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“The study of how to make computers do things which, at the moment, people are better.”

by Elaine Rich [[Rich 83]]
i
“The effective computational deployment of knowledge.” j
by Henry Thompson
i
“The study of ment.a.l facilities through the use of computational models. The ultimate goal of Al resea.rch is to
build a perscm i
1 b |

by Charniak and McDermott [[Charniak 85]]

“The attempt to liberate tools/machines from absolute dependence on human control.”

]
a.npnymous 1

Unfortunately, these definitions are not overly enlightening. In particular, they leave unanswered the followm.g philosophical
questions:

. What is intelligence?

s How can we know whether a machine is intelligent?
Some of our common sense views of what makes people intelligent include:

e Ability to remember. .

¢ Can think through a problem to find a solution, given some rules and guidelines to follow({e.g. Changmg the brakes on
your car using a manual, or solving maths problems). |

!
e Can reason from first principles to solve problems for which no ‘cookbook’ answers exist (e.g. Combine common sense
with the information in an auto manual to solve a problem never encountered before and not dlacussed directly in the
manual). -

e Can learn new things easily. I

¢ Creativity, 1.e. can think of novel solutions to problems; be inventive :
Computers are extremely good at ‘remembering’ things, possessing a great capacity for storing and retneﬁng information.
Hegrever, we do not think of a computer as having intelligence because of this ability. Current Al computer programs are
a@Po solve certain types of problems, especially when there are well defined rules for solving them (e.gi diagnosing the
problem with a malefunctioning bicycle). Some programs have been written which can do very rudimentary florms of learning.
Reasoning from first principles is a very difficult task which is being actively researched. However, making computers which
are in any real sense creative is considerably beyond the current state of the art. No one has seriously considered how to
even begin to tackle this problem. The achievements to date for the field are much more meager. In fact, AI programs can
be highly successful if they are able to reproduce the intelligence of a normal 5 year old. (e. g. in Ia.nguage understanding,

recognising objects with sight).

The problern of deciding whether or not a machine can be considered intelligent was given some t‘.hought: by Alan Turing
who suggested the now famous Turing test to answer just this question. The test may be summarised as follows:
]
A person is in a room with no communication with the outside world except via computer terminal. S/ he conducts
a conversation with another ‘party’ which claims to be a person, but which may in fact be a computer If the
person cannot tell whether or not s/he is conversing with a person or a compuber, then the computer is said to

have passed the turing test, . !

1] read this from the AI Digest, 1986. I forget the author’s name. ,



Chapter 1

General Introduction to Artificial
Intelligence

1.1 Preface | |

There are a variety of AI textbooks around which present basic material on problem solving, search and planning. However .
most are geared for third and fourth year undergraduates, or postgraduates. Examples include: [[Charniak 85], [Rich 83],
[Winston 84], [Nillson 80] [Barr 81a], [Barr 81b}, [Cohen 81], & [Pearl 84]]). These notes differ from thése texts in two
important ways: i

|

1. I give more elaborate treatment to the basic concepts than is typically found in these more advanced 'texts.

2. T usually avoid abstract formal treatment of the methods and techniques presented. Instead, I a.tl;empf. ito convey sound
intuitions using plenty of examples.

In the large, I present the basic issues problem solving somewhat differently than the other texts. In particular, I place
more emphasis on separating the issues of representation and search. However, many of the important pomts I stress are
borrowed. These notes are a synthesis of many points of view.

1.2 What is Artiﬁcial Intelligence?

Perhaps the first and most obvious question to address is: “What is Artificial Intelligence?”. Unfortuna.tely, there is ngs~ .
accepted definition among the workers in this field. In fact, people’s ideas differ rather substantially. This can be seen from™
the following selection of definitions. The first is probably the most often quoted and universally accepted deﬁm!‘.lon There
are two rather different viewpoints reflected in these definitions: !

Cognitive Science - Psychology: The goal is to understand the process by which humans exhibit mtelhgent. behaviour,
and to replicate this on computers.

Engineering: The goal is to build machines which exhibit intelligent behavmur full stop. It is of no consequence whether
or not the techniques used bear any similarity to those employed by the human mind. j
|
. |
The first three reflect the engineering view and the fourth reflects the cognitive science view. The fifth reflects yet another
view, that of machine liberation which, as far as [ know, (and fortunately, perhaps) is not a widely held view.
“The science of making machines do things that would require intelligence if done by humans.” -

by Marvin Minsky
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Figure 1.1: Structure of an AI Program

No program is likely to pass this test in the near future. Many decades of research are likely to be necessary. Interestingly,
however there is a very famous counselling program called ELIZA [[?]] with which many people conducted intensely personal .
conversations. It was so human-like that they were able almost to forget that they were actually talking to a computer.
Some even got psychologically hooked on it, using it everyday to help deal with their problems. Although this sounds very
impressive, it turned out that this program only used very straightforward computer techniques. They were so simple in
fact, that anyone who understood them would be most reluctant to admit that the program had intelligence in any useful
sense of the word. This program will be examined in some detail in the Natural Language module.

1.3 What is éan Al Program?

This is another very slippery question, which I shall treat somewhat briefly. The obvious and hence unsatisfying answer
is: “any program which exhibits intelligent behaviour”. This however, gives no insights into how people go about building
intelligent programs, or what they consist of. The overall structure of an Al program is illustrated in figure 1.3. You must
encode the relevant information and knowledge in a form suitable for computer processing. This is referred to as an internal
representation. This done, the information must be processed, and then made available to the user of the program. Thus, it
will have to be retranslated back to a form understandable by humans.

At the highest level, this structure resembles that of any computer program. It is in the nature of the internal representation—
and how it is processed which sets AI programs apart. Any intelligent behaviour whether exhibited by humans, monkeys, ol 2
machines requires knowledge as the key ingredient. Therefore, to reproduce such behaviour will indeed require, (as Henry ™
Thompson so succinctly stated on page 3) “the effective computational deployment of knowledge” . The builder of any Al
program will have to consider two major issues: 2 '

1. knowledge repreaienta.tion

~ 2. knowledge appli&aﬁion (i.e. reasoning)

The distinction between representing and applying knowledge is actually quite important. We all know people who evidently
have great stores of knowledge, yet they seem to lack sufficient common sense, discipline, or indeed intelligence to put this
knowledge to use. The ability of putting two and two together, has indeed escaped them. Truly intelligent people not only
know a great deal, but, they also know how to reason with this knowledge to derive new information (e.g. Sherlock Holmes).
Equally important, is their ability to direct their reasoning fruitfully thus enabling the speedy analysis of a situation, or
golution of a problem. ‘Our friend Sherlock would never have gotten anywhere if he simply went on making logical deductions

2Such people are widely (and pretentiously?) known as Knowledge Enginsera (especially in Cnll(omiﬁ}.

i
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&
willy nilly deriving all é:orts of useless information. Simply knowing how to make inferences is not enough, you must know
when to make them! This is discussed further in section 1.3.2.

1.3.1 Knowled gje Representation

How can one represent the knowledge in the computer? One must first consider what sorts of things are required to achieve
the tasks at hand. Then appropriate formalisms must be found which can encode these things in a way which enables a
computer to process thém. It is useful to suggest a classification of the types of knowledge that computer programs typically
have. There are two basic categories, or levels: :

I

1. f)_ﬁsECT._KNQﬁEDGEJ There are two types:

o FAGTUAL KNOWLEDGE: This includes the objects and relationships in the domain. This includes simple facts
_and figures, ;and is often representable using simple data structures.
(e.g. See figure 1.2).
. Ihﬁ'gggﬂbﬂi@aﬁiﬁbﬁmdmatmg how to reason in the domain. This includes deriving new facts about, and
relationships between objects in the domain. These usually can be cast in the form of rules.
(e.g. See figure 1.3) '

2. META-KNOWLEDGE: This knowledge about knowledge. This includes abstract generalisations about the object level
knowledge. An example of this type of knowledge would be a rule like the following. When diagnosing bicycle faults,
first consider all the rules which have to do with problems which are easily and cheaply fixed. Meta-level knowledge is
often used as control knowledge, guiding the making of inferences at the object level

Here we are primarily concerned with the two types of object-level knowledge. The theories and uses of meta-level
knowledge are ill understood, and constitute an active area of current research in Al Early AI programs typically have the
control knowledge implicitly embedded in the program. Recently, people have recognised the usefulness of encoding control
knowledge explicitly m their programs. This is natural extension of the first main tenant of Al programs, which is to make
the knowledge explicit. This issue is not discussed except briefly in the Expert Systems module.

The most important thing to realise is that any representation is simply a stylised version of the objects or information in
the real world. We represent the game configuration for noughts and crosses as a nine digit number in base 3. We encode
blank as 0, x as 2, and o as 1. The first three digits represent the contents of the top row, the next three the middle row,
etc. In doing this, we Have characterised all the essential information about a particular game configuration, but not all of it
by any means. We indicate nothing about the people who are playing, nothing about the weight of the board, or what it is
made of et cetera. A program to play this game would of course need to represent a game playing strategy in addition. The
program would work roughly as follows: You look at the current game configuration (in the real world). You translate this
into the appropriate 9-digit base three number and enter it into the computer (or, even better, suppose the computer was
hooked up to a camera which could automatically generate the internal representation for the board position.) The machine
churns away processing the internal representation it has for the board, the rules of the game, and the strategy, and out
~ cogls a suggested move. The details of how this may be achieved for this game are discussed in section 1.4.

In the blocks world, :we represent the state of the world as a set of predicate calculus assertions. ® In particular, we only
represent the relations on and clear. Nothing about colour or size. There are other things which you may want to reason
about in this domain. | For example, consider the above relation. Your program ought to have the ability to conclude that
block ‘a’ is above block ‘¢’ since it’s on a block (i.e. “b’) which is above block ‘c’. You may well wish to use the fact that
above is a transitive rélation. Transitivity means in this case, if X is above Y, and Y is above Z, then X is above Z. * You
might want to make explicit the fact that the table is always clear. You must consider what you want to do with the blocks.
You will presumably want to move them from place to place. How shall you represent this? You might have a move(X, Y, Z)
command which moves block X from Y to 2. Alternatively, you might wish to break this action down into smaller parts.
This could include commands such as unstack(X), stack(X,Y), pickup(X) and putdown(X). Are there many agents capable
of stacking and unstacking blocks, or perhaps only a single robot arm. How many blocks can be held by an agent at one
time? If there is a single agent capable of holding no more than one block at a time, then it will be necessary to keep track

3See appendix 77 if yoi:.i are unfamiliar with predicate logic. o )
4In general, the relatioh foo is said to be transitive if for all X, Y, and Z, foo(X,Y) and foo(Y,Z) implies that foo(X,Z). Many relations are
transitive. Other uxa.mplu:s include ancestor, taller than, and heavier than. Examples of relations which are not transitive are: father of, can
consistently defeat in o game of squash. Can you think of others?
i 5




; Representation ’Real World’

1. Noughts and crosses: 201011022 X . o
\ o o
i X X
2. Blocks World , on(a,b) -
L on(b,c) | Al
| on(c,table) [---1
i - clear(a) 1 B |
: clear(table) [---1
: I ¢ |
3. Sentence i 8 i Y
! / 0\ AN
i np VP <..>
5 /\ \ \/
é _ / 0\ \ : /\
| det noun verb N/ IN
. | | | \/ I I\
! [the]l [boyl [rums] -t >
i [ 1/
| -l -
: / N/
i / N\
i s(np(det(the), noun(the)), \
vp (verb(runs) AN
)
; "The boy runs"

Figure 1.2: Examples of Representations I




Represen':hation . "Real World’

Fixing a bicyc leé

PROLOG code: ! English rules:
problem(chain_unlubricated) := IF There is much
pedaling(noisy), noise when pedalling
chain(dry), | and the chain is dry
chain(rusty),. and rusty,
[ THEN The problem is an
treatment (0il_chain) := unlubricated chain
problem(chain_unlubricated). which should be oiled.
problem(worn_chain_or_freewheel) :=  IF The chain skips when
causes (pedal_hard, chain_skips), pedalling hard, and if
not(chain(lqose)). the chain is not loose,
i THEN The freewheel and/or
treatment ( : chain is worn and should
replace_freew%eel_and_or_chain) 1= be replaced.

. problem(worn_chain_or_freewheel).
|

Figure 1.3: Examples of Representations II
I

of whether or not the robot’s arm is empty in order to determine what actions the robot might take to accomplish a task.
For instance, if it is holding block ’a’, then it can only perform the action puﬁdown( a). If the robot arm is empty, then it
may be possible to petform unstack(X), stack(X,Y), or pickup(X). Whether it is possible depends, of course on what the
current configuration of blocks is, and what the values of X and Y are.

In the third exa.mplég, we have chosed to represent only the syntactic structure of the sentence: “The boy runs”. There is
nothing about the boy’s name, who his girlfriend is, how fast he is running etc.

Finally, consider the irepresentation for knowledge about how to diagnose and repair bicycles. The example illustrates one
formalism which has found extensive application in a variety of Al programs (i.e. production rules). Figure 1.3 shows the
Prolog code in a.ddltlon to it’s English translation. A complete program for diagnosing and treating bicycle faults would need
many more rules to cover the whole range of possible faults, Additionally, it would require some representation for all of the
parts of the bicycle, and their relationships to each other. For example, they may be grouped into separate subsystems such
as‘t.ransmmsmn the brakes, etc. There are many ways one could represent this information.

There is one critical assumption implicit in the AI program model presented in figure 1.3 about the nature of the internal
representation: The meaning of each bit in the representation must be unambiguous. That is to say, it must be possible to
translate any portion of the internal representation into it’s real world interpretation. Ambiguity arises in a number of ways:

Referential ambigu::t'y For example, pronouns in natural language must refer to a specific person or object. This will
usually be available from context. One could use a specific name such as ‘Dave’, but there might be many Dave’s.
Generate a symbol dave-1 to remove all ambiguity. These are also called instances or tokens.

Word sense ambiguity For example, define caught(X,Y) to mean X caught Y. But caught is ambiguous. Catch a cold, or
catch physical object. A solution: is to use two predicates catch_object and catch.illness. This would not always be a
problem, for instance if we limited our discussion to health problems and knew a priori that there"would never be an
occasion to be catching objects.

This critical assumpi;ion cannot be overemphasised. If there is any sort of ambiguity, then the whole system is potentially
unreliable and it’s usefulness is severly limited. Another way to express this is to say that there must be some consistent
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mterpreta.tlon (m the world) of an internal representation. Recall, the computer is only manipulating symbols; it has no
nction of meaning. It is up to you the system designer to attach consistent meanings to the bits in the representation. Only
then will the tra.nslatlon of the internal representation back into the real world be of any value. This may be summarised
from a negative perspectwe as the GIGO phenomenon (Garbage In, Garbage Out). A knowledge representation formalism
for which a mathema.tlca.lly precise mechanism for attaching meaning to every possible structure constructable using the
formalism is said to have a formal semantics. It is far easier to create complex formalisms for representing all sorts of
specialised knowledge, than it is to give them even semi-formally consistent semantic interpretation. Workersin the knowledge
representation subfield are constantly struggling with bugs in their formalism. They think that they just solved the latest
snag, and then someone comes along and points out a glaring inconsistency, or shortcoming. It should be clear from this
discussion that there are many issues which need to be considered when finding representations. The task of finding the
right representation for a given problem is rarely straightforward. A much more detailed discussion of various knowledge
representation formalisms is deferred to the Expert Systems module. See ?? for an illuminating discussion of these issues.

1.3.2 Reas oniné

So far, we have been discussing representation issues primarily, and have only mentioned inference in passing. Referring
to figure 1.3, we have a 3 stage process in using an Al program. You must first translate all the relevant information into
some internal representation, process the representation internally, and then retranslate back into real world terms. It is this
middle stage that we are now considering. What techniques and/or methods can effectively apply the knowledge in order to
intelligently solve the ta.sks at hand. There are two major aspects in reasoning:

Gonttol_.’l‘h}s_ determq;eg.*_}g_hen to derive what new information’

Any and all intelligent action consists in some form or the other of concluding via some reasoning process something that
was not already known. After all, if you know everything already, there are no problems, and intelligence is never called for!
As a simple example of inference, consider the following. You know that whenever it snows, it takes much longer to get to
work than normally. Suppose when you wake up one morning, you look out the window and see 6 inches of new snow. You
can now infer a new piece of information from what you already know, namely that it will take you a long time to get to
work that morning. This simple inference is an example of logical deduction and is necessarily valid. Other common forms
of inference need not be valid. For instance, you know that when it’s raining, folk usually get wet. Someone walks in from
outside drenched, and 'you make the perfectly sensible inference that is is raining. However reasonable it may be, this is not
necessarily a correct inference to draw, for there could have been a fire hydra.nt nearby which just sprung a leak, or any
number of other possibilities. This is an example of common sense reasoning. It is distinguished from logical deduction in
that, we are wﬂhng to wmhdra.w conclusions and change what we know a.bout the world. Because the amount of information,
knowledge can decrea.ae as well as_increase, reasomng _of this sort is called non monotomc reaaonmg and constitutes a

can we ase that mformabmn to make still other uncertain inferences? Not surprisingly, gettmg computers to perform thig..
sort of reasoning is very difficult, and only very limited progress has been made. There are three major types of mferencf::s
deduction, a.bductlon, iand induction. See figure 1.4 for examples. ‘

Deductive reasonmg is always guaranteed to make correct inferences, i.¢. it will never derive false information. This type
of reasoning is what we generally mean when we use the word ’logical’ in everyday speech. Abductive and inductive reasoning
on the other hand is uncertain. Abduction is type of reasoning which is used to generate explanations. Referring to the
example in figure 1.4: having noticed that I am slurring my speech, the inference that I am drunk is drawn as an attempt
to explain the slurred speech. Yet, I may not be drunk at all, I could have burnt my tongue. Finally, induction is a type of
reasoning which generalises. That is, if a pattern is detected from a number of individual observations, make a general rule.
The reader should identify the type of inference made in the raining example.

Knowing what inferénces are possible to make is only part of the process of reasoning. You must also know which ones to
make, given a choice of many. Different control strategies determine the choice of inferences to draw which in turn dictates
how to go about solving problems which may normally be solved in any number of ways. Consider the bicycle example in
figure 1.3. One could imagine a program which asked the user for all the details of what the current state of the bicycle is and
what the problems are etc. Once this information was available, the program could look in its set of rules to see which ones

5This is Al jargon, other names for the same thing are ressoning with uncertainty, and default reasoning.




| Deduction From: | a. DI'm drunk

: b. IF I'm drunk,

! THEN I slur my speech

! (deduce) Conclude: | ¢, I slur my speech

i Abduction From: | a. I slur my speech

! b. IF Pm drunk,

THEN I slur my speech

. (explain) Conclude: | ¢. Iam drunk

Induction From: | a. Joe slurs his speech when drun'k
b. Nigel slurs his speech when drunk
(generalise) | Conclude: | ¢. IF a man is drunk,

i THEN he slurs his speech

Figure 1.4: Three Common Types of Inference

were relevant thus finding the solution to the problem. Different strategies could be employed however. The system might
allow the user to tell the system everything possible about the state of the bicycle, and then begin to use that information
in conjunction with itsset of rules and make conclusions. Alternatively, the system may ask a few general questions first to
get some clues or ‘hunches’ as to what may be wrong. The system then directs the questioning selectively in order to verify
o:{@ilhy these hunches. In other words, it attempts to make specific inferences (.e. to confirm or deny a hunch), rather than
simply inferring whatever it can.

As another example ﬂlustratmg alternate control strategies, consider high school geometry problems. Suppose you are
given some diagram containing line segments, and angles with only some of the sizes mdlcated You are required to show
t.wo partlcular angles are equwalent.. LO ! vith ™t Ftot hmk ‘of all the axionis
. pproach would be to
e desir fir o . . f only they applied.”
Suppose you find one; call it theorem A. Unless it is an easy problem, this theorem won’t app]y to the or:gmal diagram. You
continue your attempt to solve the problem by asking yourself what would have to be true in order for theorem A to apply.
You then set yourself to the task of showing that those things are true. If you can do this, then theorem A will apply and
the original problem will be solved.

B it T o U

The ﬁrst sbrategy m the geometry example above X often c called farward' reasonsn bec_:ause you ‘start with what is given 18

In the b:cycle example, the first approach described is akin to forward reasonmg. The idea is to start with the current
state of affairs, and apply the rules to see what conclusions can be drawn. The second approach is somewhat mixed. It starts
oulgn 2 forward mode, asking a few questions and making some tentative conclusions. Then, it switches to a backward
reI@ng strategy by trying to verify a hunch.

Note that the chmce of whether to reason forward or backward is often not clear, Forward reasoning, since it infers
whatever it can, may get stuck inferring lots of useless information. In pathological cases, it can go on inferring new thmgs
ad infinitum. Yet a forward reasoning system has the advantage of knowmg everything that it can, so that if any queries are
made, the answer wﬂl be n'nmedlat.ely forthcon'flmg _VJhen Teasoning bac‘l;wards, t may take longer to process queries, but

|
1.3.3 What is different about an AI program?

The reader may be wondering at this point how what we are talking about is different from what we might call conventional
programs. What about highly complex programs written to help send spacecraft to the moon? Surely these embody
tremendous amounts of knowledge of astronomy, aerodynamics, Newtonian mechanics etc. There are certainly no hard
and fast criteria by which one can unequivocably decide whether a given program is intelligent. However, there is fairly
unanimous agreement that any respectable AI program has the following two characteristics. Furthermore, ‘conventional’
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i
programs typically do not.

1. There is some explicit representation of knowledge in the program.

2. The basis for programming is to manipulate symbols rather than numbers.
i
Conventional progra.rhs do indeed embody considerable amounts of knowledge, however, it is not made explicit, instead
remaining deeply buried in the code. For example, the laws of physics are in the form of equations which are tightly embedded
into the code. Two unfortunate consequences of this are that the knowledge:

1. is difficult to modify and

2. cannot be used t.d explain the program’s reasoning

The knowledge used !is not readily accessible to the programmers, or indeed to the program itself. Unless the code is
extensively documented, the assumptions that go into it are unavailable for examination or modification. If new laws of
physics were to be discovered, or more realistically, if some of the assumptions were to change, a major coding effort could
be necessary. Any intélligent entity ought to be able to explain the reasoning used in making conclusions. Only if this
knowledge is made explicit can this be possible. Consider again the bicycle example with knowledge encoded as rules. The
rules which were used to reach conclusions can be cited as reasons for the answers given. The role of knowledge in a program
is discussed in greater detail in section 1.4 where we attempt to define an ‘Al technique’.

i
1.3.4 Symbolic C omputation . ' .

The essence of symboi:ic computation is that the primary activity one engages in when programming is to manipulate
symbols rather than numbers. Clearly, programs which compute trajectories for satellites are primarily crunching numbers.
On the other hand, people have found that when writing AI programs the primary activity is in defining, characterising,
and manipulating symbols. In the bicycle example, there are symbols for various objects such as chains, tires, grease, etc.
These symbols would ordinarily be in the form of strings of letters or words. However, each symbol has a certain meaning
and may only be used in certain contexts. For example you might use the symbol chain(x) to denote the fact that the object
x is a chain. Another symbol, replace-chain, stands for an action, namely that the chain should be replaced. It would be
inappropriate to ever compare these two symbols with each other. It should be clear that in this example there is not much
to be gamed by making numerical ca.lcu]atlons They will not contribute in the large to the problem of diagnosing and
repairing bicycle fault-s.

The fact that Al progra.ms tend to manipulate symbols rather than numbers is unarguable. However, one must be
careful not to carelessly inject any causal relationships here. In no way can it be said that all programs based on symbolic
computation are Al programs. If anything, the causal relation works the other way. The sorts of operations that need to
be performed to build intelligent programs are more easily accomplished by manipulating symbols rather than numbers. As
a result, many new programming languages were developed to respond to this need. The most well known and extensively,_
used symbolic programming languages are Lisp and Prolog. It should be stressed that programming languages are simpl{: .
tools, which programmers have at their disposal. Like any other sort of tool, some are appropriate for some types of job;
and not for others. Although perfectly possible, it would be most awkward to write heavy number crunching programs in
Prolog. Similarly, it would be a nuisance to use conventional programming languages like Fortran and Pascal for many Al
applications.

Newell and Simon [[l\iewell 81)] have attempted to characterise what would be the necessary ingredients that any intelligent
artefact, be it an animal, human, or machine, must have. Symbolic computation is central to their whole thesis. Their
characterisation is embodied in what they call a Physical Symbol System (PSS) which they define as follows:

“A physical symbol system consists of a set of entities, called symbols, which are physical patterns that can occur
as components of another type of entity called an expression (or symbol structure). Thus, a symbol structure is
composed of a number of instances (or tokens) of symbols related in some physical way (such as one token being
next to another).| At any instant of time, the system will contain a collection of these symbol structures. Besides
these stmctures, the system also contains a collection of processes that operate on expressions to produce other
expressions: processes of creation, modification, reproduction and destruction. A physical symbol Bystem isa
machine that produces through time an evolving collection of symbol structures. Such a system exists in a world
of objects wider ﬂmn just these symbolic expressions themselves.”
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In other words, a synilbol gystem is a set of abstract entities (symbol types) that can be combined to form complex ex-
pressions (symbol structures). Examples of symbol systems include the English language, computer programming languages,
and mathematical logic.'

A Physical Symbol System is a machine that can represent symbol structures and manipulate them la.wfuIly That is,
expressions are created,|mod1ﬁed and destroyed (e.g. people, computers).

The symbols themselyes are arbitrary, f.e. just names with no special significance. There are four things about symbols
which need to be distinguished:

1. The symbols t-hen{selves, (2.e. the signifiers).
(e.g. the predicate symbol: ‘apple(X)’)

2. The conceptual content of the symbols.
(appleness, .e. a éweet fruit which grows on trees etc...)

3. The thing in the rea.l world which is signified.
(a particular apple)

4. The implementatipn of the symbols. How are they manipulated?
(computer imp]'.enientation)

Having defined Physmal Symbol System, they go on to suggest what they call the Physical Symbol System Hypothesis:
}.S has the necessa.ry and sufficient means for intelligent action.” This hypothesis consists of two parts:

1. Any PSS is ca.pa.b;le of intelligent action.
[

2. Anything which id capable of intelligent action is a PSS.

The first of these can [be empirically tested (but not proved) by building intelligent programs using PSS’s (i.e. computers)

and corresponds to the |Al as engineering viewpoint mentioned above.
|
The second of these ican be tested by studying intelligent agents (eg people, monkeys, whales) and showing that the

mechanisms used to produce intelligence are indeed those of a PSS. This corresponds to the Al as cognitive science viewpoint.
, .

1.3.5 Closing Réemarks

An Al program represents knowledge explicitly, and is based on symbolic rather than numeric computation. This is not to
say, however, that any|progra.m having these characteristics will necessarily be intelligent, far from it! Nor is it the case
that Al programs may not do number crunching. Some applications, such as vision programs do indeed require considerable
amounts of numerical computation in addition to symbolic programming.

T 2lso0 not the caséa that AI programs are betfer than conventional programs. Al programming techniques have been
dev®®:ed in response to the specific need of creating intelligent computers. There are still zillions of tasks which are most
effectively performed using conventional techniques. It’s simply a matter of selecting the right tool for the right job.

1.4 What is an Al technique?

This is a condensed version of a discussion presented in [[Rich 83] pp 5-18]. Knowledge is the key to intelligent behaviour,
but there are serious problems with getting this knowledge into a computer and using it. Knowledge is:

1. voluminous

2. difficult to a.ccura.&.ely characterise

3. constantly changing

We informally define i;m Al technique to be a method which exploits knowledge and has the following characteristics:
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It captures generalisations That is to say, it must be possible to represent a general case which can be instantiated to a
wide range of specific instances. This alleviates the need for excessive storage requirements.

Knowledge is clearly expressed It must be understandable to those who provide the knowledge, or else it will be difficult
to check it for accuracy.

Easily modifiable This is partly a consequence of the previous characteristic. Can apply to a wide range of situations

In order to illustrate these points, we consider how we might build a computer prbgram which can play noughts and
crosses. We shall consider three different methods for achieving this task. '

1.41 Method 1]

Number the squares on the board as per the following diagram. We can represent the configuration of the game as a nine
digit number in base three, where the digits 0, 1, and 2 signify blark, z, and o respectively. See figure 1.2 for an example.
 For each of the 3° (about twenty thousand) possible board positions, there is a best move which will result in another
configuration which cah again be represented as a base three number (this time with one more non-zero digit). The first
method is to record ex;lzlicitly the game configuration which corresponds to the best move from every possible position. This
information can be stored in an array with 19683 elements, one for each configuration. The number associated with the
"before’ configuration can be used as an index into the array. The value stored in each array element corresponds to the
‘after’ configuration. | '

To play the game, si:mply encode the current board position as a number in base 3. Use this to index into the array to
find the board position which should result from the move from the current position. It will be encoded as a number in base
3 (easily decoded). The actual move is found by detecting the difference between the current and new position.

!

@ 11213

256
7189

Comments: Uses too rinuch space. Not easily modifiable, if the rules changed slightly, you would have to create an entirely
new table. The strategy is not easily understandable from the representation used. This approach will not extend to other
problems without doing everything all over again for the new problem.

1.4.2 Method 2

Number each square ot the board as in the previous method, however this time, encode the values of each element as follows:
blank=2, x=3, and o=5. This simplifies the computation of whether or not it is possible for either player to win. Quite

simply, X can win if the product of the numbers in a row, column, or diagonal is 18, and O can win if the product comes t%-‘

50. We proceed by encoding three sub-procedures to be used by the main game playing algorithm: _ (e

Make2 : Tries to make two in a row (or column or diagonal). Try the center first, then the noncorners.
Posswin(p) : Returns 0 if player ‘p’ cannot win on the next move, otherwise, it returns the number of the winning move.

Go(n) : Make a move on square ‘n’
We then encode an explicit strategy for playing the game. This consists of a decision procedure for where to go on each
move depending on certain board characteristics. (NB: We assume that X moves 1st) For example:

Move 1(X): Go(lg) (i.e. upper left corner) _
Move 4(0): If Posswin(X) is not 0, then go(Posswin(X))
Else:; go(Make2)
The second move entapsulates the strategy of first preventing the opponent from winning on the next move, otherwise try

to get two in a row. Comments: Much more efficient on space, but much slower. Much easier to see the strategy and modify
it. We still cannot generalise this to another domain, without manually encoding a new strategy for the new problem.
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Figure 1.5: Partial game tree for noughts and crosses

1.4.3 Method 3

We describe informally; a procedure for finding the best move from any given game configuration. First, find all possible
moves from the starting configuration. Then, choose the move which corresponds to the resulting configuration which looks
most favourable. We need a procedure for measuring favourableness’ which enables the assignment of a number to each
possible resulting conﬁguratmn This number estimates how likely it is that you will win from that configuration. Unless
the configuration corresponds to a deﬁmte win or loss, it may be difficult to find such numbers which accurately assess the
game situation (more on this in section ??). It would certainly help if we could look further ahead than a single move.

"The idea is to._ look_ahea.d as many moves as resources permit, thus computing a large number of posmble resulting_gamé
conﬁg_l_.l_r__glons This is most conveniently represented in a game tree (see figure 1.5). ® We start by assigning numbers to
each leaf node at the bottom of the tree as in the figure. When doing this, you might take into account such things as
whether the configuration forces your opponent to make a move, or who has certain corners. The key observation which
shoxrs us how to analyse this tree, is that you will attempt to MAXimise your chances for winning (7.e. pick the move with
th yiest number), while your opponent will try to MINimise your chances of Wmnmg (i.e. pick the move which has the
lowest number). For ex«l'smple (see figure 1.5), if you were to make the move with ’x’ in the middle of the top row, then your
opponent would put their *o’ in the lower left corner since this corresponds to the lowest number and is thus his/her best
move. We have now prédicl:ed what the outcome of that move ought to be, so we assign to it the corresponding value (i.e.
-3). Similarly, we asslgn numbers for the other two moves and then pick the one which ha.s the highest number (the details

of the other two moves are not in the figure}..

This procedure is known as MINI-MAX search and is discussed in greater detail in section 77, Finding procedures for
assigning numbers to eva.lua.te goodness of game configurations is part of the study of heuristics which is discussed in detail
in section ?77. ;
Comments: This is much less efficient than methods 1 and 2, but for large problems, the other methods are less feasible.
There would be insufficient space for the first method, and for the second method, it would be difficult to characterise a
strategy fully. The major difference in this method is its potential for extensibility in other domains. In fact, it has been
applied with some succ!eas to such games as chess, draughts, go, and many others. The way to create the game tree depends

€Consider conﬂguratwns which are symmetric as being identical. Thus, instead of nine starting moves, there in fact only three (side, corner,
and center).

|
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I
on the rules of the game. The way to assign the number which assesses how good the game configuration is will also depend
on" the game. In chess; for example, you must take into account not only the value of the pieces on the board, but their
relative positions as well. Other than this, the way to search the tree, (s.e. the MINI-MAX procedure) is unchanged. This
latter method is a good example of an Al technique. -

I

1.5 Key Subﬁelds in Al

1.5.1 Major Su';bﬁelds
Knowledge Represe::ntation and Inference

This is the heart of AIL Any sort of intelligence that one can imagine will certainly require the existence and application of
knowledge. We huma.n!s know an awful lot, but we don’t know very well how that knowledge is stored in our brains. Neither
do we understand much about the mechanisms of accessing the knowledge and making inferences from that knowledge. This
very large and significant subfield concerns itself with these issues.

Planning and Search

This subfield used to go under the single label: Problem Solving. Solving problems invariably concerns itself with creating
some plan of action to solve the problem. Creating this plan invariably requires some sort of implicit or explicit searching
through all the possible approaches to solving the problem. This is another ’core AT’ subfield which is relevant to most of
the rest of AL

* Vision
How do we see objects‘;’ More importantly, how to we recognise what it is that we see?

Natural Language Processing

The goal here is to build computers which humans can converse with in their native languages, rather than some highly
formal computer language. Most work has concentrated on English, but there are a number of other languages under study,
including, Japanese, Chinese, Italian, French, and Italian. '

Expert Systems

This is to a large extent, applied AL Expert systems have been defined to be computer programs which can perform some task
which is difficult enough to require genuine human expertise (as opposed to simply requiring some intelligence). The rangcg
of applications to date is extremely wide, from medical diagnosis, to mineral prospecting to nuclear power plant monitoring

systems, !

1.5.2 Other Su;bﬁelds

There are many other more esoteric and/or more specialised subfields in AI This is by no means a universally accepted
breakdown of the field, but close enough for our purposes. It happens to reflect the choice of the organisers of the most
recent International Jr%)int Conference on Artificial Intelligence in summer 1985. These are summarised below: '

Philosophical foun(iat.ions

What is the nature of intelligence? What is knowledge? What are the philosophical/moral implications of building computers
which are even smarter than humans? Will computers ever think? Will computers ever achieve self-consciousness?

| 14
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Cognitive Modelling

What are the actual mechanisms which are responsible for producing natural intelligence in people and/or other animals,
This overlaps considerably with psychology and places much less emphasis on actual computing.

AT Architectures

This is anything but a!cohere'nt subfield. However, people are studying a variety of architectures for building AI systems.
Many have been built in an ad hoc fashion, in pursuit of solving a specific problem and are identified only after the fact.

Robotics l

Building robots which can perform motor tasks like going through a room or picking up an object form an assembly line, or
hoover your carpet. Thxs field is to some extent away from mainstream Al and overlaps considerably with physics, a.pphed
maths, mechanical engmeermg etc. On the other hand, successful robots of the future will need to apply technology from
many other areas in Al including planning and search, vision, knowledge representation and inference

i

{
Automatic Programming

H@Aan we get comp'uters to program themselves? Start with high level specifications for what the program is to do,
ana eventually write t.f_le program. This draws heavily on the theory of programming from computer science, and is very
closely related to the pia.nnmg subfield. Writing a program to achieve a variety of tasks which may interfere with each
other will involve a consuierable amount of very careful planning. Finding adequate formalisms for specifying programs and
transforming this mto a ‘correct program draws conmdera.bly from the knowledge representation and inference subfield.

- Knowledge Acquisit!ion and Learning

This area concerns itse:lf with acquiring the knowledge which is needed for AI programs. There are a number of techniques
which have been tried which vary from labour-intensive approaches where knowledge engineers interview the experts and try
to formalise the expertlse, to automated approaches where a knowledge base is created automatically by noticing patterns

in a data base of a,ct.ua.l cases.

Al in Education |

How can computers be used to teach? Other related issues include building intelligent interfaces to existing computer systems,
building models of the Jusers which can be used to expedite learning, etc.

Log,.‘;' Programmin g

Using logic based formialisms diref.tly for programming. The best example of this is PROLOG.

Theorem Proving

How can theorems be proven automatically? This is closely tied in with logic, and is the basis for implementing languages
like PROLOG

1.6 Summaréy

In this chapter, we have given a general introduction to the field of Artificial Intelligence. A number of definitions were
offered, a the most popula.r of which is roughly, “the art of building computer programs which perform tasks which require
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intelligence”. We noted that the primary ingredient of all intelligent behaviour is Imowkdge. Thus, the central tasks, faced
by builders of Al programs are how to represent and apply knowledge. Intelligence requires not only the existence of great
stores of information (i.e. knowledge about the world) , but also the ability to reason with this knowledgel The two crucial
components of the reasoning powers of a truly intelligent entity are: st |

e inference: the ability to derive new information from old (e.g. logical deduction)

e control strategy: knowing what information should be derived when. '
We identified two characteristics which tend to be unique for Al programs: |

1. Knowledge is represented explicitly.

2. The basis for programming is in the manipulation of symbols rather than numbers. !

Representing the knowledge explicitly in a program enables easy modification because the assumptions 'behind the code
are evident. It also becomes feasible for the program to justify it’s reasoning, or decisions. The importance of symbolic
computation is evidenced by the new style of programming which arose as a response to the needs of people who wanted
to build intelligent programs. It has even been postulated {but not proven) that any ‘physical symbol syst.elam’ is capable of
exhibiting general intelligent behaviour. Finally, we presented a very brief survey of the major and minor subfields of study
within Artificial Intelligence. '

.ﬁhe remainder of these notes, we shall only consider one of these subfields: Planning & Search. This istan outgrowth of
the more general field of Problem Solving which was a major preoccupation of Al researchers in the early days. We begin
by considering conceptual frameworks for solving problems. I
i
In doing so, we motivate the need for search. In chapter 77 we explore a wide variety of search techniques. In section 77
present some formal methods of searching state space representations. It is here that we introduce the use of heuristics in
problem solving, which is a general technique applicable in non state space representations as well. In section 7?7 we address
the issue of search as applied to the problem reduction representation. Finally, in section ?? we will discuss search techniques
for game playing. We will see that the problem of finding game playing strategies can naturally be cast into the problem
reduction framework.

In chapter 7?7 we introduce planning, a.s_ it is currently viewed in Al In particular, we discuss some of t:he limitations of
simple state space search as it is used to create plans. .

1.7 Further Reading |

Every Al text introduces the subject in a different way. I have distilled what I deem to be most useful f:i'om a number of
sources. The model of an Al computer program is borrowed from chapter one of [[Charniak 85]|. The brief discussion of
piguity is from chapter six of the same text. A more extended discussion of physical symbol systems may be found in

[ A1 81]]. The discussion about what constitutes an AI technique is a condensed version of the mt.roductory chapter of
[[Rlch 83]].
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Chapter 2

Problem Solving Paradigms |

Early workers in Al attempted to write programs to solve simple problems, puzzles and games which required a certain
amount of skill for humans. By looking at some simple problems, and intuitive approaches to solving them, they began to
characterise some general approaches to solving problems. Two issues of fundamental importance emerged:

Choosing Representations

|
¢ Search :

The representation issue is primarily to do with finding the appropriate perspective from which to view a éroblem. Viewed
correctly, an otherwise difficult problem can appear trivial. Defining a representation for a problem consists of three tasks:

1. finding structures which can describe the problem

2. defining rules for manipulating these structures for the purpose of finding a solution.

|
3. identifying in terms of these structures what constitutes the solution to the problem

In this chapter, we explore in detail the issue of finding representations for solving problems. In particular,|we examine two
problem solving paradigms which have been used extensively by Al workers. A problem solving paradigm can be thought
of as a framework for representing problems, or equivalently, a set of rules for formulating a problem in puch a way that
the method of finding a solution is well defined. In other words, a problem solving paradigm provides a structured way for
achieving the three tasks listed above, We sghall study two such paradigms, state space search, and prob!em reduction,

The search issue concerns itself with ﬁndmg the appropriate strategy for a.tta.ckmg problems, once formula.ted Although
g ally different in nature, the issues of finding representations, and search are not at all mdependent By carefully
|} .ating a problem, the amount of search can be drastically reduced. Indeed, as we will see, some problems when viewed
correctly, are in fact trivial. That is to say, there is no search required! This issue is treated in detail in chapter 77.

2.1 State Space Representation |
I
2.1.1 Formal Description :
This highly celebrated approach to probleni solving is best described in the following quote [[?], p7]:
1

|
“We postulate some kind of space in which treasures are hidden. We build symbol structures (nodes) * that
model this space, and 'move’ operators that alter these symbol structures, taking us from one node t::o another.
In this metaphor, solving a problem consists in searching the model of the space (selectively), movmg from one
node to another along links that connect them until a treasure is encountered.”

1 Node is & term used by mathematicians and computer scientists when describing data structures such as trees and mphs
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Figure 2.1: A Generic Search Space ,

Depending on the specific requirements of the individual problem, the solution may be the treasure itself, or it may be .
the path to the treasure consisting of a sequence of move operators. The important thing is to be able to! recog:mse that a '
treasure has been encountered.

This space which is being searched is called a search space (see figure 2.1.1). A node, Si, is referred to a:s a state, which
can in principle be any sort of object at all. For the time being it is convenient to restrict the usage of the term state to refer
to a world state. By that we mean some partial description of the world which nevertheless is a complete|characterisation
containing all the information relevant to the problem. For example, in the noughts and crosses example, a state would
consist of a complete description of the state of the game, (i.e. the locations of all the x’s and o’s). Other interpretations
for a state will be considered briefly in section 2.3.3, and in considerable detail in chapter ??. A node at which a treasure is
present is ca]led a goal state node, or simply, a gca.l state, I

|
A link joining state Si to Sj indicates that there is an operator which may legally be applied to Si which transforms the
problem state into that represented by Sj. Operators are often called actions because they correspond to real actions being
performed by agents whose effects are to cha.nge the sta.f:e of the world. New things become true, and things which previously

were so, no longer are. !
i

In order to solve a problem using the state space paradigm, you must first formulate it by performing the' following tasks:

i
Represent States: Design a structure for representing a world state. It must contain all of the information relevant to the
problem. .

Initial State: Give a description of the initial state using this structure.
Operators: Characterise all operators which can transform one state into another.

|
|
i
Goal State Recogniser: Devise a test which can recognise whether or not a goal state has been rea,ched.l
|

. . |
Onece formulation is complete, the framework is set, but we still have to solve the problem. In the state ispace paradigm,

this consists of finding a sequence of operators which, when applied, transform the initial state into a goal sta.te Graphically,
this operator sequence corresponds to a path of arcs through the search space. Finding the solution path requ:res search.

We shall now illustrate by way of two example problems how the state space paradigm works. In what {ollows, we shall
concentrate primarily on issues of representation. We will also see how much this impinges on the resultant/search required.
A more formal discussion of search techniques is deferred until chapter 77. ;

2.1.2 The Monkey and Bananas Problem
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Figure 2.2: Monkey and Bananas Problem

I
. i

This problem is a long time favourite for illustrating state space search. Consider the scenario depicted in!figure 2.2. The
monkey wants the bananas, but cannot reach them while standing on the floor. The monkey may move the! box from place
to place, and also has the ability to climb on to the box (which would give it the necessary height to reach the bananas).
For us, there is really no préblem here. It’s obvious what the monkey should do. But does the monkey know? More to the

point, how could we represent this problem to a computer and how might we teH it to go about finding a sdlut-ion'?

We might use predicate logic assertions to represent the state of affairs at any point in time. Figure 2.3 shows what the
initial state and goal state recogniser look like. !

Note that we are not interested in a complete description of the goal state. It suffices to test for the sing!lg assertion. In
particular, it does not include the location of the monkey and/or the box after the monkey has the bananas,

The operators correspond to the actions which the monkey is capable of performing. These are:

:
]
e climb_on: climbs on to the box from the floor I

4 “oush_box(X,Y): push the box from place X, to place Y ' i
. |

“ e go(X,Y): go from place X to place Y |
|

|

e grab_bananas: grabs the bananas.

Note that the second two operators are act.ually characterising many possible actions depending on the wa.lues of X a.nd
Y. This is analogous to a procedure in a computer program. Operators in this form (t.e. with va.rmbles] are referred to
as operator schema. The operators need to be further formalised. In particular, it is necessary to rest.nct the application
of these operators to only those states from which these actions would be possible. For instance, it would|not be possible
for the monkey to push the box unless it was in the same place as the box. Furthermore, it is necessary to: model how the
state of the world changes as a result of the monkey performmg one of the actions. One concise way to represent this is
to summarise the preconditions and effects of each action in terms of the predicate calculus assertions whlch affect or are
affected by the action. The operators can be completely characterised by three lists, the preconditions, the add list, and the
delete list (see figure 2.3). The preconditions are all the assertions which must be true before the action ma.!y be performed.
The add list consists of all the assertions which become true as a direct result of the action. The delete lmt. conversely, is
the list of assertions which are no longer true as a direct result of the action. For instance, pushing the bor from p4 to p3
results in the deletion of the assertion at(box,p4), and the addition of the assertion at(box,p3).

|
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Initial State Goal State Recogniser |
at(monkey,p1) I8 the assertion: ;
at(box,p4) ‘status(bananas,grabbed)’ 5
at(bananas,p2) in the database? !
on(monkey,floor) :
status(bananas,hanging)

Action Preconditions | Add list Delete list

climb_on at(monkey, X) | on(monkey,box) | on(monkey,floor) E
at(box, X)) i

push_box(X,Y) | at(monkey, X) | at(monkey,Y) at(monkey,X)
“at(box, X) at(box,Y) at(box(X) i

go(X,Y) ? ? ?

grab_bananas ? ? ? '

Figure 2.3: Problem Formalised

There are other details which you also would need to provide the computer. These include such things las the fact that
pl-p5 are places. This could be done by putting five assertions in the database of the form: place(P). You would want to
restrict the types of things that can go in certain a.rgum.ent positions in the predicates., Thus, the predma,f,e at(X, Y) must
have a place as its second argument. For example, it won’t try matching at(monkey, box). The reason for domg this is that
when the computer goes about solving the problem, it will have less work to do. |

]
I

Search Strategy: Finding a solution, |

At this point, the representational issues have been settled. The problem has been formulated. We have|an initial state,
some actions which can change the world state, and a test for recognising a goal state. The search space for this problem
consists of all the possible world states which can result from the monkey performing any of its actions. That is, let the
monkey move about, pushing the box from here to there, climbing on the box, grabbing the bananas, etc. It is important to
realise that the search space itself, will never exist on the computer explicitly. Rather, it is in the deﬁnitic:ms of the initial
gtate, actions, and goal states which implicitly define it. It is not searched by generating the whole thing and looking at it.
Instead, it is generated on the fly, as necessary. Once a path is found to a goal state, computation stops. See figure 2.4 for
an illustration of a partial search space for the monkey and bananas problem.

One thing that is clear from this ﬁgure, is that there are indeed a myriad of choices to be made in ﬁitding a path to
a solution. How to make these choices effectively is a control issue, and is the essence of search. The key question is in
determining which actions should you apply and when? At any point, there may be a number of possibilities. How can we
decide? The obvious and naive thing to do is to use a forward reasoning strategy, randomly applying any ac‘:ion it can. This
could lead to pushing the box back and forth till the cows come home. Preferably, there would be some way to determine
which of the choices are likely to lead to a solution. How to do this is not always clear. . |

]

An alternate method would be to reason backwards from the goal state. For the monkey to have the bananas, it must have
performed the action: grab.bananes. This is because it does not have them to begin with, and no other action has on its add
list anything about the bananas being grabbed. The conditions which must be true before it can grab them are that it is
under the bananas and standing on the box. We could then turn our attention to the slightly smaller problem of putting the
box and the monkey under the bananas. It turns out that with our current problem formulation, this approach is not is not
entu'ely straightforward to implement. A suitable technique for implementing this strategy is called means ends analysis, It
is described in detail in section ?77. _ i

In this example, it seems much more sensible to reason backwards, This is not surprising, since you are uéing information
about the goal state to solve the problem rather than somewhat arbitrarily acting from the initial state in hopes of getting
to the goal state. '

EXERCISE 321 Represent the preconditions and effects for the actions go(X,Y) and grab_bananas.
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Figure 2.4: Partial Search Space
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EXERCISE 822 Suppose our poor monkey climbs on the box and is not under the bananas. According to our formali-
gation of the problem, the game is over, for it has no way to get off. Is a climb-off action required? Why or why not? What
are the advantages and disadvantages of adding this action? !

2.1.3 8-Queens Problem

This problem can be succinctly stated as follows:

Place 8 queens on a chessboard so that no queen is attacking any other queen.
Recall, the four tasks requu-ed for solving a problem using the state space paradigm are: first, determme a structure for
representing states; then give the initial state; thirdly, define operators which transform states; and ﬁna.]ly, define a fest

which can recognise goal states. i

In this case, a world state consists of some configuration of up to eight queens on a chessboard. It is easy enough to draw a
picture of a chessboard with queens on various squares, however we must find a representation suitable for the computer. To
this end, let each square be identified with an index into a 64 element array called ’board’. Let the value of each array element
be ‘empty’ if there is no queen on it, and ‘queen’ if there is. The array itself may be one or two dunensaonhl depending on
which of the following choices is rnade |

1. Number the squares on the board 1 to 64. 1-8 is the first row, 9-16 is the second row, etc.

|
2. Identify each square as an ordered pair (i,j) where i is the row number, and j is the column number. |
i

The remaining three tasks can be achieved in a variety of ways, depending on how one views the probllem and decides
to attack it. I will present several different approaches to solving this problem which are increasingly more intelligent. We
will then see how well these approaches map onto our paradigm. Some of the differences will affect the way we formulate
the problem which can have a significant effect on the amount of search required to solve it. Other dﬁferénces among the
increasingly intelligent approaches described below will be purely search control issues which are taken mto account only

after the problem has been formulated. Details of the search issues are deferred until chapter 77. |
|

Trial and Error-‘Dumb’ - _ .
The most naive approach which a child might use is to randomly place the queens down on the board and then look to see
if that placement constitutes a solution. If not, then move one queen one space in any direction and check again to see if a
golution has been found. Continue this process until a solution is found. This can be formulated as follows:

Initial state : The eight queens are randomly placed on the board.

Operators : The only action possible is to move a queen from one square to another. The, a following single operator schema 'I

is sufficient: move(X,Y). This is interpreted as move the queen on square X to square Y. The necessary preconditions
are that there was a queen on square X, and that there was no queen on square Y. The second precondzt:on encodes
an implicit assumption that only one queen is allowed on a square. It must not be left out! |
Goal State Recogniser A given chessboard configuration constitutes a goal state if and only if there a.re exactly eight
queens on the board and no two queens are on the same row, column, or diagonal. I leave this as an exercme

The search space consists of four and a half million nodes, corresponding to all possible combinations of eight queens on a
chessboard. While this formulation is correct, it does not in fact capture the trial and error aspect. This is[a search control
issue, not a representational one. The method is not guaranteed to find a solution, because there is no rhyme or reason
behind generating the next move. You could eagily encounter the same positions over and over again. There are too many
to store each one and do a simple check for duplication.
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Trial and Error-‘Smart’ : :

' |
We can make a considerable improvement on the last method if we choose which queen to move somewhat more carefully.
If we choose a queen that is currently under attack and move it to a square where it is no longer being attacked, it would
seem that an answer would be found more quickly. This choice, which seems like a control issue, can act.ua]ly be embedded
into the representation itself. We need only we can alter the preconditions of the move(X,Y) schema above by requiring the

queen on square X to be currently under attack and that square Y is currently not under attack. |

In doing this, we prevent a great number of moves which were allowed in the previous formulation. Thus, the search space
has been reduced considerably. It is still a trial and error method because there is no procedure which says which of the
several possible moves should be tried at any point. Also, as before, there are no guarantees that a solution will indeed be
found. A position might be reached from which no move is poasible. The reader should verify this to hlmse!.f or herself. It

may or may not be possible to recover from such a position by reconsidering previous moves. |
|

Systematic-‘Dumb? ' |

We would like a method which is guaranteed to find a solution if one exists. This can be done if all the possible placements of
queens are generated systematically. For example, we might number the squares on the board 1 to 64. Start by placing seven
queens on squares 1 through 7. Take the eighth queen and generate the first 57 possible board configurations by placing it
on square number 8, then 9, ... up to 64. Each time check to see if a solution has been found. At this point,’ all the possible
bogad configurations have been tested which have squares 1-7 covered. Now, move the queen on square 7 to square 8. We

L‘ry all possible placements of the last queen which yield new configurations. The case where it’s on square 8 has already
been tested, so we begin with square 9 , then 10, ... to 64. These are the next 56 possibilities (assuming t;'hat no solution
has yet been found, which, of course, it w1.ll not have). We continue this way until all possibilities have been tried, or until
a solution has been found. 2 '

It is not so easy to see how to reformulate the problem to get this behaviour. The initial state iz with all queens on the
first row. There are never any choices to be made, the next state is always predetermined. It would be very,dlfﬁcult indeed
to structure the operator preconditions so as to guarantee the right move for the right situation. |

This method has the advantage of guaranteeing that a solution will be found. Even so, there are still 4.5 million possibilities
which need to be checked. The majority of these can readily be identified as being losers by we ‘intelligent’ folk without even
thinking about it. A systematic, yet unintelligent approach like this is commonly referred to as a brute force method. In
spite of necessarily being able to find a solution, this approach might actually prove worse than the previous trial and error
method since the latter has a smaller search space. This would be especially likely, if the latter method was equipped with
gome capacity to recover from a dead end. What we need is some combination of the above two methods, 2. e a systematic
approach which chooses moves “intelligently’.

|
]
|
Systematic-*Smart’ i

v |

L* inake the observation that there is never any reason to knowingly have two queens on the same row. Inatead of placing
all'vite queens on at once and checking to see if it is a solution, we begin by placing the first queen on some arblt.rary square
in the first row (i.e. squares numbered 1-8), Proceed by placing the next queen in a free square on the sec?nd row (9-16).

A square is free if it is not under attack by any queen on the board so far. We solve the problem by placing;one queen at a
time on the board, one per row. If at any point, we get to a row which has no free spaces, then go back to a row where there
was another option and try that one instead. Continue this process as before until the eighth gueen is on the: board, or until
there are no more choices which have not been tried. Note the similarity between this approach and PROLO(I} backtracking.

The new problem formulation is summarised below: _ ' |

Initial state : There are no queens on the board (i.e. Every element in the array has the value ‘empty’). |

Operators : The only possible action is to put a single queen somewhere on the chessboard. This is forma.hsed by the
operator schema: put(X). This is interpreted as placing a queen on square X. The preconditions are that square X is
not currently under attack.

i
2The study of the principles underlying this process of enumerating all the combinations of possible queen placements s a subfield of mathematics
called eombinatorics. i
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Figure 2.5: 8-Queens Problem

Goal State Recogniser The goal state is reached if all eight queens are on the board.

This relatively minor change in point of view, has a rather major impact. This new formulation has a numbelr of advantages.
First, the search space is dramatically smaller. Thousands, perhaps millions of states are avoided. Furthermore, we save a
great deal of computation in the goal recognition phase. The test is now trivial. We avoid much redunda,nt computation
which was necessary when the entire chessboard had to be checked each time for attacking queens. The war]-: is done in
the formulation of the operator. You only have to check for problems with each new queen as it is placed on the board. A

solution is guaranteed as soon as the last queen is in place! i

The method of search, is still undetermined by this formulation. There are actually two aspects to this method. The first,
namely placing the queens one by one only on to free squares, is a representational issue which ultimately changes the entire
problem formulation, The second, which says how to recover from a dead end is purely a search control i issue. It ensures
that all possibilities are checked, thus guaranteemg that any existing solutions will be found. _ |

As in the smart trial and error method, dead ends are possible. The method described above is known as as backiracking.
However, it is still a brute force method enumerating all the possibilities. We are still basing decisions about what to do
next on an arbitrary selection procedure (perhaps left to right) instead of on the basis of how promising a move might be.

Even so, by looking at the problem in from a different viewpoint, we have effected considerable savings. |

. - !
)
]

Heuristic Method

The final technique that we will discuss is a straightforward, and in fact fairly minor variation on the pre*{lous method of
placing queens one at a time, row by row. The difference will be in how we choose among the options each time a new
queen is being put down. Instead, of choosing an arbitrary order, and applying it systematically, we will use some sensible
guidelines for selecting a square to place each successive queen onto the board. Suppose we have already p;la.ced the first 3
queens as indicated in figure 2.5. There are 3 choices for the placement of the next queen (assuming that wé do the rows in

order). How can we select the one which is most likely to lead to a solution quickly, thus avoiding the costly backtracking? A .

good rule of thumb, is to make the choice which will leave the most number of options open for later queen placements. This
could be formalised in a number of ways. For example, consider the move 1. If the queen was to go here, there would be a
total of 8 free spaces remammg on the whole chessboard. The other two choices, 2, and 3 would leave 9 and 12 respectively.
Thus, the best move is option 3. This number is a measure, or an estimate of how good a choice is. i
This method is certainly a good deal more intelligent than the previous ones. In the jargon of Artificial Iﬁtelligence, it is
called heursstic search. A heuristic is simply a rule of thumb, some hint about the problem domain which will help solve the
problem quickly. The procedure for measuring how promising a possible move is likely to be is called a heuristic evaluation
function. It is a function (in the mathematical sense) because a specific number is associated with each situation,
chesshoard (t.e.

EXCERCISE 340: Determine goal test algorithms for each of the two representations suggested for the
the one and two dimensional array). Which is better? Why?

EXERCISE 341 Identify any differences in the problem formulation which are required for the heuristic search approach
as compared with that used for the smart systematic method? If there are any, how does the change affect the search space?
If not, explain why. |

EXERCISE 342: Think of ot-her ways to formalise the general heuristic of keeping your options open for the 8-queens
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Figure 2.6: Towers of Hanoi |
|
problem. In other words, what other heuristic evaluation functions will act as sensible measures of how good a particular

choice of queen placement is? |
i
i

2.1.4 Towers of Hanoi g

There are four discs stacked on tower a as in figure 2.6. The problem is to transfer all the discs to tower ¢ under the proviso
that at no time can there ever be a larger disc on a smaller one. Tower b may be used to store discs temporarily. I leave
tlamns an exercise. |

EXERCISE - Formulate the Towers of Ha.nm problem using the state space paradigm. Draw a tree dialtgra.m of part of
the search space. Only go a few levels down and ignore redundancy (e.g. don’t consider undoing the last move}

I
2.1.5 Summary _ :

We have described the state space paradigm for solving problems. In order to formulate a problem in this paradigm, you
have to:

3. Cha.racterrse all op opera.t.ors which can transform

s e ATl Ao

stit“é"ih_t;gj:;i:iiétliér.

4.'Devise a test which can recogmse wheEher or not a given state “constitutes a solutmn

Two example problems have been discussed in detail, and alternate formulations considered. Note the dramatically different
nature of the world states for the two examples. In t-he case of the monkey and bananas the nodes are simply s sets of assertions

™ describe the whereabouts of the monkey and the boxes etc. In the case of the 8-queens problem, the node corresponds
ti:a @particular placement of some or all of the queens on the board. In this case, a world state is represented as a 84 element
array. This is not to say that it is not possible characterise the state using assertions as before, only that it was not the
natural thing to do. _ i

Note also that there are in general many possible ways to formulate a problem even using the same st'a.te-:spa.ce paradigm.
We saw this in the 8-queens problem where we had different initial states, different operators, and even different tests for
goal states. In the next section, we consider another problem solving paradigm, problem reduction. |

|
|

2.2 Pfoblem Reduction

2.2.1 Formal Description

Another quite different approach to solving a problem is to break it up into subproblems which are hopefully easier to solve.
Solving the larger problem then reduces to solving all of these smaller subproblems. Of course, it may be necessary to further
reduce the subproblems into still smaller subproblems. This process stops when the individual subproblem are go trivial that
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they can’t really be viewed as problems at all. We shall refer to these as primitive problems. They correspofnd to primitive
operations in the problem domain which are immediately achievable. The overall problem is considered solved when all of
the subproblems are reduced to primitive problems. i

.
It is equivalent to speak of goals, rather than problems. The goal corresponding to a problem is si.mpl)f: to solve that
problem. Thus, we can speak of reducing goals to subgoals, instead of reducing problems to subproblems, and of achieving
goals rather than of solving problems. I shall use both terminology interchangeably. |

Generally there are two ways to reduce a goak:

i

|
1. By enumerating a number of alternative subgoals any of which if achieved achieves the original goal. The alternatives
can be thought of as methods for achieving the original goal. |

2. By enumerating a number of subgoals all of which must be achieved to achieve the original goal.

To formulate a problem using this paradigm, the following tasks are required:

1. {Main Goal: Define the main_goal.”

el

3. Raules for reducing the problem: Define rules for reducing goals into subgoals. This is generally the hardest part.

For their may be various types of subgoals which reduce differently. Tt must be possible to foresee all possible. types of

‘goal so that all can be reduced, : ' !
4. Primitive Subgoals:_Define the primitive subgoals. -

. : |
A convenient way to represent this problem formulation is to use an And/Or tree. When used in this coxflt.ext, it may be
referred to as a goal tree. The root node of a goal tree is the main or top level goal, the branches correspond to subgoals.
The or nodes are appropriate when any of the subgoals will suffice; the and nodes appropriate when all the subgoals need to
be achieved to achieve the parent goal. In general, a goal tree will have some sort of constraint(s) associated with it. Finally,
there are leaf nodes. These correspond to the primitive subgoals. - :

The nature of a solution is a rather different than for the state space paradigm. Instead of a simple path which leads from
an initial state to a goal state, represented as a sequence of operators, we have a goal tree with and nodes and or nodes to
analyse. A solution is no longer a simple path, rather it is a subtree. A goal tree is said to be solved if it’s root node is
solved. There are three types of node, each having different criteria for being solved. This is summarised as follows:

e An And node is solved when all of its successors are solved.
e An Or node is solved when at least one of its successors is solved.

i

|

o A Leafnode is solved if it obeys all the constraints. i
The general case of a goal tree is illustrated in figure 2.7. An example solution subtree for that tree is fou!nd in figure 2.8.
The nature of the search is also quite different. It consists of traversing the goal tree, keeping track of whether the nodes are
and nodes or or nodes, and also minding the constraints. This is discussed in some detail in section 77, T‘ihis will become
more clear by considering some examples. |

I

1
2.2.2 Enjoying Your Holiday |
Your problem is that Mike wants to enjoy his holiday, but he only has £300 to spend. He has Iimitedl himself to two
alternatives: to go cross-country skiing in Norway, or to go the Canary Islands and get a suntan. In either case, he will
need to consider transport, and accommodation, The transport options may be combinations of car, train, ferry, and plane.
Accommodation would be rather cheap in Norway if he stayed in mountain huts, or expensive if he stayed in hotels. Similarly,
the Canaries offers a choice between pensions and hotels (unless, of course he happens to have a friend there!)

We will address each of the four tasks enumerated above. The main goal is for Mike to enjoy his hcfaliday The only
constraint is the £300 limit on spending. There are two alternate methods for achieving the top level goal: going to Norway,
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Main goal : To enjoy your holiday.
Constraints : You must spend no more than £300

Rules for Reducing Goals into Subgoals : There are no regular rules to follow per se. Each subgo:a.l reduction is
mentioned explicitly in the problem description. See goal tree above. |

Primitive Subgoals : There are two classes of primitive subgoals corresponding to the two types of deéisib,hs that need to
be made. The primitive subgoals for transportation are fly to destination, take train and ferry to destin#ts'on, and Take
car and ferry. For accommodation, the primitives are Stay in pensions, Stay in Mountain huts, and Stay in Hotels.

Figure 2.9: Goal Tree: How Can Mike Enjoy his Holiday

or the Canaries. Each of these, further reduces into two subgoals: make arrangements for transport and for aL:commodation.
However, the options available if going to the Canaries differ from those available if going to Norway. For %;\. problem such
as this one has to make choices as to which actions and/or sugboals are to be taken as primitives. Conceivably, one could
further reduce the problem of flying to Norway by worrying about how to get to and from the airports, etc. Similarly, the

problem of staying in hotels involves dealing with incompetent clerks, stolen goods, etc. However, since this is not in the

problem description, we ignore these details. Instead, we assume that Mike knows how to deal with the vagaries of flying,
riding trains, sorting out hassles with hotel clerks etc. These are not perceived as a problems, and thus are considered to be
immediately achievable. Therefore, we shall take them to be the primitives for our problem. For simplicity, 1 we ignore other
relevant considerations such as food, entertainment, etc. This discussion is summarised in figure 2.9.

Once formulated, however, the problem is still not solved! We have not considered at all how a solution may be found. One
thing is sure some, search will be required. There are many possibilities which must be examined. At the risk of repeating
ourselves, we continue to emphasise that the issues of representation and control although related, are quite different. We -
saw this already with regards to the state space paradigm. This problem is easy enough to solve by inspection. One possible
solution subtree for the holiday example is shown in figure 2.10. Note that the cost is within the stated const.ra.mt We will
take a closer look at control strategies for searching goal trees in section ?77.

2.2.3 Counterfeit Coin Problem

This problem (from [Pearl 84] p23) is stated as follows:
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Figure 2.10: An Example Solution Subtree .
)

“We are given 12 coins, one of which is known to be heavier or lighter than the rest. Using a two-pari scale, we

must find the counterfeit coin and determine whether it is light or heavy in no more than three tests.”

|
The main problem, or goal is to determine which is the bad coin and whether it is heavy or light. The cc!mstra.int is that
no more than three weighings are allowed. The real effort formulating this in the problem reduction framework is to identify
subproblems, and how they come about. There are a number of ways to begin attacking this problem. We could Just p:ck
two coins and hope to get lucky by identifying one of the bad coins right away. A safer approach might be tb pick six coins,
and put three of each side of the scale. If the scale balances, then we know that all six are good and that the; bad coin is one
of the other six. If not, then the bad coin is one of the six on the scale. In any event we have reduced the original problem
from twelve to six coins. We shall refer to this as the 6-coin problem, and of the original as the 12-coin problem. Similarly,
if we were to start with weighing four coins (i.e. 2 in each pan), then we will have reduced the original problem to either
an 8-coin or 4-coin problem depending on whether or not the scale balanced respectively. We now see horv to reduce the

problem into smaller subproblems. i

Our final task is to identify the problem primitives. A problem can be regarded as primitive if it is t,rivi]'a.l, or otherwise

sufficiently well understood that we are not concerned with the details. In this case, the problem is only trivial if we know.

how to identify the problem coin, and whether or not it is heavy or light. Eventually we will get to the 2-coin problem which
entalls being left with two coins one of which is heavier or lighter than the others. Can this be regarded as a primitive, or
d@ " need to go to the 1-coin problem? We proceed by putting one in each pan and noting which is the hea\rler of the two.
For vhis discussion, assume that the heavier coin (Hcosn) was in the left pan, and the lighter one (Lcoin) in the right pan.
We now know that either Hcoin is heavy or Lcoin is light and that the other ten are all good. We leave Hcoin on the left
pan and weigh it against one of the known good coins (Gcosn). If the scale tips left again, then Hcoin can’t be the good
coin, since that would imply two coins lighter than it and we know there is only one bad coin. Thus, Hcoin is positively
identified as the counterfeit coin and it is heavy. If the scale balances, then Lcoin is the counterfeit and it’s light. The scale
couldn’t possibly tip right, since that would imply that Lcoin is lighter than Hcoin which is lighter than Geoin which would
mean there were three coins with three distinct weights. But we know there are 11 good coins which must iweigh the same
amount. This analysis shows that once we reduce the problem to the 2-coin subproblem, there is exact.ly one more weighing
required to identify the coin. We can thus opt to view this as a primitive subproblem. i

Figure 2.11 shows part of the goal tree representation of this problem. The root node is an or node ind:icati.ng that the
problem can be attacked by any one of the methods. This in not to say that all will work given the three test constraint, but
that only one is necessary. The other methods need not be considered. By contrast, the nodes on the second level are and
nodes. For each of these methods, there are three possible outcomes, all of which must be pursued, in order to guarantee that
only three weighings are necessary. We cannot assume that we will get lucky. Each of these outcomes in turn correspond to
or nodes as the top level goal node. The details of the formulation for this problem follow:
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Figure 2.11: Counterfeit Coin Problem

1. Main goal : To solve 12-coin problem - : |
2. Constraints : You are allowed only three weighings
8. Rules for Reducing Goals into Subgoals : This is left as an exercise. ' |

4. Primitive Subgoals : We can regard the 2-coin problem as a primitive problem. See text. |

Exercise 454: Draw the missing portion of the goal tree in figure 2.11 which correspohds to a solution toithe counterfeit
coin problem. ' g

Exercise 4565: Suppose you wish to help your friend write 2 computer program to generate the goal tree for the counterfeit
coin problem (see figure 2.11). Your job is to describe formal rules for breaking up the counterfeit coin prablern up into
subproblems. You must make them as specific as possible to make your friend’s _}ob easy.

Exercise 456: Write the computer program for your friend. i

| !

2.2.4 Towers of Hanoi |
We saw this problem in the section 2.1.4, page 25) as an example which could be solved using the state space paradigm. It’s

easy enough to represent the problem, but hard to see how it might be readily solved, other than some form of brute force
enumeration of all possibilities,

This problem can also be formulated as a goal tree using the problem reduction paradigm (see figure 2 12). The key
observation to make is that the problem decomposes into simpler problems of the same type. In part.lcular to move four
discs from a to ¢, we need to do three things:

l
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Figure 2.12: Towers of Hanoi: A clever solution

1. move discs 1-3 from ato b : i

2. move disk 4 from a to ¢
3. move discs 1-3 from b to ¢ '

The second step is trivial. The first and third steps are simpler versions of the ezact same problem (i.e. with 3 discs
instead of 4). These steps further decompose in the exact same way leaving two instances of the 2-disc problem which is
easily solved by moving individual discs. The goal tree is illustrated in figure 2.12. -

A solution to the problem is found by reading left to right the moves found on the leaf nodes of the completed version
of this tree. This contrasts to the previous examples where a solution consisted of a subtree much smallerithan the whole
goal tree. Because there are only and nodes, the only solution subtree is the whole tree. As soon as the goal tree is created,
the solution is found. This means that there 15 no search required!!. All the other examples we have seen, for both the state
space and problem reduction paradigms have required search after the problem has been formulated. This is an extreme
ex?‘.\mpie of how the correct representation for a problem can make it’s solution easier. !

‘' details of the formulation for this problem follow:

Main goal : To solve the 4-disc problem

Constraints : A disc may never be placed on a disc smaller than itself.

Rules for Reducing Goals into Subgoals : The general form of the problem can be completely described using the
notation problem(N, From,To,Scratch). This means move N discs from tower *From’ to tower *To’ using tower ’Scratch’
as a placeholder. Using this terminology, problem(N,From,To,Scratch) decomposes into the following three subproblems
in the order shown:

1. problem(N-1,From,Scratch,To) -
2. problem(1,From, To,Scratch }
3. problem(N,Scratch, To,From)

Primitive Subgoals : Solving the single disc problem is the only primitive subgoal.
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EXERCISE - Write a simple recursive PROLOG program to solve the Towers of Hanoi problem for n dlsks Beware of
trying it out on too large of n, the combinatorial explosion will get you!

1
2.2.5 Games

!
We saw an example of a game tree in figure 1.5, page 13. There is a strong similarity with this and the state space
representation. In fact, it’s virtually identical. We have all four ingredients: |

(L,.g. for noughts and crosses, a state could be a 9 digit number in base 3. :
Tnitial State: The current board position.
(e.g. 000,000,000 for the beginning of the game)

{Operators: These are the legal moves of the game.

‘Gioal State Recogniser; Corresponds to a winning positions. : |
(e.g. Three in a row, column, or diagonal of the same type)

Indeed it is fair to say that the state space representation accurately describes the playing of a game. |In spite of this
similarity, we can not use the state space paradigm as described in section 2.1 for solving the problem of finding winning
game-playing strategies. The reason is that the nature of a solution is entirely different. In that para.diigm, a solution
corresponds to simply finding a path to a goal state, or simply to find a goal state, In games, this is not adequate. Many
goal states (winning positions) could be achieved if your opponent made lots of stupid moves. Getting to a goal state is not
enough. You have to guarantee that you can get to a winning position no matter what your opponent may do. In game
trees, the nodes do in fact correspond to explicit board positions. However, the problem from any board position is not
simply to find a path to a winning position (goal state}. The goal at a node is to find a winning strategy from that position.
The subgoals consist of finding winning strategies for each of the board positions which result from possible moves from
some position. An and node corresponds to a position from which the opponent may move. This requires checking out all
the possible moves that the opponent may make, since it is uncertain what the move will be. An or node corresponds to a
position from which it is your turn. You have many possible moves, but you can say beforehand which one :you would take
from that posmon Thus, only one of those moves need be pursued. The problem reduction formulation of the problem of
finding a winning strategy for a game is:

‘Main Goal: To find a winning strategy.

Constraints: Board positions which correspond to wins for the opponent are not, allowed.

R.u]es for Reducing goals into subgoals These are the move operators, the same as defined in the state space repre-
gentation. The new subgoals correspond to finding a winning strategy from the new game position. |
Primitive Subgoals: These correspond to board positions for which the outcome of the game is decided. '
Note that the counterfeit coin problem can be t]ﬁought of as a game, with chance as the opponent. Iti is infeasible to
search entire game trees for complex games such as chess, or even draughts. Various approaches for sea.rchlng game trees are

described in detail in section 77. i

i
2.2.6 Summary |
We have described the problem reduction paradigm for solving problems. This is an alternative approach to the state
space paradigm. In the latter formulation, we view the world as changing from state to state according to some predefined
transformation operators. A solution consists of finding a path from the initial state to some goal state. By contrast, the
problem reduction approach works by reducing problems into simpler problems, or equivalently, reducing go!a.la to subgoals.
The subgoals continue to be reduced until they can be trivially achieved in which case they are called primitive. An and/or
goal tree is a convenient structure for representing the problem. There are usually some constraints associated with the
problem. A solution consists of a subtree which satisfies the constraints, and abides by the and/or, restrictions on the nodes
of the tree. To formulate a problem in this paradigm, you have to:
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.1. Define the main goal.
2. Identify any constraints.
3. Define rules for reducing goals into subgoals.

4, Define the primitive subgoals.

We have ignored the issue of searching goal trees to find solutions. This is deferred until section 77. We now compare the
two problem solving paradigms in some detail. N

2.3 State Space versus Problem Reduction

|
Tt is important to realise that these are two ‘approaches to solving problems, not _two types of problems. We do not speak of
a problem as being a state space type ora problem reduction type. Instead we speak of choosing an approach to solving a

problem. *These approachea correspond, to alternate pmnts of view. Some prob]ems can be viewed more na.tura].ly usmg a

either framework. That these paradigms are not mutually exclusive has been demonstrated by the Towers of Hanoi example.
In this case, the problem reduction paradigm was found to be clearly superior to the state space approach, This is because
in the former, there was no search! In this section, we shall discuss what problem characteristics are releyant in choosing
g representations for problems. In particular, we discuss criteria for determining which paradigm is lJ.'ker to be more
appropriate for a particular problem. Finally, we briefly examine the formal relationship between the two paradlgms

|
2.3.1 . Criteria and Guidelines for Choosing Good Representations
. 1
The purpose of this section is to discuss some general guidelines which will help you decide for a particula:.r problem what
the most appropriate representation is. It is important to note that there are two levels of choices to be made when selecting
representations. The higher level decision involves determining the general approach to solving the problem, (e.g. state space
or problem reduction or perhaps another more specialised ad hoc approach). Once this decision has been Ima.de, there are
still many lower level decisions to make about the actual data structures to use. These, as we have seen, c'an be extremely
important. If the problem fits the state space framework, you must decide how to represent a state, and characterise the
operators which allow movement between states. In section 2.1.3 saw how different choices for representing states and
operators for the 8-queens problem had considerable impact on the ease with which the problem could be solved. If the
problem reduction paradigm is being used, the rules for reducing goals to subgoals must be carefully defined. The primitives
must be chosen. ' |

First, we will consider a variety of general characteristics of problems and then briefly discuss some génera.l guidelines
which may help in formulating problems. i
. =
fProVilem Characteristics - |
|
thura Of A Solution—This is perhaps he first thing one should consider when attemptmg to solve problems Solutions
come in many shapes and flavours. It may be a particular configuration which is desired (e.g. S-ﬂueens) In this
case, how you stumble on the answer is irrelevant. In other problems, such as the monkey and bananas we already
know what the final configuration is. The problem is to find a means of achieving that configuration., We must find a
sequence of actions, which are guaranteed to achieve the goal state. We can \rlew this as a path from the initial state
to the goal state. Any path will suffice. In the traveling salesperson problem ® most paths are of no interest, rather
we are looking for the best path. Solutions need not be characterised by states or paths betweens states at all. In the
counterfeit coin problem, for example, the solution is a strategy. That is, a solution to the problem is a somewhat
complex recipe or decision procedure for finding the bad coin. No matter how the scale may tip, this procedure must
guarantee that no more than three weighings are necessary. The solution to playing noughts and crosses is likewise, a
strategy. ;

3This is a famous problem in which a salesperson needs to visit N cities, and wishes to minimise the total distance travel]efd.
. . I
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or clever or bot.h some sl‘.eps won’t seem to lead to a solution. Sometimes these steps ma.ke no difference whatever
and may be ignored Theorem proving is an example of this type. If you are attempting to prove something is true
from some set of facts and you go down a wrong track, it matters not, you simply continue searchmg elsewhere for
the solution. In the case of the 8-Queens problem, a step which leads to a dead end has to be undone before you can
continue the attempt to solve the problem. This is done by backtracking. In the worst case, as in games, steps are
irrecoverable. If you make a bad move in a chess game, you have to live with it. The way to deal with this sort of
problem is to plan ahead. ' !

gs:?ﬁlem Decan;j;aaém—Does the solution to the problem seem to be obtainable by solving a nurnl:aer of separate
subproblems? We have seen this in several examples including the holiday problem, counterfeit coin etc. It is not
always cut and dry. A problem may be partially decomposable. For example, consider the problem of removing
furniture from a room. For the most part, this decomposes into removing each bit individually. However the painting
on the wall behind the piano must be removed after the piano. In this case some of the subproblems interact with each
other. Some simple blocks world problems are in a similar category. :

';:Iﬁé_ﬁb}éﬁ_%t‘u};&;;‘—Prdblems such as ;chess, don’t require much knowledge except for efficiency. You néed only supply
the rules of the game and you can play it. Other problems, by their very nature require extensive amounts of knowledge.
A newspaper scanner, for example, would be of no use whatever without a sizable store of knowledge,

[e g. 8-queens) In games, on the other hand, you cannot predict what your opponent will do. The counterfext coin
problem is like a game; the opponent is chance. It is not possible a priori to know what the outcome of ja weighing will
be. Some games are worse than others; bridge, for example, has a large element of chance since you don t know what
cards your opponents (or partner} are holding. Similarly for problems involving robot planning, you|cannot predict
with certainty all the relevant events. A robot on an assembly line may not notice that the conveyor belt. has stopped.

"The Role Of Time—For some problems, the sequencing of events is crucial. The Towers of Hanoi problem is an such an
example. The timing of the actions is crucial. In the 8-queens problem on the other hand, time is not unporta.nt The
queens can be placed on the board in any order at all.

1
The two most important questions which must be considered when choosing between the state space and problem reduction
formulations are: i

1. What is the nature of the solution?

2. How does one most naturally proceed in searching for a solution? |
Generally speaking, use state space representation if: |

e The solution can be characterised as either a single state, or as a path from an initial state to a final étate. A state is
a partial description of the world, as discussed in section 2.1, !

e One can easily define operators which can transform states into other states, thereby enabling the search for the solution

to take place, !
i
Use Problem Reduction if:

o The solution itself can be viewed as a strategy of some sort. A strategy is potentially more complex than a path from
an initial to a goal state. Typically, it needs to accommodate various possibilities which are unknowable in advance.
Consider the solution to the counterfeit coin problem. It is a decision procedure which says what to to whatever the
outcomes of individual weighings may be. For the hol.ida.y example, the strategy consists of making a.lll the necessary
decisions. In the Towers of Hanoi problem, the answer is in form of a simple strategy of when to move whlch disc from
where to where.

e It is easy to reduce the main problem into subproblems wluch further reduce until finally, the subproblems are trivially
solved,
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i

What if the problem seems to fit both frameworks, as in the Towers of Hanoi? There are some further questions to consider
whu:h can be of help in deciding, but often. 1it’s just a case of using your mstmcts Some of these questmns a.re*

so, it is proba.bly not a good choice. !
| | _
o Is there interaction between subgoals'? Will working on one subgoal affect whether: or- not anotherlr subgoal can be
achieved? If so, then we say the problem is only partially decomposable, at best. Problem reduction doesn’t work well
in this case; it ma.y be wiser to stick with the state space representation if possible. This issue willi be discussed at
length in cha.pter where we consider specialised techniques to cope with subgoa.l interaction.

g,

this questlon, ‘but oft.en, one can get. a fa.u-ly good idea of how bad thmgs look. We have already seen in the 8-queens
problem how different formulations within the single state space paradigm had dramatic effects on the a,moun.t of search
required. Similarly, the search required to find a solution in the problem reduction paradigm may differ considerably
i from that required by a state space formula.tlon of the same problem. This was the deciding fa.ctor in the Towers of
. Hanoi problem. In real life, choices are rarely so clear cut. -

After an overall framework for problem solving is selected, there are still many details which need to be dec1ded on. It is
1mporta.nt to exploit any regularities in the structure of a problem (e.g. symmetry). Things which are dr.stmct. in fact, may
nol‘n need to be represent.ed differently. One example of this is in generating moves for noughts and crosses. There are in fact
9 glinct opening moves possible. However, there are only three moves which are important to d:sbmgumh {corner, center,
8] This choice can significantly reduce the amount of search required. We saw other examples of thlslphenomenon in
the 8-queens , and Towers of Hanoi problems By noticing certain regularities in the structure of these problems, we were
able to reformulate the problems in such a way as to reduce search. Other than this broad hint, there is unfortunately, very
htt.le in the way of general theory which is helpful here. The knack for choosing good ways to view problems and defining

appropnate data structures etc comes with experience. :

Even worse, what if the problem does not seem to fit either paradigm well? Many real world problerps are like this.
- Problems which require vast amounts of knowledge to solve, such as understanding natural language, common'sense reasoning,
diagnosing illnesses tend to be especially difficult unless the knowledge is well structured and easy to use. Often, however,
when asked how they solve problems, human experts find they cannot say why. Just intuition, they say, to the distress of the
keen knowledge engineer. These problems require more advanced and/or specialised techniques. Some of these techniques
will be discussed in chapter 77 on planning. Other techniques are being developed in other subfields in Art:ﬁcml Intelligence
such Expert Systems, Knowledge Representa.tlon, Common Sense Reasoning, etc. - |

It should be stressed that the issue of representation is a thorny one. Selecting the appropriate point of view for a particular
problem is still very much an ill-understood human skill. It will be a long time indeed before computers w:ll be put to the
this task.

Exerclse 483 Attempt to formalise the following blocks world problem in both the state space and problem reduction
pa.ra.dlgms Comment on which you think is more appropriate.

--.‘-'- Init: Goal:

| Al !
— . Joun| f
el | B I |
[==m]  --- ==> | -=-1 !
Al | B | ¢ | '

- -

Exercise 484 Formulate the Monkey and Bananas problem (section 2.1.2, page 18) in the problem reductlon paradigm.
Comment on the advantages and/or disadvantages of this approach as compared mth the state space formulat.lon given in
the text.

|

- |
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State Space: (i1 --> [j]
op2

Problem Reduction: Go from state ‘i’ (An AND node) ' !
to a goal state i

[A]
/\
/-\
/ \ :
/ \
[B] [cl .
Go from state ‘i’ ' Go from state ‘j°’ |

to state ‘j° to a goal state
Figure 2.13: State Space to Problem Reduction

2.3.2 State Space to Problem Reduction ! '
If we can solve the same problem using two different approaches, perhaps there is some sort of relationshii) between these

two frameworks. In fact, there is a strong relationship between these two representations. We can convert from one to the
other if we follow a certain set of rules. A more detailed discussion of this may be found in [[Barr 81a] pp 74-83, 36-42].

Consider the state space representation for using op2 to transform state i into state j. When we are at state i, the implicit
problem is: “how to get from state i to the goal state”. In the problem reduction representation, the prohlem (or goal) is
made explicit. In this example, to go from state i to some goal state involves the two subgoals:

1. go from node i to node j

2. go from node j to the goal state.

In a state space representation, operators are applied which transform states into new states. In problem reduction, goals
reduce to subgoals with no operators being applied, and no new states being explicitly created. When the subgaa.ls reduce no
more, we say they are primitive and can be achieved by applying operators directly. In this example, subgoal 1 (node B) isa
primitive subgoal, and subgoal 2 (node C needs to be further reduced. Recall that the primitive subgoals correspond to the
prmutwe operations in the problem domain (see section 2.2.1, page 25). For this abstract example, the primitive operation
is op2; for the Towers of Hanoi problem, the primitive operation is moving a single disc from one tower to the next, .‘

The graphical representations for these two equivalent formulations is found in figure 2.13. In the state space version, a
node i3 a state of the world, and an arc is an operator. Each node in the problem reduction formulation, corresponds to a
subproblem, and each arc corresponds to a decomposition rule. The rules for decomposing problems form the fundamental

basis for the problem reduction formulation. ;

2.3.3 Problem Reduction to State Space

This is considerably more complicated, and I choose not to discuss it in detail. The interested reader is referred to
[[Charniak 85] pp 270-281] for an elaborate treatment of this. In doing this conversion, the notion of ‘state’ will be dif-
ferent from how we have been viewing it. We have viewed a state as some description of the world (e.g. the 8-puzzle, monkey
and bananas). A broader interpretation is to consider it as a state in the problem solving, Assuming that:the steps taken
are reasonable ones which will lead to a solution, we can view the state as a partial solution. It can contain virtually any
sort of information at all (including world state mformat.mn) Thus, we are not suggesting an alternate view of a state, but
rather a more general one. We can reasonably view world states as partial solutlons as well, if we also keep track of how
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we got t.here. A partial solution represents the choices made so far, in the attempt to solve the problem, as well as a record
of what further choices need to be made. In this more general view, operators correspond to steps taken in attempting to
solve the problem. Applying an operator corresponds to making another choice, the state is transformed mtlo one which has
this additional choice incorporated into the partial solution. A solution consists of a state where no more chomes need to be

made. I

Very concisely, the conversion is as follows: |

1. A state ls“a'f _“];I_%.:_t.ial"Eaﬁfiﬁc;n—_;fﬂﬂlé ﬁbs;f"_tf;efé: i.e. a subtree which potentially constitutes a solution.

2. ‘The initial state is the root.node with no arcs (i.e. no choices made). |

3. The operifb?s' correspond to making choices (i.e. adding one more node to the potential solution subi;ree The choice
to be made is which node of the partial solution to expand. One can add another successor to a node on the subtree
which corresponds to an and node on the original goal tree. Alternatively, one can add a successor to a leaf node of the
partial solution subtree which corresponds to an or node on the original goal tree. In the case of o.n.d nodes, a record
must be kept so that all successor nodes eventually are added to the partial solution. !

4. A candidate subtree is a solution if it is a solution to the ongma.l goal tree according to the rules set forf;h in section 2.2.1,
(Ie. if the leaf nodes all correspond to primitive subproblems, the and/or relations are obeyed, iand if no other
constraints are violated).

|
}.Q Summary !
We have presented two major problem solving paradigms, state space search, and problem reduction. Ma;n}r problems can
readily be formulated in one or the other paradigms. Some fit into both, while still others into neither. We have discussed
what sorts of problem characteristics are most suited for each paradigm. We have seen that there are two|reIated issues in
formulating problems:

e How to view the problem?

_ |
— What sort of structures can describe the problem? i :
|

— What constitutes a solution?

e Define rules for manipulating the representation (for the purpose of finding a solution). !
]

Often there are many possible ways to look the same problem. In the case of the monkey and bananas, |we can view the
problem as one of finding a path from the initial state to some goal state. The path takes us from dlﬂ"erent configurations
of the problem’s ‘world’ which we call states. From any state, there are a number of actions which may be possible, some
of wh;ch will lead to a solution and others which will not. Alternatwely one could start with an overall problem or goal

‘tting the bananas and break it up into smaller subproblems each of which are hopefully easier to solve on their own.
In vhis case, the subproblems would be to have the monkey on the box, and for the box to be under the bananas. Each of
these problems further decompose into even smaller problems until the solution is hopefully apparent. We call the former

approach State Space and the latter Problem Reduction. i

In some cases,the viewpoint matters little. More typically, however there are great advantages in choosing the ‘correct’
viewpoint (e.g. one may be more ‘natural’ often resulting in greater efficiency; in extreme cases, as in the 'Iowars of Hanoi,
the whole problem may fall apart). The actual choice of representation for a specific problem can be a rather dlﬂicult. problem
in its own right. There may be no obvious way to formalise the description of the problem, or perhaps there are several
options, some of which may be better or worse than others. Whatever representation is chosen, you must. define rules for
manipulating it. If the representat:on is well chosen then the rules for manipulating it should be fairly obkus If on the
other hand, a poor representation is chosen, it may be very difficult or awkward to define operations whlch will enable the
problem to be solved. i

The very nature of a solution may be dramatically different for different representations. We saw this mlthe noughts and
crosses example. In one case, a solution was a huge linear array which explicitly encoded the appropna.tlle move for every
conceivable board position. The solution to the problem of finding a winning strategy is to find an appropriate array of
moves, Note that this is no easy task. If on the other hand, we systematically search a game tree it becomes much easier to

) |
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detect a solution. We will study game trees in detail in section ??. It is of pnmary importance to be able to characterise
precisely what a solution is or you have no hope of finding it. -

Often, it is more natural to view a problem in one way than another. It is a good rule of thumb t(la stick with the
representation that seems most natural. A good sign that you have poorly chosen a representation is #hat it becomes
extremely awkward to represent some features of the problem. Often, there are tradeoffs. One choice may make detecting
solutions very simple, but the manipulation of the representation may be awkward, or vice versa. There are no clear cut
answers.

In section 1.3, we said there were there are two major tasks which were to be required of any one wanting to buﬂd intelligent-

computer programs.

Representation The facts and knowledge about the world which pertain to the problern at hand must be encoded in a
form suitable for a computer. !

Reasoning Solving problems consists of putting knowledge to use. It consists of

Inference Knowing how to derive new information from old.

Control Knowing when to make which inferences.
It is worth pointing out here, the close analogy between reasoning as discussed in section 1.3.2, and problem solving
as discussed here. We said that reasoning conmsists of inference and control. Here, the ‘inference rules’ are the rules for
manipulating the representations, and the ‘control’ is the search strategy.

In this chapter, we have discussed in great detail how facts and knowledge about simple problems can be i‘epresented. We
have also defined ways for manipulating the structures in the representation. For example, in the state space paradigm, the
operators define mechanisms for manipulating the states. In the problem reduction paradigm, the rules for reducing goals
to subgoals define mechanisms for creating and manipulating a goal tree.

What remains, is the issue of control. Once a representation is chosen, the nature of a solution is characterised and rules
are defined for manipulating it, a problem is still not solved. The control issue, in the context of solving simple problems
of the sort we have described above, amounts to finding strategies which determine just when an how to: ma.mpula.te the
structures when searching for a solution. i

2.5 Further Reading

The state space representation I have presented here is encompassed by what Nillson [[Nillson 80]] calls 2 production system.
A decomposable production system as discussed in this text encompasses the problem reduction paradigm. A brief discussion
of the state space representation is found in [[Barr 81a, pp 32-36. What Charniak and McDermott [[Charniak 85] pp 255-
267) mean by a search problem is exactly what we have called the state space problem solving paradigm, a.lthough they do
not speak of it as such. |
Problem reduction and goal trees are discussed in the following places: ' o

ch 83] pp 87-04 |

T 81a] pp 74-83, 36-42 |
arl 84] pp 14-31
ak 85) pp 270-281 | | N

Mozt of the insights regarding the relationship between the state space and problem reduction representatmns were obtained
from chapter one of [[Pearl 84]] (very terse) and chapter five of [[Charniak 85] pp 274- 278] (very reada.ble) A much less
intuitively appealing discussion of how to convert representations back and forth is found in [[Barr 81a, PP 41-42]. Tam
indebted to [[Charniak 85]] fur pointing out the close link between problem reduction and game trees. '

The discussion on problem characteristics is a condensed version of what is found in |[Rich 83] pp 37-—48].5
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2.8 Answers to Selected Exercises |
|
8-Queens 340 For the linear array, it’s not, immediatély obvious how to perform this check. For example, without looking
at a numbered diagram, how might you determine whether a queen on square 35 is attacking a queen on square 57. It could
be done of course, but not without a bit of a hassle. Hint: Use arithmetic modulo 8. ’

I
With each square as an ordered pair of integers: one is the row number and one is the column number, it’s fairly obvious
how to test for attacking queens. For any two squares (ordered pairs) if the row or column numbers are identical, or if
the difference between the row numbers and the difference between the column numbers is identical in absolute value, then
queens placed on these two squares would be attacking each other. We have simplified the calculation necessary to check
for attacking queens. We say this latter choice of representation is more natural for the purposes of checkilng for attacking

queens.

455 There are N possible methods of attacking the 2N-coin problem. They are: test 2*I coins coins by placing I coins in
each pan where I = 1, 2, ..., N. There are three possible results of each test, namely that the balance tips left, right, or not
at all. If it balances, then the problem reduces to a (2*N-2*I)-coin problem. If not, then it reduces to a 2*I-coin problem.

341 There is no difference, the change is purely a control issue having to do with how to make choices, noii: in determining
what choices are possible. The search space is exactly the same, the savings result from searching it more judiciously by
avoiding looking in the wrong place as much as possible. i

]

342 Count the number of free spaces that are removed by the selection of a particular square. So, the choices in the
di@aam evaluate to 6, 5, and 2 respectively. From this point of view, low scores are desirable. This is really equivalent to
m®uring the number of free spaces. Only the point of view is different. But, note that it is a different function returning
different values which must be compared in different ways. ' :

483 We could create a move operator for stacking and unstacking blocks and simply try every move and ev{ent-ually stumble
on the goal state. This would be state space search. On the other hand, we could reduce the goal into two subgoals and
work on each independently in hopes of finding the solution. This problem, however is pathologically bad. No matter which
goal you achieve first, in order to achieve the other, you have to undo the previous goal! This is called subgaol interaction
and causes serious problems. When this can be detected, you are better off sticking with the state space representation.

122: This is true because the estimated cost of getting to the nearest goal state from a goal state is 0 (you are already
there!)

Answers 763 Backwards search can be summarised as follows. We simply flip the initial and goal st.a.t.efs. Then, we try
to apply the actions in reverse (i.c. unapply them) to see what the state of affairs would have to have been! before applying
that action to result in the state where you currently ‘are’. If the actual initial state is ever reached, theri the problem is
essentially solved. All we need to do is keep track of the list of actions that we applied backwards and revei'se the order.

Monkey and Bananas: Not everything is known about the goal state is known explicitly. The only certain thing is that
the assertion: status(bananas, grabbed) is in part of the world state description.
|

F‘T‘_“-gleens: Impossible, because you don’t know what the goal state is! . |

- uzsle: Won’t make any real difference because the search space branches equally rapidly from either dire:ction, in general.
Missionaries and Cannibals: Search space is symmetric, as in 8-puzzle, thus no difference is had. |

Blocks World: Should work fine. The branching rate will often be less effecting considerable savings.

1
|
i
]
|
i
|
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