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Motivating example

1 func main() {
2 var x int
3 ch := make(chan int , 1)
4 go f(ch, &x)
5 ch <- Lock
6 x += 10
7 <-ch
8 ch <- Lock
9 fmt.Println("x is", x)

10 <-ch
11 }
12

13 func f(ch chan int , ptr *int) {
14 ch <- Lock
15 *ptr += 20
16 <-ch
17 }

Figure 1: Go programs: safe (size 1)

 race (size 2)
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1 func main() {
2 var x int
3 ch := make(chan int , 1 )  2
4 go f(ch, &x)
5 ch <- Lock
6 x += 10  race
7 <-ch
8 ch <- Lock
9 fmt.Println("x is", x)

10 <-ch
11 }
12

13 func f(ch chan int , ptr *int) {
14 ch <- Lock
15 *ptr += 20  race
16 <-ch
17 }
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Motivating example: with Mutex

1 func main() {
2 var x int
3 m := new(sync.Mutex)
4 go f(m, &x)
5 m.Lock()
6 x += 10
7 m.Unlock ()
8 m.Lock()
9 fmt.Println("x is", x)

10 m.Unlock ()
11 }
12

13 func f(m *sync.Mutex , ptr *int) {
14 m.Lock()
15 *ptr += 20
16 m.Unlock ()
17 }

Figure 2: Go program: with a mutual exclusion lock (safe)



Outline of work

1 Abstraction of Go programs with a π-calculus inspired language:
MiGo+, a rework of MiGo

2 Define desired properties of the MiGo+ processes

3 Add a type system for the MiGo+ processes

4 Abstract property verification of the processes to the types

5 Model check the types for the desired properties

6 Implementation: Extending the Godel Checker1

1

Lange, Ng, Toninho, Yoshida: Fencing off Go: Liveness and Safety for
Channel-based Programming (POPL 2017), A Static Verification Framework for
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MiGo+ Process of our unsafe example

Prace =



P(c , z) = c!〈Lock〉;

t1 = load(z); z := t1 + 10;

c?(u);
c!〈Lock〉; t2 = load(z); τ ; c?(u′); 0,

Q(c , z) = c!〈Lock〉; t0 = load(z); z := t0 + 20; c?(u′′); 0


in

newvar(x :int); newchan(y :int, 2);
(
P〈y , x〉 | Q〈y , x〉

)
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Reduction of our MiGo+ example

Prace
def
=

newvar(x :int);
newchan(y :int, 2);


y !〈Lock〉; t1 = load(x); x := t1 + 10;

. . .
| y !〈Lock〉; t0 = load(x); x := t0 + 20;

. . .



Prace −→2 (νxc)


c!〈Lock〉; t1 = load(x); x := t1 + 10;

. . .
| c!〈Lock〉; t0 = load(x); x := t0 + 20;

. . .
| [x := 0] | c〈int, 2〉::∅


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Reduction of our MiGo+ example

Prace
def
=

newvar(x :int);
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The happens-before relation: P . o1 7→ o2

A first example:

P = c!〈Lock〉; t1 = load(x);P ′

↓c
c,Lock−−−−→ t1 = load(x);P ′ ↓r〈x〉
r〈x〉,0−−−→ P ′ {0/t1}

P . c 7→ r〈x〉

An other example:

Q = x := 10;Q1 | x := 20;Q2

Q ↓(w〈x〉,1.∗)
Q ↓(w〈x〉,2.∗)

¬(P . (w〈x〉, 1.∗) 7→ (w〈x〉, 2.∗))
¬(P . (w〈x〉, 2.∗) 7→ (w〈x〉, 1.∗))
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Defining Data Races

(1) if P (νũ)P and P

Q1 ↓(w〈x〉,ι)

Q2 ↓(w〈x〉,ι′)

such that∗

∗

∗

¬(P . (w〈x〉, ι) 7→ (w〈x〉, ι′))) and ¬(P . (w〈x〉, ι′) 7→ (w〈x〉, ι)))
then P has a data race

(2) if P (νũ)P ′ and


P ′ ↓(w〈x〉,ι)

and

P ′ ↓(w〈x〉,ι′)

then P has a data race∗

Theorem

Charactisations (1) and (2) of data races are equivalent.



Defining Data Races

(1) if P (νũ)P and P
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Liveness and Safety: the Example of Mutex

Definition (Mutex Safety)

If P −→∗ (νũ)P and P ↓ul〈m〉, then P ≡ P ′ | dme?

a mutual exclusion lock can only be unlocked if it is already locked.

Definition (Mutex Liveness)

If P −→∗ (νũ)P and P ↓l〈m〉, then ∃P −→∗ P ′ τm−→

a mutual exclusion lock will always eventually answer a lock request.
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Behavioural Typing System for MiGo+

Prace
def
=

newvar(x :int);
newchan(y :int, 2);


y !〈Lock〉; t1 = load(x); x := t1 + 10;

. . .
| y !〈Lock〉; t0 = load(x); x := t0 + 20;

. . .



Trace
def
= (νv x)(ν y2)

(
y ; r(x); w(x); . . .
| y ; r(x); w(x); . . .

)

Trace −→2 (νxc)

 c ; r(x); w(x); . . .
| c ; r(x); w(x); . . .
| x� | bcc20


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y !〈Lock〉; t1 = load(x); x := t1 + 10;

. . .
| y !〈Lock〉; t0 = load(x); x := t0 + 20;

. . .



Trace
def
= (νv x)(ν y2)

(
y ; r(x); w(x); . . .
| y ; r(x); w(x); . . .

)

Trace −→6 (νxc)



c ; r(x);

w(x); . . .
|

c ; r(x);

w(x); . . .
| x� | bcc22





Properties of our Type System

Our type system has reduction transitions that follow almost exactly the
reduction of the MiGo+ processes, expect for if/then/else constructs.
It also does not care about the content of the data.
Because of that, it admits the following properties:

Theorem (Subject reduction)

If Γ ` P I T and P reduces to P ′, then T has a reduction T ′ such that
Γ ` P ′ I T ′.

Theorem (Progress)

If Γ ` P I T and T reduces to T0, then P has a reduction P ′ and there
exists a reduction T ′ of T such that Γ ` P ′ I T ′.
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Verifying Processes through their Types

Theorem (Process-Type relation)

1 P is safe (resp. data race free) iff
T is safe (resp. data race free)

2 P is live iff T is live and

P ∈ May⇓

or
P 6∈ Inf or
P ∈ AC
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Type Verification: the Modal µ-calculus
Definition: T ↓o iff T can execute action o immediately.

Trace −→2 (νxc)

 c ; r(x); w(x); . . .
| c ; r(x); w(x); . . .
| x� | bcc20

 = (νxc)T

′′

T

↓c ↓x� ↓•c ↓τc

T ′

↓r〈x〉 ↓c ↓x�

↓•c ↓c• ↓τx ↓τc

T ′′

↓(w〈x〉,1.∗) ↓c ↓x�

↓•c ↓c• ↓τx , ↓τc

. . .τc τx τx

Modal properties are logical propositions guarded by modalities
parametrised by the flags and the synchronisations. The two modalities
are ”there exists an action” (diamond) and ”for all actions” (box).
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Type Verification: the Modal µ-calculus
Definition: T ↓o iff T can execute action o immediately.

Trace −→3 (νxc)



c ;

r(x); w(x); . . .
| c ; r(x); w(x); . . .
| x� | bcc21

 = (νxc)T ′

′

T
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Modal properties are logical propositions guarded by modalities
parametrised by the flags and the synchronisations. The two modalities
are ”there exists an action” (diamond) and ”for all actions” (box).
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Model Checking the Types and Processes

Formula Ψ(φ) means “φ is true in every reachable state”

Theorem (Model Checking of
MiGo+ processes)

Suppose Γ ` P I T.

1 If T |= Ψ(φ) where φ is a safety
property, then P |= Ψ(φ).

2 If T |= Ψ(φ) where φ is a liveness
property, and either

(a) P ∈ May⇓ or
(b) P 6∈ Inf or
(c) P ∈ AC

then P |= Ψ(φ).
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Implementation: Godel 2

Godel 2

mCRL2 KiTTEL

MiGoInfer

go/ssa package

Go source code

Load main()

Behavioural types

Godel 2 written in Haskell

This tool uses either KiTTEL to check for termination of the input
behavioural types, or mCRL2 to check for properties like liveness,
safety and data-race freedom of the types.

MiGoInfer written in Go

This tool loads source code, type-checks and builds SSA IR using the
go/ssa package, then extracts communication, mutexes and shared
variables from the SSA IR as behavioural types.

Figure 3: Workflow of the verification toolchain.
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Table 1: Go Programs Verified by the Toolchain.

Programs LoC Sum Safe Live DRF time (ms)

no-race 15 9 X X X 691.45
no-race-mutex 24 33 X X X 785.57
no-race-mut-bad 23 20 X × X 721.77
simple-race 13 8 X X × 701.93
simple-race-fix 19 17 X X X 731.73
deposit-race1 18 14 X X × 697.90
deposit-fix1 24 27 X X X 727.43
ch-as-lock-race2 19 20 X X × 753.99
ch-as-lock-fix2 19 20 X X X 745.64
ch-as-lock-bad 19 20 X × X 749.97
prod-cons-race 38 156 X X × 1,903.52
prod-cons-fix 40 188 X X X 1,971.26
dinephil5-race 59 2672 X X × ∼ 185mn
dinephil5-fix 59 2688 X X X ∼ 645mn

1Donovan, A.A., Kernighan, B.W.: The Go Programming
Language (2015), 2Running example, LoC: Lines of Code,

DRF: Data Race Free, Sum: Summands,
X: Formula is true, ×: Formula is false
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