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The First Step

® Do a case study:

® [anguage Primitives and Type Discipline for Structured
Communication-Based Programming Revisited, by Yoshida
and Vasconcelos.



The send receive system
and its cousin the relaxed
and the revisited system.
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What do we have?

A proof of type preservation formalised in Coq using
ssreflect.

A library to implement locally nameless with multiple name
scopes and handle environments in a versatile way.

We have a TACAS 2020 submission describing our tool.

We built some in-team expertise (i.e. we learned some hard
lessons while struggling to finish the proof).



What did we
mechanise?




A tale of three systems

¢ We set out to represent the three systems described in the
paper:

¢ The Honda,Vasconcelos, Kubo system from ESOP’98
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A tale of three systems

¢ We set out to represent the three systems described in the
paper:

¢ The Honda,Vasconcelos, Kubo system from ESOP’98
¢ [ts naive but ultimately unsound extension

¢ |ts revised system inspired by Gay and Hole in Acta
Informatica



P ::=request a(k) in P

accept a(k) in P

klle]; P

k?(x) in P

k<l P
ko>{li: P - |ln: Po}
throw k[k']; P

catch k(k') in P

if e then P else ()

The Send Receive System

session request
session acceptance
data sending

data reception
label selection
label branching
channel sending
channel reception

conditional branch

P|Q parallel composition
inact Inaction
(vu)P name/channel hiding

def D in P recursion
X|[ek] process variables

e n=c¢ constant
le+e | e—€¢ | exe | notle) | ... operators

D ::= X (#1k1) = P, and---and X,,(Z,k,) = P, declaration for recursion
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The Send Receive System

iest a(k) in P

BEYy
We consider terms up-to talk)dn .

X-conversion
in P

;P

> {l P |l P}
throw k[k']; P
catch k(k') in P

if e then P else Q
PlQ

inact

syu!P

def D in P

X|[ek]

e i —¢C

le+e | e—€¢ | exe | notle) | ...
D = Xl(fllgl) = P1 and - --and Xn(in]%n)

session request
session acceptance
data sending

data reception

label selection

label branching
channel sending
channel reception
conditional branch
parallel composition
inaction
name/channel hiding

recursion

process variables
constant

operators

declaration for recursion



The Send Receive System

est a(k) in P session request

as k: in P session acceptance

data sending

data reception
P label selection
>{l1: P [ln: Po} label branching
throw k[k']; P :
catch k(k') in P

if e then P else Q
PlQ

inact

syu!P

def D in P

X[ek] |

e =20

le+e | e—¢ | exe | mnot(e) | ...
D = X (Z1k1) = P and- - - and X, (Znkn) = Py



o=conversion curse or
Blessing?

(throw k[k']; P1) | (catch k(k') in P) — P | P

® The original system depends crucially on names
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o=conversion curse or
Blessing?

(throw k[k']; P1) | (catch k(k') in P) — P | P

® The original system depends cruci. ~ on names

This is a bound variable.

* [f X-conversion is built in, this rule collapses to:

(throw k[K']; P1) | (catch k(k") in P,) — P | Pk /K"]
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The Nalve
Representation

o [t“looks like” the original Send Receive system.

® You start suspecting is wrong when defining the reduction
relation.

® You know there is a problem when the proof fails.



We have to discuss
Adequacy

® | see this problem in one of two ways:
e FEither, we require proofs of adequacy.

®* Or we consider the meaning of the mechanisation “first-
class”.
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We have to discuss
Adequacy

® | see this problem in one of two ways:
e FEither, we require proofs of adequacy.

®* Or we consider the meaning of the mechanisation “first-
class”.



The Revisited system

* Now we distinguish between the endpoints of channels.

® [t can be represented with LN-variables and names.



Four kinds of atoms

Inductive proc : Set :=
| request :
| accept :

<
scvar — proc — proc -
scvar — proc — proc

| send : channel — exp — proc — proc

| receive : channel — proc — proc

-~
-~
-~
~
-~
-~

| select : ~ o
channel — 1label — proc — proc

| branch :
channel — proc — proc — proc

| throw :
channel — channel — proc — proc
| catch : channel — proc — proc

~
-
-~
-~
-~

| ife : exp = proc — proc — proc - _
| par : proc — proc — proc
| inact : proc

(* hides a channel name *)
| nu_ch :
(* hides a name *)

~—
| nu_nm : proc — proc
(* process replication *)
| bang : proc — proc

Prot =5 “Proc = = == = e oo oo _ _ .

“ - binds variable

’

R -~ from Agc

~ o binds variable
- - /J

T from Agy

y binds variable
- ffOInLﬁch

-~ _ binds channel

from Ay
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® They come with many lemmas
(less induction proofs)



Typing environments

® Store their assumptions in a unique order
(easy to compare)

® Only store unique assumptions
(easy to split)

® They come with many lemmas These are generic

(less induction proofs) enough and easy to
use. #artefact



Subject Reduction

Theorem 3.3 (Subject Reduction) If O:T' - P> A with A balanced and P —*
Q, then O:T'F Q> A’ and A’ balanced.

Is straightforward to represent:

Theorem SubjectReduction G P Q D:
oft G PD — balanced D - P —* Q — exists D', balanced D' /\ oft G Q D'.




We have a tech report and
a repository for the proof.

® The code for the proof can be found at:

® https://github.com/emtst/

® We have a technical report:
® Engineering the Meta-Theory of Session Types

e at: https://www.doc.ic.ac.uk/research/technicalreports/2019/
DTRS19-4.pdf


https://github.com/emtst/

Onwards and Upwards



We are moving to
Multiparty Session Types

e | essons learned:

® Doing a complete calculus just to have a similar calculus to
the literature takes a lot of effort.

® | ocally nameless worked well. Particularly/Even with the
multiple name scopes.

® Mechanising proof is great, but if one squints mechanisation is
akin to very careful implementation.



MPST

There’s four of us now: David, Francisco, Lorenzo, and Nobuko.

We are mechanising the meta-theory of multiparty session
types.

We will build upon our locally nameless and environment
implementation.

We plan to extract certified implementations from the proofs.



Certified MPST

¢
Global Type Semanves GT-LTS
Projection trace equivalence
semantics

— LT-LTS

Local Type

Multiparty Compatibility in Communicating Automata:
Characterisation and Synthesis of Global Session Types
Deniélou, Yoshida, 2013



Certified MPST

. (=) o [] \ semantics .
Seribble Global Protocol » SNF » Global Type » GT-LTS
Projection Projection trace equivalence
+ < t.. W
Scribble Local Protocol » LSNF » Local Type Semam e, LT-LTS

We want Scribble-style
protocol specifications

Featherweight Scribble,
Neykova, Yoshida, 2019



Certified MPST

{-)
Scribble Global Protocol > SNF
Projection
Scribble Local Protocol > LSNF

We want Scribble-style
protocol specifications

» Global Type

semantics

Projection

semantics

» GT-LTS

trace equivalence

-» LT-LTS

» Local Type

CFSM

A

Program

We also want to reason
about concurrent

programs.



Certified MPST

_ (=) o [-] , semantics .

Scribble Global Protocol » SNF » Global Type » GT-LTS
Projection . Projection trace equivalence

Certified Code
W N t' W
Scribble Local Protocol > LSNF » Lical Type Semam e, LT-LTS
(CFSM
We want Scribble-style , We also want to reason

protocol specifications d about concurrent

Program programs.



Mechanical Progress

® We talked about the binary session types meta-theory proof
we formalised.

® We talked about our current project and our future plans.



Mechanical Progress

* Ve talked about the Thanks for your :ory proof

we formalised. kind attention!
Questions?

® We talked about our, e plans.



