ spacels left

|
- Noughts and Crosses: |
* 50 points for sure win i

% 30 points for a direct threat (ie. the opponent is forced to
block) !

- 8-Puzzle: See figure 4-3. TherJ are 8 tiles and one blank space.
Any tile may freely move into the blank space so long as it is
adjacent to it. The object is to reconfigure the positions of the
tiles to match the goal statﬁ. The scores are in reference to the
initial state in the figure. i '

* F1: Number of tiles out of place
score: (3) |

m— A

l
|
30
|

* F2: Sum of horozontal & vertiéal distances to goal state of tiles
out of place.

score: (5) i
* F3: 1 point for each tile out|of sequence
score: (3)

X F4 = F2 + 3*F3 Several featur=s of a problem may be combined into
a single function which mare accuratsly asseses the overall
situation.
score: (12)

Initial State ' Goal State
T . ST T T ,
1]] | i] | 1
I boorgr o2t I § | 2 b3 :
]]] | 1] |]
I 1 1] 1 1] I
. """"" | ST .

y 1 I i [! ! !
| 8 l Y i 8 i | 4 i
| [l [} I I 1 I 1
1 1 1 1 1 1 1 1
ST T YT . TV ,
1 1 1] I I] I
7 ! 6 i 5 ! V7) i 5 |

| 1 | 1 | 1 1

| t 1]] 1]

T - ——

Figure 4-3: 8-Puzzle
!

These heuristics are used to guide the search, selecting the most promising of
many choices. It is important that they be fairly simple, or else the extra
cost involved in computing the value will nullify any other savings. The basic
idea is that when you are in a state and there are several choices of operators
to new states, evaluate each state by assigning a number to it. The state which
seams most promising is the one to explore next. This contrasts with the
51formed methods of pure breadth first and depth first search which visits
states in a prespecified order independent of any information about the states
themselves. There are a humber [of algorithms for implementing this basic
strategy. We shall discuss three of these.

- Hill Climbing
- Best-First Search

= A; Pl*

I
|
|
|
|
|
|
|
|
EXERCISE - Evaluate the states in figpre 4-4 using the heuristics suggested on
page 29. ! ' '
|

2 £3
INITIAL: 1 8 4 GOAL:
' 7605
A B
/ | \
/ l \
/ | \

£ 23 283 2 3 £
1 8 4 1 £ 4 1 8 4
765 765 6 5

i /AR |

i A B |

1

1 "N WEw mow N
123
£ 8 4
7605

P

®

: \
123 123
8 £ 4 7 8 4
765 £ 65

Figure 4-4: Partial Searc

Hill Climbing

This techniques uses the metaphor o
wish to attain the summit, and reason
go in the direction of steepest ascent
of the using the heuristic, this means
lowest estimated distance to the summi

1‘IE

1. -Current Node (== Initial Node

2. Repeat:

If Current Node = Target Node

Then STOP: you have a solution

Else: Expand Current Node
If all successors have wor

Else Next Current Node (==

~I co
oo N
L5 IS S o

P Space for an 8-puzzle Problem

f climbing hills to guide the search. You
that the gquickest way to get there 1is to
from wherever you happen to be. In terms
select the successor state which has the
F, The algorithm is found in figure 4-5.

|
|
i
I
I
i
[
|
se rating, STOP: failed!

Most favorable successor

Figure 4-5: Hil

1-Climbing Algorithm

i
|
i
.
i
|

N S

Note that this method is & local one. | You only have access to information about
immediate successors. Other choices which were not as good at the time may well
have been better in the long run. In particular, you could be pursueing a false
summit(a state all of whose successors are further from the goal than the
current state), or may get stuck on a plateau a state from which all choices are
equally good, but none of which improve the situation).

The disadvahtages are:

|
- Irrevokable - Once a dead end is reached, there is no going back.
Thus there is no guarantee of finding a solution.

- Very sensitive to the evﬁluatiLﬂ function - Whether it works or not

depends on the existance of suth features as false summits and
. plateaus and also on where you ha#pen to start.

The advantages of this method are: ‘

|
- Space efficient
|
|
- Can move to a solution very quickly
|

: |
- Can be wused in conjunction w

ith other methods by getting off to &
quick start. _ !
: |
i
|
|
|
|

Best-First Search

The algorithm is found in figure 4-6. The basic intuition here is to explore the
best nodes first. It is similar to ﬁill—climbing in this respect, except that
Siais a global method. Instead of forgetting the cost estimates for states not
"'c‘-en in the first instance, they are remembered for possible future use.
Thus, where hill climbing would sputter and die if it got to a node from where
things only got worse (false summit) the best first strategy checks all the
hodes that have been expanded so far aﬁd chooses the best one (even if it
happens to be no better than the currént node). We can se€e this method as sort
of a combination of depth-first and bréadth-first search. It starts off by
going depth first in the same way as hill-climbing. When things stop improving,
the breadth-first component comes in by jumping back up to previous hodes at
higher levels 1in the tree. There is|one possible disadvantage of this method,
as it stands: it will not find optimal solutions. For some problems, it is
important to get the best solution; an arbitrary one may not suffice. This
method stops when it finds the first solution. The next algorithme we will
discuss (A & A*) addresse this issue.

II'lI.’l.Ill.!lI.ll.Il.lIllllllIlIIIIII!IHIIIII---::———— S

put initial node on search list

Repeat :
If list empty)
Then: STOP: You have Failed!!
Else CURNODE (== First node on search list

1f CURNODE = Target
Then: STOP: Solution found |

Else 1i. Remove it from list

ii. Add successors to list
jii. sort list, best nodes first

Figure 64-6: Best~Flirst Search Algorithm

The Algorithms: _A & A*

These algorithms were developed to help find optimal solutions. In fact, they
are identical to best-first search, exgept for some new twists in the evaluation
| :

function. |

An optimal solution is one which is$ cheapest. For instance in the 8-puzzle,
it'e the one with the least number of moves, for the monkey and bananas problem,
it might be the one in which the monkey expended the least amount of energy,
ete. For some problems, such as the 8r-queens, there is no sense of a cheapest
solution. All solutions are eauivale t since we are only interested the having
a configuration satisfying certain | properties. Once we Kknow what the
configuration 1is, the problem is done. The manner in which it was found is of
no interest. There may be other solutions, but there 1s no reason for

ppreferring one over the other. !
I
|
|

The straight best-first search algorithm finds only one solution which is often
of little use in getting the best one. What is needed is a method which can
focus its attention on getting to tHe best solution first without wasting tinme
with sub-optimal solutions. The insight which allows Uus to do this is to encode
additional information in the heuristic function. Instead of only estimating
the cost of getting to a solution from the current state, include as well the
accunulated actual cost of having! gotten to that state in the first place.
There are thus two components of evalPation function: :

|

|

- g(node) : Actual cost of getting to current node

- h{node) : Estimate of cost of getting to nearest goal state from node

34

The evaluation function used is: F(n)|= g(n) + hin). F{n) estimates of the
cost of going from start to finish passing through node "n" (see figure 4-7).
Note that the h is the heuristic component (ie, an estimate), g is known with

certainty.

F(n) = g(n) + h(n)

__START__ \ }
/ | \ | i
/ | \ i I
Ces . ' g(n}: Actual Cost
1
1
\ |
\ /
{n)
¢ I\ \
/ \ t
i |
! hi(n): Estimated Cost
. i
\ / o
\/ '
GOAL / .
f(n) = g(n)+h(n)
!
Figure 4-7: New Heuristic! for Finding Optimal Solutions

To see how defining the evaluation function this way helps, let us understand
it’s behaviour. The function evaluated for goal states returns the actual cost
0 getting to that goal state. EXERCISE 122 - Prove the last statement. Thus
if a goal state is ever reached, and tbere are other better goal states (ie.
ones which will wultimately be cheaper to attain) vet to be found they should
have lower numbers on them and will thﬁs be pursued. The should 1is the Key.
All will be well if the heuristic evaluation function is accurate. The
component g(n) is accurate by definition. That leaves the heuristic component:

(h(n)) to consider. There are two possible problems:
|
!

1. Suppose h 1is too low (ie, theIalgorithm thinks that the goal state
being pursued is better than it mctually is). In this situation, the
algorithm will be chasing down| non-optimal solutions unnecessarily.
Fventually, when the solution il reached, f(n) 1is accurate thus
revealing the poorness of the sollution which should have been noticed

before it ever got there. The ahgorithm will continue looking for
the optimal solution and may euehtually find it, but will have done a

lot of unnecessary work. In fac
depth(n) then the algorithm red
which is guaranteed to find the
EXERCISE 123 Show this by way of

Suppose h is too high (ie. the g
to be worse than it really is).
incorrectly stop pursuing a go
better. This is clearly bad, si
that it misses.

be shown to never be
g(n) + hin) is guarant
has to be true for the following re
any node on the path to the optimal
a rithm might stop pursuing this n
t other hand, the cost 1is nhever
continue to pursue the nodes on th
found. If the algorithm ever does stu
value 1is the actual cost of that sol
greater than the cost of the optimal s
active node(s) on the path to the opti
overestimated (as are all the rest). T
than cost of the non-optimal solution
non-optimal solution node is found, th
to one of the nodes on a path to a
node is eventually found.

If h(pn) can
function f(n)

A best-first search algorithm which ha
form: F(n) g{n) + hin) is ¢
heuristic has the optimality property
o S It seems somewhat of a misnom
because of the nature of the heuristic
lilea renaming addition to subtract
n’tive. Then again, maybe it’s not.

This is all illustrated in the example
are actual costs of traversing the ar
by adding up the numbers on the arcs o
The h values are indicated inside th
node names are indicated in boldface.

has the lowest value for f. Th
indicated by double square brackets.
f(A) = 3+1 = 4
f(B) = 1+1 = 2
f(C) = 1+2 = 3

to get expanded is
necessarily a goal
we have found a sol

The next node gets
doesn’t mean it is
low. At step III,

35

, if we let hin) 0 and gln)
ces to straight breadth first search
btimal solution given enough time.

a8 simple example.

t
u
0

sl state being pursued is considered
In this case, the algorithm will
1 state because something else seems
ce it could well be the optimal one

0

a
fn

t
&
&

00 high, then best-first search using the
ed to find the optimal solution. This
sons. MWe said that if the estimate for a
solution ever 1is too high, then the
de and miss the optimal solution. If, on
verestimated, then the algorithm will
path to the optimal solution until it is
dble on a non-optimal solution, it’s £
ution which, because it is non-optimal, is
glution node. The costs of the currently
Mal solution node are guaranteed not to be

0
Q
=

hus these costs are certain to bDe less
'node already found. Therefore, when that
4 algorithm simply switches its attention

better solution until the optimal solution

& a heuristic evaluation function of the
1led algorithm "A". If, furthermore the
Hesoribed above the algorithm 1s called
ar to call these different algorithms Jjust
used, but it wasn’t my idea. Maybe it’s
ion if the second thing being added is
Hmmmmm. . . .

in figure 4-8. The numbers on the arcs
c. Thus, g values for a node are obtained
£ the path back to the initial state (I).
e nodes. The f values are not shown. The
In step I, node B gets expanded since it
e node which gets expanded at each step is

D. Note that the value for h(D) being O
state. It’s just an estimate which is too
ution whose total cost is 6. There are

still

—

—
L)
Lo B ittt

(1] (]
c A / B\
1/ \6
/ \
[([0]] (3]
D E

(2]
C

3l 1

(11 [] [
A/ B\
1/ \6 \ 2
/ \ \
[] [10] [0] Goal 2
E 6
A

i
i
i
[6] Goal 1
F

Figure 4-8: Th

better nodes to explore, in p

preferred choice which leads us to the

see

what

would have happened if the

it’s nearest goal state, [Goal 1] had

h(c)=7

instead of 2. In this case

found the first suboptimal goal state.

low.

The algorithm wasted some effor

36

Step III

(11 [1]
A/ B\ C

£~

-
o —— -

e Algorithms & & A*

articular, nodes A and C of which C is the
optimal goal state. It is important to
estimate for the cost of getting from € to
been too high. In particular, suppose
, the algorithm would have stopped when it
L Note the effect of the h(D) being too

chasing down & suboptimal solution. The

perfect heuristic which is neither tooihigh or too low will cause this algorithm

to

Zoom

in on the optimal solution i

never overestimating the cost to a nea
chasing sub-optimal solutions by faili

In

practice,
guarantee optimality,

it is extremely diffic

the heuristic ha

It is guaranteed to find it by

rmediately. .
Similarly, it avoids

est goal state.
ng to be too low.

41t . to hit the right balance. 1In order to
s to be kept low. But, we have seen that

f it 1is too low, its usefulness as & heuristic (heuristic power) is severely
imited. The whole reason for heuristic¢s in the first place 1s to avoid chasing
own unhlikely paths. If the heuristii function is regularly too low, then bad
aths are going to look good and they will be checked out anyway 3o there’s ho
oint in having the heuristic at al1l. It is often worthwhile to sacrifice
ptimality for heuristic power by letting the heuristic occasionally
wverestimate the cost to a goal state, but keeping it sufficiently high to be a
yowerful aid in reducing the amount of search. A nice example of this 1is the
Jeuristic F4 on page 29. See [Nillson 30] (page 86) for an impressive reduction
in search using this heuristic.

i.5. Summary - Search Techniaques

We have discussed a number of basic search strategies and algorithms for problenm
solving (see figure 4-9). S0 far, we have only addressed the problem of
S ching the pure OR-trees of the staﬁe space paradigm. In the next section we
ebor‘e some of the issues involved in searching the more general And/Or (Goal)
trees which naturally represent proﬂlems cast into the problenm reduction
framework. Furthermore, we will discuss the close relationship shared between
problem reduction and game playing. Most of the ideas, techniques, and
algorithms presented 1in this sgection are highly relevant. and applicable to
searching goal trees. However, there are some important differences which must

be addressed.

Generate & Test

I\
/ \
! \
/ \
Uninformed Informed
[\ I\
{ \ / \
Depth Breadth (1) Hill Best
. First First Climbing First
’ /A
/ v (2)
A AX

(1) 1Irrevokable
(2) Finds optimal solutions

Figure 4-9: Search Taxonony

38

5. Applying Search Algorithms to Problem Reduction Representation

In this section, we explore the {ssues involved in applying the search
techniques we have studied to proplems cast into the problem reduction
framework. After a brief review of|problem reduction, we discuss some of the
Amportant differences between this and|state space representations with an ain
to discovering what modifications or hew methods are required. Following this,
I show how game playing can be viewed as problem reduction by describing an
alternate interpretation of goal trees. Finally, I present some search
techniques which are special to game trees.

Review Problem Reduction

Problem reduction is an alternate way to view or represent problems. It is
useful when a problem can be deeomp?sed into subproblems which can be further

mposed etc. We have seen some exapples of problems which are naturally cast
into this framework. These are the Towers of Hanoi, the counterfeit coin, and

the problem of pleasing your date. Instead of speaking of problems and
subproblems, we can speak of "'goals", which decompose into suboals. The goal,
is to solve the problem. Problems are represented by "goal" trees. The root

node of a goal tree is the top level %oal, the branches correspond to subgoals.
There are "and' nodes and "or" nodes. |The former are appropriate when the goal
splits into subgoals, all of which must be achieved in order for the parent goal
to be achieved. "Or" nodes, on the other hand, correspond to situations when a
goal may be achieved by some number|of alternate methods, any one of which is
sufficient. 1In general, a goal tree lwill have some sort of constraint(s)
associated with 1it. Examples of |[constraints include the 25 pound limit on
pleasing your date, or for the counterTeit coin problem, the number of weighings
nust be ho more than three. Fin?lly, a goal tree has leaf nodes which are
primitive subgoals which decompose ho Lurther. They correspond to primitive
operations in the problem domain hich are immediately achievable. For the
towers of Hanoi, the leaves are the subgoals which correspond to moving
individual discs. For the counterfeit|coin problem, the leaves are the subgoals
which involve no more weighings, because the counterfeit c¢oin has been
igtified as heavy or light. There is no work which needs to be done to
determine how to achieve a primitive subgoal. You can just go ahead and move
the disc, or in the counterfeit coin problem, the coin is already identified.

Goal trees, are similar to and/or|trees, in fact they are a special sort of
and/or tree. The only difference is the existance of some constraints. If a
goal tree has no constraints, then welcall it a pure and/or tree. For the sake
of simplicity in the discussion which follows, I will use the term goal tree
even if there are no constraints.

.1. Searching Goal Trees

his is a rather more more complicated procedure than the searching we did in
tate space representations. In state space search, We start with an (initial
tate (of the world), and try to transform it into some goal state. Each node
n the search space corresponds to some world state. From each state, there are
. number of successor states possijle. A solution will contain only one of
hese choices. Thus, these nodes can be viewed as "or" nodes. In fact the
Jhole state space can be viewed as a|pure or-tree. There are no "and" nodes.
't is exactly these "and" nodes which make life difficult for us when searching

yoal trees. There are two possible app¢oaches one might consider:

1. Convert to state space representation, and then use the or-tree
search algorithms (eg. best fipst]). (See C&D)

‘. search goal trees directly.

since, as I mentioned above the conversion from problem reduction to state space
is rather complicated, we take the latter approach. We nust make one thing very
clear before this discussion gets underway. That 1is, what precisely is the
nature of a solution? 1In state spage search of pure or-trees, & solution was

simply & path to a goal state, or the goal state itself. in goal trees, the
solution is no longer @& simple path. |Rather, it is a more complex subtree with
“and" nodes and all their successors etc. See figure below. Note that in a

case where only "or' nodes are in a solution, they correspond to simple solution.
paths in state space representations.

How might we characterise a solutioh for a goal tree? e define this
recursively by introducing the not&on of a "solved" goal tree node. We have
three types of node, which may be solved in different ways.

‘. And nodes are solved when all off its successors are solved

2. 0Or hodes are solved when (at ledst) one of its successors is solved.

3, Leaf nodes are solved if they obevy all the constraints

e

We say the goal tree is solved when its root node is solved. MNote that a root
node may be an any type of the above nodes. O0f course if the root node is &
leaf node, we have a trivial goal tre (ie. there is no problem). If there are
no constraints to worry about, we notice that leaf nodes are automatically
solved. This is reasonable, since |we are interpreting them as primitive
problems which do not decompose. hus, they are not really “problems” in the
normal sense, since there is nothing [to solve. Consider goal trees which define
grammars and may be used to build sentences. The non-leaf nodes represent rules
for putting types of objects together|. For exanmple, a sentence may be composed
of a noun phrase xand* a verb phrase (an "and" node). A noun phrase may be

(Al
/ \
/
/
[B]
/ \
/ \
/ \ /
/. \ /
[p] [E] [F]
/A
/ \
/- \ o
[H] (1)
Complete Tree
[a]
/
. /
/
[8]
/ \
/ \
/ \
/ \
(p] (E]
/
/
-
[H]

Two possible s¢

Figure 5-1: B

composed of & simple noun, *or* a deter

These may be further decomposed as defj
nodes, we have the strings themselves.
grammar rules to worry about. We
primitive "problems".

Now that we’ve characterised the nature
looking for (subtrees satisfying th

40

\
(c]
/A
A\
\
\
(6]
[A]
\
\
\
[cl
/A
/____\
/ \
/ \
(F] (6]

lution subtfees.
xample Goal Tree

‘miner followed by a noun (an "or" node).
ned by the grammar. Finally, at the leaf
The work stops there, with no more
just take the strings. These are the

> of the solution objects that we are

systematically ¢o about searching for them
attempt to apply a best first seérch,
In the figures below, I use #quiggly
reflects combined scores of children of an "and” node, and round brackets
The scores reflect cost estimates, and we are

happens.
which
otherwise.

e conditions listed above), how might we
to solve the problem?. Let wus
as we did for or-trees and see what
brackets to indicate a score
to -

therefore trying

achieve low scores. NB: I have used
which does not explicitly separate out
should be clear, however for purposes

[A]
VA A
/ {7} A\
/ oo \
(5)/ (3)1 (4)\
[B] {c] [D]

/
/-

!/

(5)/

‘I' [E]
Figure 5-2: Heuris
In the first figure, we see that the

hote that any solution path which incl
are linked
[B] since it has a cost estimate of on
(C] 1is estimated to cost 7 units.
will not work as it did for state spac
correspond to simple paths to node
which represents a goal state. (Reme
(sub)goals, or (sub)problems). Inst
node on the best potential solution *p
are the same thing. The method of
from what we have done until now. It
!t first search. I note below, fi

1l trees and pure or-trees from stat

1. For goal trees, choose a node on

rather than the best node to exp
2., When trying to expand hew nodes
to see if any constraints are vi
search, this sort of thing
operators were applicable to sta

The "and” nodes of goal trees re
particular, one must make sure t
are eventually solved.

For goal trees, one must update

together indicating "and"|

41

a shorthand way to present goal trees here
‘and" nodes and "or" nodes. The meaning
of this illustration.

[-

-

ti¢c Search of Goal Trees

best individual node is [C]. However, ve
udes [C] also includes [D] because they
Thus, it would be better to expand node
ly 5 where any solution containing node
It is clear that this best first approach
e search. Our solution objects do not
5. Furthermore, there is no explicit node
mber, nodes in a goal tree repréesent
ead of choosing the best node, we choose a
ath*, Note that in a pure or-tree, these
searching goal trees differs considerably
#ill however, still retain the flavor of
ve important differences betuween searching
> space representation.

the best potential solution path
gnd next.

|

In a goal tree, you must always check
olated. Eg. cost. In state space
was done when determining whether
tes.

quire some extra bookeeping. In

at all successors of any "and" nodes

values on nodes when new information

from further down the potential s
example, when node [B] was expand
solution path containing [B] fro
updating again when(if) nodes [E]
The pure or-trees we saw in sta
bookkeeping: This is because, on
what 1is behind us is no longer
first point about the nature of t

(2

blution path becomes available. For

ed, we had to update the cost of the
m 5 to 15. Furthermore, it may need
and/or [F] get expanded later on.

te space search did not require this

e we are at a node (state), then
of concern. This is related to the
he solution. The reason previously

ern is that the solution is a simple
state itself. Fach time we expand

expanded nodes are of no conc
path to a goal state, or the goal
a node in an or-tree, we simply

[a d

When searching goal trees, Wé
heuristic functions at "and” node
good the solution path which cont
we viewed the nodes "anded” toget
all of which had to be solved.

a cost, then it seems reasonable
however other possibilities. ¢
coin problem. The “and" nodes af
three possible outcomes of the

strategy which is guaranteed to

have to worry about the worst o
a heuristic for this problem whi
remaining. If we start with
that could happen is we are left
lucky, we only have a four ¢
make much sense to add these val
over all. A more appropriat

maximum. You have to assume th
distinction here is:

new nodes and carry on. The n
grief. A solution is not a si
will generally contain some "an
expand a node in an goal 't
previously expanded "and" nodes
expanded further.

D
W
i

F‘

0
U
=
=

a. Multiple actions, all of wh

1
p

Multiple poséibilities a
only one of which will hap

b.

Another example of type "1" would
date which involved food and ente

the "and" node is (most reasonabl
successor node. Another exgm
finding strategies for playing da

section. MNote that the co
where the opponhent is chan

next
game,

u
c

apply the evaluation function to the
“ nodes in goal trees cause all the
ple path, but rather & subtree which
" nodes. Consequently, when we
we may well have to worry about
be

ee,
ome of whose successor nodes may

must have some scheme for combining
s so that we can properly assess how
ains them is. In the example above,
her as being separate subproblens
If we view the heuristic function as
to add the costs. There are,
nsider, for example, the counterfeit
ise when we perform a weighing. All
eighing must be checked out to get a
ork. 1In this case, we only really
tcome, nhot the others. We might use
h is the eize of the subproblenm
2 coins, and weigh &, then the worst
with an 8 coin problem. If we are
in problem. In any case, it doesn’t
es to get the value for the and hode
way to combine these is to take the

t sod’s law is operating. The

ich must be performed

1 of which must'be checked out, but
en in fact.

be the problem of pleasing your
rtainment ("and" node). The cost of
y), the sum of the costs of each
ple of type "2" is the whole area of
mes. This will - developed in the
nterfeit coin problem is much like a
e, and the solution 1is a strategy

o T R T TR TR e TR .

for guaranteed success.

5.2. Game Trees

See [Charniak & McDermott 85]
trees interpreted as goal trees,

(pp

pm

Note the similarity to state space rep
which correspond to board positions
states to other states. (For convenien
some sort of board game, although the
W l. When we refer to a "board positi
cumplete description of the state
board.) 1In spite of this similarity,
for solving the problem of how to pla
a solution is entirely different.
interested in some sequence of operator
games, this is not adequate. Many goal
achieved 1f your opponent made lots of
not enough. You have to guarantee that
matter what vyour: opponent may do.
correspond to explicit board positions)
position is not simply to find a patﬂ
goal at a node is to find a winning str
consist of finding winning strategi
result from possible moves from some po
this problem fits quite naturally.

J

Complete Game Trees: All possible
L~ ¢ nodes are one of {WIN, LOSE, DRA

sti-ategy, ie one that guarantees you ca

Incomplete Game Trees: All possible
represented. The leaf nodes are simply
measured. The goal for incomplete gam

find a winning strategy. Rather, you s

searching Game Trees:

- Two plavers: MAX - Strives f
MIN = Strives for low scores (you)

43

281-286) fof a nice introduction to games

esentation. We have explicit states
and explicit operators which transforn
ce, I will assume we are talking about
e techniques apply to other games equally
on" we really ‘are referring to some
of the game whether or not there is any
e cah not use the state space approach
games. The reason is that the nature of
In state space search, you are only
s which will get you to a goal state. 1In
states (winning positions) could be
stupid moves, Getting to a goal state is
you can get to a winning position no
In game trees, the nodes do in fact
However, the "problem" from any board
to & winning position (goal state). The
ategy from that position. The subgoals
es for each of the board positions which
sition. The goal tree interpretation to

oves and board positions are represented.
}. The goal is to find a winning
n win whatever your opponent may do.

moves for a limited number of "turns' are
board positions whose "goodness” must be
e trees is different. VYou cannot hope to
ettle for finding the best move.

or high scores (me)

- Static game state evaluation function Estimates how good the state of

the game is from MAX’s point of v

- Lookahead Depth The number of lev
many moves ahead are being consid
5
- Mini-Max MAX nodes: Take n
hodes
MIN nodes: Take minimum of the

percolate up the tree starting fr

Searching complete trees:

- Apply mini-max. (You could let W

.~ What does root node evaluate to?
* 100 for MAX (-100 for MIN) =
* 0 for MAX/MIN ==) There is n
but you can guarantee at lea
==} You can’t even guarantee
best,

Searchindg incomplete game trees:

- Grow tree to (loo
function to each 1leaf node.
evaluation functions we saw for

used state space search to solve.

some depth

- Apply nmini-max to assign wvalu
eventually leading to the root.

The wvalue of the root is the val
be made from that node.

~ In real game playing programs, at
furthur to take into account
applied again. Many of the dynam
iteration will be inaccurate and

NB: The heuristic function wused
functions we have seen for some othe
5
See notes for lecture 1, on "What i

your guaranteed to lose.

44

iew. Evaluates to some number.

els represented in the tree. 1Ie, how
=red.

aximum of the wvalues of successor

values of successor nodes The values
om the leaves

in = +100, Lose = -100, Draw = 0)

=) Winning strategy exists!

ot a strategy which guarantees win,
st a draw -100 for MAX, (100 for MIN)
a draw. If your opponent plays his

=3
=

es to hon-leaf nodes, bottom up

e of the best possible move that can

this point, the tree is extended
one more level, and mini-maxing is
éc values applied in the previous
ust be updated.

plays the

~ problems (eg. 8&-puzzle) in that

s an Al Technique?"

ahead) Apply static board evaluation -
This is similar to the heuristic
R-puzzle, and other problems which we

same role as other evaluation

it

4.5

neasures the "goodness' of a state. |However, it is not used in the same way.
In best first search of or-trees, we chose which node to next expand on the
hasis of its heuristic evaluation. When searching game trees, we must generate
the tree first to some level, apply the evaluation function to the leaves of the
tree and then use mini-max to compute the values of nodes higher up the tree.

Problems:

- Game trees are too big, you alwayg have to settle for incomplete trees

for interesting games.

- It may be very difficult to find gdood board evaluation functions Eg.

For a draughts program, 25-30 separate features of the board were
taken into account to achieve expert performance.

- Horizon Effect: Consequences of moves bevyond the lookahead depth are

unaccounted for. Errors may result from this.

Controlling Search: Alpha-Beta Pruning

One technique for helping to trim| the search space is known as alpha-beta
pruning. The reasons for this name will become clear later. This is described
in the references above. Briefly, it is a technique for avoiding unnecessary
seapch. Consider the complete (admittedly trivial) game tree(1) in figure 5-3.
The leaf nodes all evaluate to Win, Lope, or Draw. We apply mini-max to evaluate
the non-leaf nodes. Suppose we start py looking at node [BJ]. There 1is no
difference between alternatives [D] and [E], so [B] evaluates to “Win". At this
point, if we consider node [A]l which ii a MAX node we note that there is a
possible move which guarantees that MAX can win (namely, to node [B]). If that
is the case, then why bother considering any other moves (hodes)? You will
never do better than getting a winning strategy, so you might as well stop
,less, of course you have some kind jof superiority complex and desperately
eed to find more and perhaps better ways of defeating your opponent).

Suppose we change the values of ngdes [E] & [H] to "Draw" (see Tree 2 figure
5-3). Now, node [B] evaluates to "Draw", since NIN will choose his/her best
move (ie, the one which is worst far MAX). Remember, the Win, Lose, and Draw
valuations are from MAX's perspective. Now, we still have reason to keep
searching. MAX now knows that s/he gan at least get a Draw, but why not go for
a Win? We start to evaluate node [C]|next and begin by looking at node [FJ).
This is a ‘'Lose" for MAX which is|bad news. What is even worse news is that
it’s MIN’s turn at that point and MAX |must assume that MIN would make that move
if given the chance. But MAX alreaqy knows that s/he is guaranteed at least a
draw, (by moving to node [B]). If MAX were to move to node [C], s/he would risk
losing. surely, there is no reason|to do that. Note that we have come to the
conclusion that MAX will not move to ¢] without ever having checked the values
for [6] or [H]. We say that they have been pruned from the game search tree.

_L—M

Tree 1
MAX [A]
/ \
/ \
/ \
MIN (Win) [B] (¢l
/ \ [\
[\ e N
/ \ / \
/ \ / \
(D] [E] [F] [G
Win Win Draw Wi
Tree 2
MAX [A]
‘l’ / \
/ \
/ \
MIN (Draw) [B] (c]
/ \ /A
/e \ f____\
/ \ / \
/ \ / I
(D] [E] [F] (&
Win Draw Lose Wi
Figure 5-3: Cg
This procedure generalises for incomg
same way. The onhly difference is that
Lose, and Draw. These numbers are est
for MAX. This is described in detail W

me The primary intuition is to g
i ove the current sutuation. The way
best you can do for a particular node
first successor evaluates to "Draw"'. T
to the current best move considered s
alternate moves, (Eg. move to node [C])
can do no better than what you alres

46

\
\
1 [H]
n Lose
\
\
\

1 [H]
n Draw

mplete Game

ith
kip
to
(Eg.
his becomes
o far). If
it beconmes
dy know you

do this

then abandon searching that alternative.

/

Trees

lete game trees and may be applied in the
you will have
imates for how good the board position is
examples
nodes which you know & priori can not

numbers instead of Win,

in the references listed

is to keep a tally of the

When considering node [A] above, the

the tally value corresponding
at any point when considering
clear that the alternative
can do (from the tally value)

The literature distinguishes two types of situations for abandoning search

before an alternitive move has been
for MIN nodes. In the former case, the
will be & high value and search stop
lower. For MIN, this is reversed. The
search stops when considering alternat

if you are going to be writing a comput

er prodgram

fully explored,
tally which keeps track of the best move
s when considering alternatives
best move corresponds to a low value and
ives which are higher.

one for MAX nodes and one
which are

important
for the

This is

to do this, but

understanding why the met
on examples, I think it’s easier to fon
track of the "best" move and remember
best for MAX nodes. The terms alpha cu
literature. This is because you are ¢
refer to the two different situations f
This why the method is known as alpha-Bb

purposes of

50 WHAT?

These techniques are in fact used f
competitions and/or reside in computers
particular, chess playing programs
There are programs for draughts and bag

c.aetitor‘s.

THAT’S WHAT!

What are you expected to know?
1. What are state space and pt
What are they good for? H
the nature of a solution f
differ.
How to search a simple goal
How to view a game tree as
How to c¢reate a game tree ¢

oo~ NN

what the goal for each case
How to apply mini-max (usir
to example game trees.

"ther‘ Reading:

Problem Reduction (Goal Trees):
Rich, pp 87-94
Barr & Feigenbaum,

Al Handbook

Pearl, "Heuristics", pp 14~31

Charniak & McDermott, 270-281
Game Trees: '

Rich, pp 113-131

Barr & Feigenboum, AI Handbook
Nillson, Principles of. AI, pp
c&D, 281-291

L

47

hod works and remembering how to apply it
get about this distinction. Simply Kkeep
that best for MIN nodes is different than
toff and beta cutoff are used in the
utting off part of the search tree. " They
or abandoning search described above.
eta pruning.

or game playing programs that are used in
that you can buy at the local shop. In
are already playing master level chess.
kgammon which are nearly world class

oblem reduction representations?
w can yYou use them. Characterise
r each representation and how they

tree.
a goal tree.
iven a game and rules for playing.

The difference between complete and incomplete game trees and

is.
g alpha-beta pruning)

Vol I, pp 74-83, pp 36-42

(C&D)

Vol I,
12-126

pp 84-108

6. Answers to Selected Exercises

8-Queens: Count the number of free sp
a particular square. So, the choices i
respectively. From this peoint of
really equivalent to measuring the numb
view is different. But, note ths
different values which must be compared

122: This is true because the estimate
state from a goal state is 0 (you are

=

48

aces that are removed by the selection of

n the diagram evaluate to 6, 5, and 2
view, low scores are desirable. .This Is
er of free spaces. Only the point of

t it is a different function returning

in different ways.

d cost of getting to the nearest goal

lready there!l)

[Barr & Feigenbaum 8&1]

[Charniak & McDermott 85]

[-=- 84]

[Nillson 80])

49

REFERENCES

Aaron Barr & Edward Feigenbaum.

The Handbook of Al.
HeurisTech Press, 1981.

E. Charniak and D. McDer

Addison Wesley, 1985.

Judea Pearl.

HEURISTICS - Intelligent
Sglving. _
Addison-Wesley, 1984.

Nils J. Nillson.

Principles of AIL.
Tioga Publishing Company

3

mott.
Introduction to Artificial Intelligence.

1980.

1 Search Strategies for Computer Problem

. Introduction
2. Some simple problens

Cu
:-u
D)CMMOJ(N'UNI\)MM

=

4. Se
5. Ap
6. An

mmmvmpn:«rﬁ

OF‘\O&{\)I—*CD (H-F‘-(NM)—*
=

—
(D}\)t—‘-"((ﬂ-l:“-(hll\}l—‘-

W

entatlons for Problem Solving

ing Search Algorithms to Problg

rs to Selected Exercises

Table of

MONKEY AND BANANAS
8-Queens Froblen
Towers of Hanoli
Traveling Salesperson Problem
Summary

State Space Representation
Problem Reduction

State Space vs Problem Reduct|i
hoosing Good Representations

Criteria and Gu1dellnes for Q
Strategies
Introduction
Generate & Test
Uninformed Systematic Search
Informed Heuristic Search
summary - Search Techniaques

Searching Goal Trees
Game Trees

Strategies

m Reduction Representation

DR e e

10

15
15
16
19
21
24
24
25
25
27
37
38
39
43
48

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
;!l'ure
qure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

»

I\)!})N
1
(L NS

PRI N U SO SN N N TR YRR VR YR T S S

t ¢t ¢t & ot ¢ ¢ ¢ t 1t ¢ t & ¢ ¢ ¢t 11
SN P = 0 00~ O U1 £~ G N = O B o= O

= m=

List of

Monkey and Bananas Proble
Searching for a Solution
8-Queens Problem
Towers of Hanoi
Towers of Hanoi: A clever
Traveling Salesperson Prc
A Generic Search Space
AND/OR Tree: How to Pleas
Counterfeit Coin Problen
A& Generic Goal Tree
Simple Blocks World Probl
Depth First Search

ii

Figures

solution
blem

e Your Date

Lem

Systematic Search Strategies

8-Puzzle
Partial Search Space for
Hill-Climbing Algorithm

Best-First Search Algorit

an 8-puzzle Problem

hm

New Heuristiec for Finding Optimal Solutions

The Algorithms & & A*
Search Taxonomy
Example Goal Tree
Heuristic Search of Goal
Complete Game Trees

Trees

-~ o o

11
16
17
18
i9
23
26
26
30
31
31
33
34
36
37
40
61
46

