- T T ERIRRRER—— —

/ Vision Practical 2 ‘

" Out: week of March 2

« ~ N
Due: week of April 27 VsSe as < Yotovial

Many of the early attempts to understand 3D scenes used 1labeling rules for
blocks world scenes. As you will recall from the lectures, these rules
represent relationships that hold in 3D, but which need not hold in an arbi-
trary line drawing. Hence, applying the rules to a line drawing gives us some
3D interpretations.

This practical applies a set of line labeling rules (derived fran Huffman &
Clowes] £o two blocks-world scenes. A labeling is consistent if labels ecan be
assigned to all lines such that the patfern of connection at the vertices is
consistent " with allowable blocks-world scenes. Before generating the final
labeling of the scene, Waltz-filtering is applied to reduce the combinatorial
matching needed to find a solution. . :

In file '/u/ai/s?/atheach/vision/pr‘act?/practz.code' you will find part of a
program to do this labeling. In the same directory, you will also find the
file 'labels' which will contain the labeling rules, and two . test scenes in
files 'scenel' and 'scene2!'. . '

This program is incomplete - currently it:

The format of the..a'bels' file is:
label[(vertex_type),<label_1d>,<1abe1_l>,<1abe1_2>,<iabe1_3>].
where:
<vertex_type> ::= ell | fork | arrow | tee
according to the type of vertex
<label_id> is an arbitrary identifier f:or this label type
and -
_ <1ébe1_u> ::= in | out | plus | minus | nul

is the line label for each of the arcs leaving the vertex, where
the vertices are ordered as: : .

ell - left to right with the gap at bottam. The third label
is always 'null'. - PR

fork - clockwise order fram an arbitrary starting point

arrow - fram left to right with the point facing upward

tee - left_bar, shaft, right_bar

checks—toseeif the scene 1s properly defined,
= finds all possible alternative labels for each
vertex and . : '
- applies Waltz filtering to dras tically reduce the
set of labels,

TWo extensions need to be added to complete it:

(a) the predicate 'testinconsist(Labels)' needs to be
defined. This predicate checks to see if there
is still a feasible solution after the
Waltz filtering - which can be detected
if some vertex no longer has any possible
labelings.

The input 'Labels' is a-1list of the form:
[-o.2 [vertex, [possible lavels]] ...]
(b) The major work is to complete the predicate
'generate label' which finds all complete
labelings for the scene, by searching among
alternatives left after the Waltz filtering.

A labeling is consistent if the ares connecting two vertices have the same la-
beling at each end according to the vertex label.

Many of the predicates in the program use a list of potential labels for all
vertices. This is a list of the form:

[.... [vertex, [possible labels]] ...0)

where each vertex appears in the list once.

Wt Aty daah

The scene is 'ciescribed by a set of .assertions of the form:

vertex(<vertex_name>, <vertex_type>,<line namel>,
<line _name2>,<line name3>).

which iists the vertices and gives their types and a name for the connecting
lines. The 1lines are labeled in the same order as for the 'label!' predicate.
The other assertions in the scene description are of thee form:

known(vert ex_name>,[<label_id>]).

which asserts the designated vertex has a reduced set of " possible. labelings
(here, this usually means only a single labeling is allowed).

The Waltz filtering removes unusable vertex labelings fram the potential label
set associated with a vertex. 4 vertex labeling is removed if it has an edge
label that' cannot mateh up with any conceivable 1labeling at the connecting
vertex.: The ‘'waltzfilter' predicate checks all possible labelings of each
vertex one at a time. If any labeling is deleted, the whole process is re-
applied because the deletion may lead to deletions of othér labels.

To run the practical, you must consult the program, the labels, the desired
test scene and your extensions to the program. Scene labeling is started by

invoking the predicate 'labelscene!.
For the practical: ‘

[1) trace through the program with the. 'testinconsistent' predicate as
always true to see how it works up to the 'generate_label' predi-
cate. This should help you see how the major data structures and
the line labelings are used.

[2) implement the 'testinconsistent' predicate described above.

[3] implement the 'generate label' predicate described above.

.

{4) show the output complete labeling for both test scenes on the en-
' closed test scene diagrams.

(5) There should be four labelings for the second scene. Explain why.

(6) Why does the labeling show that the upper left block lies in front of
the middle left block when the most reasonable interpretation has
them touching (i.e. lines 'line7' and '1line8' are obscuring instead
of concave]. The same point also applies to the upper and lower
right blocks. g

(7] [optional] Separate the regions into separate objects isolated by
surrounding obscuring and concave boundaries.

A AL BTk o

i 4

i

/% top level control for labeling a scene:
gets se all possible labels at each vertex
does w filtering to reduce the set’
finds each complete labeling of whole scene
such that all line labels are consistant
x/
labelscene :-

/* checks scene for being consistent ¥/
checkscene,

/* get the possible labelings for this diagram ¥*/

bagof[[Vertex,Labels],
©TTL1TL27L37(
vertex(Vertex,T,L1,L2,L3),
bagor(LabelType.v
© . LB1"LB2"LB3 1abe1(T LabelType LB1,182,153),
Labels)

) . ‘ ’
. PossibleLabels),

/% replace possible by any known labels ¥/
replace known(PossibleLabels KnownLabels]

/¥ print initial labels */
write('Initial Labels'],nl,

wri uWWcLoLnlllemnuclb))

/* do waltz filtering to reduce possible label set */
e3 altzfilter(KnownLabels NewPossLabels). LT

<72 « gelas Y-

2 /¥ print initial labels */ .

'i write['Labels after Waltz Filtering'] nl
writelabels(NewPossLabels) .

. /* test for inconsistency here [ie a vertex has no possible T

b i labels left) ¥/

o testinconSLSt(NewPossLabels]

/* generate all possible labelings and separate bodies */

(generate label[NewPossLabels Labeling)
writesoln(Labeling), - .
fail /* force ‘backtracking to generate new 1abe11ng Ey

/* PREDICATE: waltzfilter[+1n Labels,~Out Labels]
In_Labels -~ .the input label set to the fxltering . .
’ Out _Labels - the output label set fram the fllterlng ST O

true

" does waltz filtering - renoves a label froam a vertex if]
- any connecting vertex.doesn't have a corresponding label. . -
- Keeps re-applying the process until no more changes are made.
*/
waltzfilter(AllLabels NewLabels]
wf (AllLabels,AllLabels, Nechbels {],nochange)
we([[Vertex, VLabels][Rest] AllLabels,NewLabels,CurrentLabels, InState) :
!,filter(Vertex, VLabels,NewVLabels,AllLabels, InState OutSuate]
wf(Rest AllLabels,NewLabels, [[Vertex NewVLabels]|CurrentLabels
: Outstate).!.
er{]' ,Labels,Labels,nochange). ~ :
we(l], ,NewLabels CurrentLabels cnange] - :
/% go through whole process again on reduced label set ¥/

/% PREDICATE: rllter[+Vertex.+Vertex_Labels.—Neq_Labels,+A11_La S,

: o *Current_State,-New_State) a
Vertex - id of current vertex
Vertex_Labels - list of current potential labels
New_Labels - list of remaining potential labels
AllLabels - list of current potential labels for all vertices
Current_State - records 'change'/'nochange! according to whether

any changes have been made so far

New_State =~ update of 'change‘/'nochange' state

filters out any currently impossible labels for this vertex.
¥/
filter(Vertex, Label]Tail],NewLabels,AllLabels,InState,OutState) s
filter Vertex,Tail,NewTail.AllLabels,InScate,TState],

/% check for removing this label ¥/
[checkposslabel[Vertex,Label,AllLabels)

-> (NewLabels = [Label|NewTail], OutState = TState)
;i (NewLabels = NewTail, OutState = change)

rizter(_,[],[1,_,state,state).
/% PREDICATE: checkpossiblelabel (+Vertex, +Label,+AllLabels)

Vertex - id of current vertex

L

-~ -- . . .,

/% PREDICATE: la'natch}i[-bl.inel..abel,4Conhect1ngl.abels)

LineLabel -~ the line label being tested
ConnectingLabels - all possible labelings for the connecting
vertex '

checks if label type matches in Nth label position for at least
one of the possible labelings.)

*/

labelmatch![LineLabel.[Labelingl_]] =
label(_,Labeling.TestLabel,_,_},

. compatible(LineLabel, TestLabel

labelmatehl(LineLabel,[[Rest]) :-
labelmatch1{LineLabel,Restj.

labelmatch2(LineLabel,[Labeling|) :-
label(_,Labeling,_,TestLabel, ;,

]
yi.

compatible(LineLabel, TestLabel
labelmatch2(LineLabel,[_|Rest]) :-
labelmatch2(LineLabel ,Rest).
labelmatch3(LineLabel,[Labeling|]) :-
label(;,Labeling,_,~,TestLabel ’
compatible(LineLabel, TestLabel), ! .
labelmatch3(LineLavel,[|Rest]) :-
labelmatch3(Linelabel,Rest).

1
3.

Label - id of -current test label
AllLabels - all current potential labels for all vertices

see if this label at this vertex is compatible with labels at
connecting vertices .
*/
checkposslabel(Vertex,Label,Al1Labels) :-
/* check each connecting vertex ¥/
vertex(Vertex,_,LineI,Line2,Line3),
label(_,Label,LinelType,Line2Type,Line3Type),
‘checkpossvertex Vertex,Linel,LineIType,AllLabels},
checkpossvertex Vertex,LineZ.LineZType,AllLabels
- (Line3 = nula .
© => true:- R
; checkpossvertex[Vertex.Line3,Line3Type,AllLabels}

/% PREDICATE: checkpdssvertex[+Vertex,+L1ne,+L1neType;+A11Labels)

Vertex-- id of current vertex

Line - id of line being tested

LineType - the line label being tested . .
All_Labels - all current. potential labels for all vertices

- 'see if connecting vertex has a compatible line type on the
" given line .
*/ N .
cheekpossvertex[Vertex,Line,LineType,AllLabels] -
vertex(CVertex,_,Line,_,_],Vertex == CVertex,!,
findassoc(CVertex, AL1Labels, PosLabels),
labelmatchi(LineType,PosLabels).
checkpossvertex[Vertex,Line,LineType,AllLabels) -)
vertex(CVertex,_,_;Line,_],Vertex == CVertex,!,
findassoc(CVertex, AllLabeis, PosLabels),
labelmatchZ(LineType,PosLabels].
checkpossvertex(VertexzL;ng,gineType,AllLabels] =
vertex(CVertex, , , ,Line),Vertex == CVertex,!,
findassoc(CVertex,AllLabels,PosLabels),

474 bl e el e T e 4w

P

e

a e

/% PREDICATE: rep1ace_known[+Potent1a1_Labe1s,—Knowq_Labe;s)

Potential_Labels - the initial set of potential labels for
each vertex ' : : .
Known_Labels - the same, only with the labels appearing
in the 'known' predicate replacing those in -
the initial set. :

replace possible labelings by known labelings
*/ .
replace_known { NE)R 4) :
replace_known Vertgx,Poss}IRest].[[Vertex,Labels]lKResg]] -

-known(Vertex, Labels), t,replace_known(Rest,KRest)". .
replace_known [Heap]Best],[HeadeRest]T - :
replace_known(Rest,KRest).

/* PREDICATE: checkscene

check the scene for consistency:
each line connects to exactly two vertices .
) each vertex connects to 2 or 3 lines accorping to type
*/ : -
checkscene :- . .
((vertex[Vertex,Type,Line1,LineZ,Line3],)
checkvertex(Vertex,Type,L1ne1,LineZ,Line3),
fail .

=

CF .

rue

), 4 . _
((vertex(Vertex,Type,Line1,Line2,Line3].
checkline(Linel},
checkline(Line2
checkline(Line3
fail

’

[

rue .

, o o
R I .

write('Scene check done'),nl.
/% PREDICATE: checkvértex(+Vertex,+Type,+L1nel,+L1ne2.+Line3] ‘

Vertex - which vertex
Type - type of vertex
LineN - connecting lines

check the given vertex for consistency:
it connects to 2 or 3 lines according to type
X/
cheekvertex[Vertex,Type,Line1.Llne2,L1ne3] -
({Type = el1 ; Type = fork ; Type = arrow ; Type = tee),
Linel == null,
Line2 == null,
(Type = e11
=> Line3 = null
) ; Line3 == null
s .
- Linel == Line2,
Line2 == Line3,
Line3 == Linel,!

)

;rite(‘Vertex *),write(Vertex),write(* is bad'),nl.

/% PREDICATE: checkline(+Line)

s

*Labeling - a labeling of the diagram

‘writes o labeling
*/
writesoln(L) :-
nl,write("*¥* Solution Labeling ¥%%1) . nl ,writelabels(L).
wri telabels([]) :- 1.
writelabels([[Vertex,Labels]|Tat1]) :-
- write('Vertex *),write(Vertex),
write(' has labels '),write(Labels),n1,
writelabels(Tail).

/% PREDICATE: findassoc(+Vertex,+All Labels,-Labels)

Vertex ~ the desired vertex ‘
All Labels - all current labels for all vertices
Labels .~ The current labels for the given vertex

finds whats currently associated with a vertex
%/ » .) _ .
rindassocEVertex,t[Vertex,Assoc}l_],Assoe] = 1.

findassoc(Vertex,| |Rest], Assoc
findassoc Vertex,Rest,Assoc),!.

/* PREDICATE: canpatible[+Labe11.+Labe12]

Line - desired line

"makes sure line connects to exactly 2 vertices
*/ . - '
checklinéfnull} = 1.
" checkline(Line
bagof (Vertex,
: T°L1°L27(. .
vertexEVertex,T,Line,LZ,L1 ;

vertex{Vertex,T,L2,Line,L1) ;
vertex(Vertex,T,L2,L1,Line

- 1
Vertices),
: sizeof (Vertices,N),
. (N ==2 . - :)

-> (write{'Line,'),write(Line],
write(' does not connect to exactly two vertices'),nl

53 true

).
/* PREDICATE: size(Set,Size)

: _. " +Set - processed set
: : -Size - output size

finds the siie of . a set -

%/ -)

; sizeof (Set,N) -

e - sz(set,0,N).

S szE[].N N) - 1. v .
sz H]Tj,M,N) :- M1 is M + 1, sz(T,M1,N).

/% PREDICATE: writesoln(+Labeling) - for solution labelings
writelabe1[+Labeling] - for any other labelings

L

Lavelt,Labelz = the Iine Iabels at opposite ends of a line

test label compatibility
*/ . .
compatible minus,minus).
compatible(plus,plus)..
compatible{in,out .
compatible{out ,in

R T

07

Vo

26

28

Va

: ; ' ..iSCEME'i

e ——— s

V7

a3

NZ

03

L2

21

T e R e S i .4, e e) i 4 7 2 A e g e

Vi

A e GBI

C bee\

. . .
v dat i e ——r —— o =t

yvewkexN
LineN

UN =

LARELS

i v 4k -

teez

"y
R

.{.:ed

——t s = wwe

o o -

B

B e T et L

a -

Vg ' -1 yas
Vg v ______Q_L.—-—-
vo e Q: _ 456 053
Rz o 27 Vs Q8 —dV8 o v2o |
- Vil = v - UL WL ‘
DB g e 023 Via gy
. .VH.Q'?J)
Mo
. on' i '
Vi7 &7
213
> Vip
vN= verlexN

'-_,_?,‘:,m._._-,,.,..._ h sty epee + §

ANZ= Qe N

T . e b e e 10

Q43
ALY

7

[a3

Ruy
vH2

QU3

e oy,

242

Quo
ve7

V39

031

Vs

Ve

