
19 December 2019

Static Detection of
Communication Errors and
Data Races in Go Programs

Julia Gabet1 Nobuko Yoshida1 Nicholas Ng2

1Imperial College London, 2Monzo

Drawing by Nicholas Ng

Motivating example

1 func main() {
2 var x int
3 ch := make(chan int , 1)
4 go f(ch, &x)
5 ch <- Lock
6 x += 10
7 <-ch
8 ch <- Lock
9 fmt.Println("x is", x)

10 <-ch
11 }
12

13 func f(ch chan int , ptr *int) {
14 ch <- Lock
15 *ptr += 20
16 <-ch
17 }

Figure 1: Go programs: safe (size 1)

 race (size 2)

Motivating example

1 func main() {
2 var x int
3 ch := make(chan int , 1) 2
4 go f(ch, &x)
5 ch <- Lock
6 x += 10 race
7 <-ch
8 ch <- Lock
9 fmt.Println("x is", x)

10 <-ch
11 }
12

13 func f(ch chan int , ptr *int) {
14 ch <- Lock
15 *ptr += 20 race
16 <-ch
17 }

Figure 1: Go programs: safe (size 1) race (size 2)

Motivating example: with Mutex

1 func main() {
2 var x int
3 m := new(sync.Mutex)
4 go f(m, &x)
5 m.Lock()
6 x += 10
7 m.Unlock ()
8 m.Lock()
9 fmt.Println("x is", x)

10 m.Unlock ()
11 }
12

13 func f(m *sync.Mutex , ptr *int) {
14 m.Lock()
15 *ptr += 20
16 m.Unlock ()
17 }

Figure 2: Go program: with a mutual exclusion lock (safe)

Outline of work

1 Abstraction of Go programs with a π-calculus inspired language:
MiGo+, a rework of MiGo

2 Define desired properties of the MiGo+ processes

3 Add a type system for the MiGo+ processes

4 Abstract property verification of the processes to the types

5 Model check the types for the desired properties

6 Implementation: Extending the Godel Checker1

1

Lange, Ng, Toninho, Yoshida: Fencing off Go: Liveness and Safety for
Channel-based Programming (POPL 2017), A Static Verification Framework for
Message Passing in Go using Behavioural Types(ICSE 2018)

Outline of work

1 Abstraction of Go programs with a π-calculus inspired language:
MiGo+, a rework of MiGo

2 Define desired properties of the MiGo+ processes

3 Add a type system for the MiGo+ processes

4 Abstract property verification of the processes to the types

5 Model check the types for the desired properties

6 Implementation: Extending the Godel Checker1

1

Lange, Ng, Toninho, Yoshida: Fencing off Go: Liveness and Safety for
Channel-based Programming (POPL 2017), A Static Verification Framework for
Message Passing in Go using Behavioural Types(ICSE 2018)

Outline of work

1 Abstraction of Go programs with a π-calculus inspired language:
MiGo+, a rework of MiGo

2 Define desired properties of the MiGo+ processes

3 Add a type system for the MiGo+ processes

4 Abstract property verification of the processes to the types

5 Model check the types for the desired properties

6 Implementation: Extending the Godel Checker1

1

Lange, Ng, Toninho, Yoshida: Fencing off Go: Liveness and Safety for
Channel-based Programming (POPL 2017), A Static Verification Framework for
Message Passing in Go using Behavioural Types(ICSE 2018)

Outline of work

1 Abstraction of Go programs with a π-calculus inspired language:
MiGo+, a rework of MiGo

2 Define desired properties of the MiGo+ processes

3 Add a type system for the MiGo+ processes

4 Abstract property verification of the processes to the types

5 Model check the types for the desired properties

6 Implementation: Extending the Godel Checker1

1

Lange, Ng, Toninho, Yoshida: Fencing off Go: Liveness and Safety for
Channel-based Programming (POPL 2017), A Static Verification Framework for
Message Passing in Go using Behavioural Types(ICSE 2018)

Outline of work

1 Abstraction of Go programs with a π-calculus inspired language:
MiGo+, a rework of MiGo

2 Define desired properties of the MiGo+ processes

3 Add a type system for the MiGo+ processes

4 Abstract property verification of the processes to the types

5 Model check the types for the desired properties

6 Implementation: Extending the Godel Checker1

1

Lange, Ng, Toninho, Yoshida: Fencing off Go: Liveness and Safety for
Channel-based Programming (POPL 2017), A Static Verification Framework for
Message Passing in Go using Behavioural Types(ICSE 2018)

Outline of work

1 Abstraction of Go programs with a π-calculus inspired language:
MiGo+, a rework of MiGo

2 Define desired properties of the MiGo+ processes

3 Add a type system for the MiGo+ processes

4 Abstract property verification of the processes to the types

5 Model check the types for the desired properties

6 Implementation: Extending the Godel Checker1

1

Lange, Ng, Toninho, Yoshida: Fencing off Go: Liveness and Safety for
Channel-based Programming (POPL 2017), A Static Verification Framework for
Message Passing in Go using Behavioural Types(ICSE 2018)

Outline of work

1 Abstraction of Go programs with a π-calculus inspired language:
MiGo+, a rework of MiGo

2 Define desired properties of the MiGo+ processes

3 Add a type system for the MiGo+ processes

4 Abstract property verification of the processes to the types

5 Model check the types for the desired properties

6 Implementation: Extending the Godel Checker1

1Lange, Ng, Toninho, Yoshida: Fencing off Go: Liveness and Safety for
Channel-based Programming (POPL 2017), A Static Verification Framework for
Message Passing in Go using Behavioural Types(ICSE 2018)

MiGo+ Process of our unsafe example

Prace =



P(c , z) = c!〈Lock〉;

t1 = load(z); z := t1 + 10;

c?(u);
c!〈Lock〉; t2 = load(z); τ ; c?(u′); 0,

Q(c , z) = c!〈Lock〉; t0 = load(z); z := t0 + 20; c?(u′′); 0


in

newvar(x :int); newchan(y :int, 2);
(
P〈y , x〉 | Q〈y , x〉

)

MiGo+ Process of our unsafe example

Prace =



P(c , z) = c!〈Lock〉;

t1 = load(z); z := t1 + 10;

c?(u);
c!〈Lock〉; t2 = load(z); τ ; c?(u′); 0,

Q(c , z) = c!〈Lock〉; t0 = load(z); z := t0 + 20; c?(u′′); 0


in newvar(x :int);

newchan(y :int, 2);
(
P〈y , x〉 | Q〈y , x〉

)

MiGo+ Process of our unsafe example

Prace =



P(c , z) = c!〈Lock〉;

t1 = load(z); z := t1 + 10;

c?(u);
c!〈Lock〉; t2 = load(z); τ ; c?(u′); 0,

Q(c , z) = c!〈Lock〉; t0 = load(z); z := t0 + 20; c?(u′′); 0


in newvar(x :int); newchan(y :int, 2);

(
P〈y , x〉 | Q〈y , x〉

)

MiGo+ Process of our unsafe example

Prace =



P(c , z) = c!〈Lock〉;

t1 = load(z); z := t1 + 10;

c?(u);
c!〈Lock〉; t2 = load(z); τ ; c?(u′); 0,

Q(c , z) = c!〈Lock〉; t0 = load(z); z := t0 + 20; c?(u′′); 0


in newvar(x :int); newchan(y :int, 2);

(
P〈y , x〉 | Q〈y , x〉

)

MiGo+ Process of our unsafe example

Prace =

 P(c , z) = c!〈Lock〉;

t1 = load(z); z := t1 + 10;

c?(u);

c!〈Lock〉; t2 = load(z); τ ; c?(u′); 0,
Q(c , z) = c!〈Lock〉; t0 = load(z); z := t0 + 20; c?(u′′); 0


in newvar(x :int); newchan(y :int, 2);

(
P〈y , x〉 | Q〈y , x〉

)

MiGo+ Process of our unsafe example

Prace =

 P(c , z) = c!〈Lock〉; t1 = load(z); z := t1 + 10; c?(u);

c!〈Lock〉; t2 = load(z); τ ; c?(u′); 0,
Q(c , z) = c!〈Lock〉; t0 = load(z); z := t0 + 20; c?(u′′); 0


in newvar(x :int); newchan(y :int, 2);

(
P〈y , x〉 | Q〈y , x〉

)

MiGo+ Process of our unsafe example

Prace =

 P(c , z) = c!〈Lock〉; t1 = load(z); z := t1 + 10; c?(u);
c!〈Lock〉; t2 = load(z); τ ; c?(u′); 0,

Q(c , z) = c!〈Lock〉; t0 = load(z); z := t0 + 20; c?(u′′); 0


in newvar(x :int); newchan(y :int, 2);

(
P〈y , x〉 | Q〈y , x〉

)

MiGo+ Process of our unsafe example

Prace =

 P(c , z) = c!〈Lock〉; t1 = load(z); z := t1 + 10; c?(u);
c!〈Lock〉; t2 = load(z); τ ; c?(u′); 0,

Q(c , z) = c!〈Lock〉; t0 = load(z); z := t0 + 20; c?(u′′); 0


in newvar(x :int); newchan(y :int, 2);

(
P〈y , x〉 | Q〈y , x〉

)

Reduction of our MiGo+ example

Prace
def
=

newvar(x :int);
newchan(y :int, 2);


y !〈Lock〉; t1 = load(x); x := t1 + 10;

. . .
| y !〈Lock〉; t0 = load(x); x := t0 + 20;

. . .



Prace −→2 (νxc)


c!〈Lock〉; t1 = load(x); x := t1 + 10;

. . .
| c!〈Lock〉; t0 = load(x); x := t0 + 20;

. . .
| [x := 0] | c〈int, 2〉::∅



Reduction of our MiGo+ example

Prace
def
=

newvar(x :int);
newchan(y :int, 2);


y !〈Lock〉; t1 = load(x); x := t1 + 10;

. . .
| y !〈Lock〉; t0 = load(x); x := t0 + 20;

. . .



Prace −→2 (νxc)


c!〈Lock〉; t1 = load(x); x := t1 + 10;

. . .
| c!〈Lock〉; t0 = load(x); x := t0 + 20;

. . .
| [x := 0] | c〈int, 2〉::∅



Reduction of our MiGo+ example

Prace
def
=

newvar(x :int);
newchan(y :int, 2);


y !〈Lock〉; t1 = load(x); x := t1 + 10;

. . .
| y !〈Lock〉; t0 = load(x); x := t0 + 20;

. . .



Prace −→4 (νxc)



c!〈Lock〉;

t1 = load(x); x := t1 + 10;
. . .

|

c!〈Lock〉;

t0 = load(x); x := t0 + 20;
. . .

| [x := 0] | c〈int, 2〉::Lock · Lock



Reduction of our MiGo+ example

Prace
def
=

newvar(x :int);
newchan(y :int, 2);


y !〈Lock〉; t1 = load(x); x := t1 + 10;

. . .
| y !〈Lock〉; t0 = load(x); x := t0 + 20;

. . .



Prace −→6 (νxc)



c!〈Lock〉; t1 = load(x);

x := 0 + 10 ;
. . .

|

c!〈Lock〉; t0 = load(x);

x := 0 + 20 ;
. . .

| [x := 0] | c〈int, 2〉::Lock · Lock



The happens-before relation: P . o1 7→ o2

A first example:

P = c!〈Lock〉; t1 = load(x);P ′

↓c
c,Lock−−−−→ t1 = load(x);P ′ ↓r〈x〉
r〈x〉,0−−−→ P ′ {0/t1}

P . c 7→ r〈x〉

An other example:

Q = x := 10;Q1 | x := 20;Q2

Q ↓(w〈x〉,1.∗)
Q ↓(w〈x〉,2.∗)

¬(P . (w〈x〉, 1.∗) 7→ (w〈x〉, 2.∗))
¬(P . (w〈x〉, 2.∗) 7→ (w〈x〉, 1.∗))

The happens-before relation: P . o1 7→ o2

A first example:

P = c!〈Lock〉; t1 = load(x);P ′

↓c

c,Lock−−−−→ t1 = load(x);P ′

↓r〈x〉
r〈x〉,0−−−→ P ′ {0/t1}

P . c 7→ r〈x〉

An other example:

Q = x := 10;Q1 | x := 20;Q2

Q ↓(w〈x〉,1.∗)
Q ↓(w〈x〉,2.∗)

¬(P . (w〈x〉, 1.∗) 7→ (w〈x〉, 2.∗))
¬(P . (w〈x〉, 2.∗) 7→ (w〈x〉, 1.∗))

The happens-before relation: P . o1 7→ o2

A first example:

P = c!〈Lock〉; t1 = load(x);P ′ ↓c
c,Lock−−−−→ t1 = load(x);P ′

↓r〈x〉
r〈x〉,0−−−→ P ′ {0/t1}

P . c 7→ r〈x〉

An other example:

Q = x := 10;Q1 | x := 20;Q2

Q ↓(w〈x〉,1.∗)
Q ↓(w〈x〉,2.∗)

¬(P . (w〈x〉, 1.∗) 7→ (w〈x〉, 2.∗))
¬(P . (w〈x〉, 2.∗) 7→ (w〈x〉, 1.∗))

The happens-before relation: P . o1 7→ o2

A first example:

P = c!〈Lock〉; t1 = load(x);P ′ ↓c
c,Lock−−−−→ t1 = load(x);P ′

↓r〈x〉

r〈x〉,0−−−→ P ′ {0/t1}

P . c 7→ r〈x〉

An other example:

Q = x := 10;Q1 | x := 20;Q2

Q ↓(w〈x〉,1.∗)
Q ↓(w〈x〉,2.∗)

¬(P . (w〈x〉, 1.∗) 7→ (w〈x〉, 2.∗))
¬(P . (w〈x〉, 2.∗) 7→ (w〈x〉, 1.∗))

The happens-before relation: P . o1 7→ o2

A first example:

P = c!〈Lock〉; t1 = load(x);P ′ ↓c
c,Lock−−−−→ t1 = load(x);P ′ ↓r〈x〉
r〈x〉,0−−−→ P ′ {0/t1}

P . c 7→ r〈x〉

An other example:

Q = x := 10;Q1 | x := 20;Q2

Q ↓(w〈x〉,1.∗)
Q ↓(w〈x〉,2.∗)

¬(P . (w〈x〉, 1.∗) 7→ (w〈x〉, 2.∗))
¬(P . (w〈x〉, 2.∗) 7→ (w〈x〉, 1.∗))

The happens-before relation: P . o1 7→ o2

A first example:

P = c!〈Lock〉; t1 = load(x);P ′ ↓c
c,Lock−−−−→ t1 = load(x);P ′ ↓r〈x〉
r〈x〉,0−−−→ P ′ {0/t1}

P . c 7→ r〈x〉

An other example:

Q = x := 10;Q1 | x := 20;Q2

Q ↓(w〈x〉,1.∗)
Q ↓(w〈x〉,2.∗)

¬(P . (w〈x〉, 1.∗) 7→ (w〈x〉, 2.∗))
¬(P . (w〈x〉, 2.∗) 7→ (w〈x〉, 1.∗))

The happens-before relation: P . o1 7→ o2

A first example:

P = c!〈Lock〉; t1 = load(x);P ′ ↓c
c,Lock−−−−→ t1 = load(x);P ′ ↓r〈x〉
r〈x〉,0−−−→ P ′ {0/t1}

P . c 7→ r〈x〉

An other example:

Q = x := 10;Q1 | x := 20;Q2

Q ↓(w〈x〉,1.∗)
Q ↓(w〈x〉,2.∗)

¬(P . (w〈x〉, 1.∗) 7→ (w〈x〉, 2.∗))
¬(P . (w〈x〉, 2.∗) 7→ (w〈x〉, 1.∗))

The happens-before relation: P . o1 7→ o2

A first example:

P = c!〈Lock〉; t1 = load(x);P ′ ↓c
c,Lock−−−−→ t1 = load(x);P ′ ↓r〈x〉
r〈x〉,0−−−→ P ′ {0/t1}

P . c 7→ r〈x〉

An other example:

Q = x := 10;Q1 | x := 20;Q2

Q ↓(w〈x〉,1.∗)
Q ↓(w〈x〉,2.∗)

¬(P . (w〈x〉, 1.∗) 7→ (w〈x〉, 2.∗))
¬(P . (w〈x〉, 2.∗) 7→ (w〈x〉, 1.∗))

Defining Data Races

(1) if P (νũ)P and P

Q1 ↓(w〈x〉,ι)

Q2 ↓(w〈x〉,ι′)

such that∗

∗

∗

¬(P . (w〈x〉, ι) 7→ (w〈x〉, ι′))) and ¬(P . (w〈x〉, ι′) 7→ (w〈x〉, ι)))
then P has a data race

(2) if P (νũ)P ′ and


P ′ ↓(w〈x〉,ι)

and

P ′ ↓(w〈x〉,ι′)

then P has a data race∗

Theorem

Charactisations (1) and (2) of data races are equivalent.

Defining Data Races

(1) if P (νũ)P and P

Q1 ↓(w〈x〉,ι)

Q2 ↓(w〈x〉,ι′)

such that∗

∗

∗

¬(P . (w〈x〉, ι) 7→ (w〈x〉, ι′)))

and ¬(P . (w〈x〉, ι′) 7→ (w〈x〉, ι)))
then P has a data race

(2) if P (νũ)P ′ and


P ′ ↓(w〈x〉,ι)

and

P ′ ↓(w〈x〉,ι′)

then P has a data race∗

Theorem

Charactisations (1) and (2) of data races are equivalent.

Defining Data Races

(1) if P (νũ)P and P

Q1 ↓(w〈x〉,ι)

Q2 ↓(w〈x〉,ι′)

such that∗

∗

∗

¬(P . (w〈x〉, ι) 7→ (w〈x〉, ι′))) and ¬(P . (w〈x〉, ι′) 7→ (w〈x〉, ι)))

then P has a data race

(2) if P (νũ)P ′ and


P ′ ↓(w〈x〉,ι)

and

P ′ ↓(w〈x〉,ι′)

then P has a data race∗

Theorem

Charactisations (1) and (2) of data races are equivalent.

Defining Data Races

(1) if P (νũ)P and P

Q1 ↓(w〈x〉,ι)

Q2 ↓(w〈x〉,ι′)

such that∗

∗

∗

¬(P . (w〈x〉, ι) 7→ (w〈x〉, ι′))) and ¬(P . (w〈x〉, ι′) 7→ (w〈x〉, ι)))
then P has a data race

(2) if P (νũ)P ′ and


P ′ ↓(w〈x〉,ι)

and

P ′ ↓(w〈x〉,ι′)

then P has a data race∗

Theorem

Charactisations (1) and (2) of data races are equivalent.

Defining Data Races

(1) if P (νũ)P and P

Q1 ↓(w〈x〉,ι)

Q2 ↓(w〈x〉,ι′)

such that∗

∗

∗

¬(P . (w〈x〉, ι) 7→ (w〈x〉, ι′))) and ¬(P . (w〈x〉, ι′) 7→ (w〈x〉, ι)))
then P has a data race

(2) if P (νũ)P ′ and


P ′ ↓(w〈x〉,ι)

and

P ′ ↓(w〈x〉,ι′)

then P has a data race∗

Theorem

Charactisations (1) and (2) of data races are equivalent.

Liveness and Safety: the Example of Mutex

Definition (Mutex Safety)

If P −→∗ (νũ)P and P ↓ul〈m〉, then P ≡ P ′ | dme?

a mutual exclusion lock can only be unlocked if it is already locked.

Definition (Mutex Liveness)

If P −→∗ (νũ)P and P ↓l〈m〉, then ∃P −→∗ P ′ τm−→

a mutual exclusion lock will always eventually answer a lock request.

Liveness and Safety: the Example of Mutex

Definition (Mutex Safety)

If P −→∗ (νũ)P and P ↓ul〈m〉, then P ≡ P ′ | dme?
a mutual exclusion lock can only be unlocked if it is already locked.

Definition (Mutex Liveness)

If P −→∗ (νũ)P and P ↓l〈m〉, then ∃P −→∗ P ′ τm−→
a mutual exclusion lock will always eventually answer a lock request.

Behavioural Typing System for MiGo+

Prace
def
=

newvar(x :int);
newchan(y :int, 2);


y !〈Lock〉; t1 = load(x); x := t1 + 10;

. . .
| y !〈Lock〉; t0 = load(x); x := t0 + 20;

. . .



Trace
def
= (νv x)(ν y2)

(
y ; r(x); w(x); . . .
| y ; r(x); w(x); . . .

)

Trace −→2 (νxc)

 c ; r(x); w(x); . . .
| c ; r(x); w(x); . . .
| x� | bcc20



Behavioural Typing System for MiGo+

Prace
def
=

newvar(x :int);
newchan(y :int, 2);


y !〈Lock〉; t1 = load(x); x := t1 + 10;

. . .
| y !〈Lock〉; t0 = load(x); x := t0 + 20;

. . .



Trace
def
= (νv x)(ν y2)

(
y ; r(x); w(x); . . .
| y ; r(x); w(x); . . .

)

Trace −→2 (νxc)

 c ; r(x); w(x); . . .
| c ; r(x); w(x); . . .
| x� | bcc20



Behavioural Typing System for MiGo+

Prace
def
=

newvar(x :int);
newchan(y :int, 2);


y !〈Lock〉; t1 = load(x); x := t1 + 10;

. . .
| y !〈Lock〉; t0 = load(x); x := t0 + 20;

. . .



Trace
def
= (νv x)(ν y2)

(
y ; r(x); w(x); . . .
| y ; r(x); w(x); . . .

)

Trace −→4 (νxc)



c ;

r(x); w(x); . . .
|

c ;

r(x); w(x); . . .
| x� | bcc22



Behavioural Typing System for MiGo+

Prace
def
=

newvar(x :int);
newchan(y :int, 2);


y !〈Lock〉; t1 = load(x); x := t1 + 10;

. . .
| y !〈Lock〉; t0 = load(x); x := t0 + 20;

. . .



Trace
def
= (νv x)(ν y2)

(
y ; r(x); w(x); . . .
| y ; r(x); w(x); . . .

)

Trace −→6 (νxc)



c ; r(x);

w(x); . . .
|

c ; r(x);

w(x); . . .
| x� | bcc22



Properties of our Type System

Our type system has reduction transitions that follow almost exactly the
reduction of the MiGo+ processes, expect for if/then/else constructs.
It also does not care about the content of the data.
Because of that, it admits the following properties:

Theorem (Subject reduction)

If Γ ` P I T and P reduces to P ′, then T has a reduction T ′ such that
Γ ` P ′ I T ′.

Theorem (Progress)

If Γ ` P I T and T reduces to T0, then P has a reduction P ′ and there
exists a reduction T ′ of T such that Γ ` P ′ I T ′.

Properties of our Type System

Our type system has reduction transitions that follow almost exactly the
reduction of the MiGo+ processes, expect for if/then/else constructs.
It also does not care about the content of the data.
Because of that, it admits the following properties:

Theorem (Subject reduction)

If Γ ` P I T and P reduces to P ′, then T has a reduction T ′ such that
Γ ` P ′ I T ′.

Theorem (Progress)

If Γ ` P I T and T reduces to T0, then P has a reduction P ′ and there
exists a reduction T ′ of T such that Γ ` P ′ I T ′.

Properties of our Type System

Our type system has reduction transitions that follow almost exactly the
reduction of the MiGo+ processes, expect for if/then/else constructs.
It also does not care about the content of the data.
Because of that, it admits the following properties:

Theorem (Subject reduction)

If Γ ` P I T and P reduces to P ′, then T has a reduction T ′ such that
Γ ` P ′ I T ′.

Theorem (Progress)

If Γ ` P I T and T reduces to T0, then P has a reduction P ′ and there
exists a reduction T ′ of T such that Γ ` P ′ I T ′.

Verifying Processes through their Types

Theorem (Process-Type relation)

1 P is safe (resp. data race free) iff
T is safe (resp. data race free)

2 P is live iff T is live and

P ∈ May⇓

or
P 6∈ Inf or
P ∈ AC

Processes

Verifying Processes through their Types

Theorem (Process-Type relation)

1 P is safe (resp. data race free) iff
T is safe (resp. data race free)

2 P is live iff T is live and

P ∈ May⇓

or
P 6∈ Inf or
P ∈ AC

Processes

Verifying Processes through their Types

Theorem (Process-Type relation)

1 P is safe (resp. data race free) iff
T is safe (resp. data race free)

2 P is live iff T is live and

P ∈ May⇓

or
P 6∈ Inf or
P ∈ AC

May

Terminating

Processes

Verifying Processes through their Types

Theorem (Process-Type relation)

1 P is safe (resp. data race free) iff
T is safe (resp. data race free)

2 P is live iff T is live and

P ∈ May⇓ or
P 6∈ Inf

or
P ∈ AC

May

Inf

Terminating

Processes

Verifying Processes through their Types

Theorem (Process-Type relation)

1 P is safe (resp. data race free) iff
T is safe (resp. data race free)

2 P is live iff T is live and

P ∈ May⇓ or
P 6∈ Inf or
P ∈ AC

May

Inf

Terminating

Processes

AC

Type Verification: the Modal µ-calculus
Definition: T ↓o iff T can execute action o immediately.

Trace −→2 (νxc)

 c ; r(x); w(x); . . .
| c ; r(x); w(x); . . .
| x� | bcc20

 = (νxc)T

′′

T

↓c ↓x� ↓•c ↓τc

T ′

↓r〈x〉 ↓c ↓x�

↓•c ↓c• ↓τx ↓τc

T ′′

↓(w〈x〉,1.∗) ↓c ↓x�

↓•c ↓c• ↓τx , ↓τc

. . .τc τx τx

Modal properties are logical propositions guarded by modalities
parametrised by the flags and the synchronisations. The two modalities
are ”there exists an action” (diamond) and ”for all actions” (box).

Type Verification: the Modal µ-calculus
Definition: T ↓o iff T can execute action o immediately.

Trace −→2 (νxc)

 c ; r(x); w(x); . . .
| c ; r(x); w(x); . . .
| x� | bcc20

 = (νxc)T

′′

T

↓c ↓x� ↓•c ↓τc

T ′

↓r〈x〉 ↓c ↓x�

↓•c ↓c• ↓τx ↓τc

T ′′

↓(w〈x〉,1.∗) ↓c ↓x�

↓•c ↓c• ↓τx , ↓τc

. . .τc τx τx

Modal properties are logical propositions guarded by modalities
parametrised by the flags and the synchronisations. The two modalities
are ”there exists an action” (diamond) and ”for all actions” (box).

Type Verification: the Modal µ-calculus
Definition: T ↓o iff T can execute action o immediately.

Trace −→3 (νxc)



c ;

r(x); w(x); . . .
| c ; r(x); w(x); . . .
| x� | bcc21

 = (νxc)T ′

′

T

↓c ↓x� ↓•c ↓τc

T ′

↓r〈x〉 ↓c ↓x�

↓•c ↓c• ↓τx ↓τc

T ′′

↓(w〈x〉,1.∗) ↓c ↓x�

↓•c ↓c• ↓τx , ↓τc

. . .

τc

τx τx

Modal properties are logical propositions guarded by modalities
parametrised by the flags and the synchronisations. The two modalities
are ”there exists an action” (diamond) and ”for all actions” (box).

Type Verification: the Modal µ-calculus
Definition: T ↓o iff T can execute action o immediately.

Trace −→4 (νxc)



c ; r(x);

w(x); . . .
| c ; r(x); w(x); . . .
| x� | bcc21

 = (νxc)T ′′

T

↓c ↓x� ↓•c ↓τc

T ′

↓r〈x〉 ↓c ↓x�

↓•c ↓c• ↓τx ↓τc

T ′′

↓(w〈x〉,1.∗) ↓c ↓x�

↓•c ↓c• ↓τx , ↓τc

. . .τc τx τx

Modal properties are logical propositions guarded by modalities
parametrised by the flags and the synchronisations. The two modalities
are ”there exists an action” (diamond) and ”for all actions” (box).

Model Checking the Types and Processes

Formula Ψ(φ) means “φ is true in every reachable state”

Theorem (Model Checking of
MiGo+ processes)

Suppose Γ ` P I T.

1 If T |= Ψ(φ) where φ is a safety
property, then P |= Ψ(φ).

2 If T |= Ψ(φ) where φ is a liveness
property, and either

(a) P ∈ May⇓ or
(b) P 6∈ Inf or
(c) P ∈ AC

then P |= Ψ(φ).

Processes

Model Checking the Types and Processes

Formula Ψ(φ) means “φ is true in every reachable state”

Theorem (Model Checking of
MiGo+ processes)

Suppose Γ ` P I T.

1 If T |= Ψ(φ) where φ is a safety
property, then P |= Ψ(φ).

2 If T |= Ψ(φ) where φ is a liveness
property, and either

(a) P ∈ May⇓ or
(b) P 6∈ Inf or
(c) P ∈ AC

then P |= Ψ(φ).

Processes

Model Checking the Types and Processes

Formula Ψ(φ) means “φ is true in every reachable state”

Theorem (Model Checking of
MiGo+ processes)

Suppose Γ ` P I T.

1 If T |= Ψ(φ) where φ is a safety
property, then P |= Ψ(φ).

2 If T |= Ψ(φ) where φ is a liveness
property, and either

(a) P ∈ May⇓ or
(b) P 6∈ Inf or
(c) P ∈ AC

then P |= Ψ(φ).

Processes

Model Checking the Types and Processes

Formula Ψ(φ) means “φ is true in every reachable state”

Theorem (Model Checking of
MiGo+ processes)

Suppose Γ ` P I T.

1 If T |= Ψ(φ) where φ is a safety
property, then P |= Ψ(φ).

2 If T |= Ψ(φ) where φ is a liveness
property, and either

(a) P ∈ May⇓

or
(b) P 6∈ Inf or
(c) P ∈ AC

then P |= Ψ(φ).

May

Terminating

Processes

Model Checking the Types and Processes

Formula Ψ(φ) means “φ is true in every reachable state”

Theorem (Model Checking of
MiGo+ processes)

Suppose Γ ` P I T.

1 If T |= Ψ(φ) where φ is a safety
property, then P |= Ψ(φ).

2 If T |= Ψ(φ) where φ is a liveness
property, and either

(a) P ∈ May⇓ or
(b) P 6∈ Inf

or
(c) P ∈ AC

then P |= Ψ(φ).

May

Inf

Terminating

Processes

Model Checking the Types and Processes

Formula Ψ(φ) means “φ is true in every reachable state”

Theorem (Model Checking of
MiGo+ processes)

Suppose Γ ` P I T.

1 If T |= Ψ(φ) where φ is a safety
property, then P |= Ψ(φ).

2 If T |= Ψ(φ) where φ is a liveness
property, and either

(a) P ∈ May⇓ or
(b) P 6∈ Inf or
(c) P ∈ AC

then P |= Ψ(φ).

May

Inf

Terminating

Processes

AC

Implementation: Godel 2

Godel 2

mCRL2 KiTTEL

MiGoInfer

go/ssa package

Go source code

Load main()

Behavioural types

Godel 2 written in Haskell

This tool uses either KiTTEL to check for termination of the input
behavioural types, or mCRL2 to check for properties like liveness,
safety and data-race freedom of the types.

MiGoInfer written in Go

This tool loads source code, type-checks and builds SSA IR using the
go/ssa package, then extracts communication, mutexes and shared
variables from the SSA IR as behavioural types.

Figure 3: Workflow of the verification toolchain.

Implementation: Godel 2

Godel 2

mCRL2 KiTTEL

MiGoInfer

go/ssa package

Go source code

Load main()

Behavioural types

Godel 2 written in Haskell

This tool uses either KiTTEL to check for termination of the input
behavioural types, or mCRL2 to check for properties like liveness,
safety and data-race freedom of the types.

MiGoInfer written in Go

This tool loads source code, type-checks and builds SSA IR using the
go/ssa package, then extracts communication, mutexes and shared
variables from the SSA IR as behavioural types.

Figure 3: Workflow of the verification toolchain.

Implementation: Godel 2

Godel 2

mCRL2 KiTTEL

MiGoInfer

go/ssa package

Go source code

Load main()

Behavioural types

Godel 2 written in Haskell

This tool uses either KiTTEL to check for termination of the input
behavioural types, or mCRL2 to check for properties like liveness,
safety and data-race freedom of the types.

MiGoInfer written in Go

This tool loads source code, type-checks and builds SSA IR using the
go/ssa package, then extracts communication, mutexes and shared
variables from the SSA IR as behavioural types.

Figure 3: Workflow of the verification toolchain.

Implementation: Godel 2

Godel 2

mCRL2 KiTTEL

MiGoInfer

go/ssa package

Go source code

Load main()

Behavioural types

Godel 2 written in Haskell

This tool uses either KiTTEL to check for termination of the input
behavioural types, or mCRL2 to check for properties like liveness,
safety and data-race freedom of the types.

MiGoInfer written in Go

This tool loads source code, type-checks and builds SSA IR using the
go/ssa package, then extracts communication, mutexes and shared
variables from the SSA IR as behavioural types.

Figure 3: Workflow of the verification toolchain.

Implementation: Godel 2

Godel 2

mCRL2 KiTTEL

MiGoInfer

go/ssa package

Go source code

Load main()

Behavioural types

Godel 2 written in Haskell

This tool uses either KiTTEL to check for termination of the input
behavioural types, or mCRL2 to check for properties like liveness,
safety and data-race freedom of the types.

MiGoInfer written in Go

This tool loads source code, type-checks and builds SSA IR using the
go/ssa package, then extracts communication, mutexes and shared
variables from the SSA IR as behavioural types.

Figure 3: Workflow of the verification toolchain.

Implementation: Godel 2

Godel 2

mCRL2 KiTTEL

MiGoInfer

go/ssa package

Go source code

Load main()

Behavioural types

Godel 2 written in Haskell

This tool uses either KiTTEL to check for termination of the input
behavioural types, or mCRL2 to check for properties like liveness,
safety and data-race freedom of the types.

MiGoInfer written in Go

This tool loads source code, type-checks and builds SSA IR using the
go/ssa package, then extracts communication, mutexes and shared
variables from the SSA IR as behavioural types.

Figure 3: Workflow of the verification toolchain.

Table 1: Go Programs Verified by the Toolchain.

Programs LoC Sum Safe Live DRF time (ms)

no-race 15 9 X X X 691.45
no-race-mutex 24 33 X X X 785.57
no-race-mut-bad 23 20 X × X 721.77
simple-race 13 8 X X × 701.93
simple-race-fix 19 17 X X X 731.73
deposit-race1 18 14 X X × 697.90
deposit-fix1 24 27 X X X 727.43
ch-as-lock-race2 19 20 X X × 753.99
ch-as-lock-fix2 19 20 X X X 745.64
ch-as-lock-bad 19 20 X × X 749.97
prod-cons-race 38 156 X X × 1,903.52
prod-cons-fix 40 188 X X X 1,971.26
dinephil5-race 59 2672 X X × ∼ 185mn
dinephil5-fix 59 2688 X X X ∼ 645mn

1Donovan, A.A., Kernighan, B.W.: The Go Programming
Language (2015), 2Running example, LoC: Lines of Code,

DRF: Data Race Free, Sum: Summands,
X: Formula is true, ×: Formula is false

Questions?

	An extension to MiGo: MiGo+
	The Behavioural Types for MiGo+
	Verifying Type Properties

