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The First Step

• Do a case study:

• Language Primitives and Type Discipline for Structured 
Communication-Based Programming Revisited, by Yoshida 
and Vasconcelos.



The send receive system 
and its cousin the relaxed 
and the revisited system.
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The send receive system 
and its cousin the relaxed 
and the revisited system.

This is the first 
step.

Spoiler: Multiparty 
session types are 

next.



What do we have?

• A proof of type preservation formalised in Coq using 
ssreflect.

• A library to implement locally nameless with multiple name 
scopes and handle environments in a versatile way.

• We have a TACAS 2020 submission describing our tool.

• We built some in-team expertise (i.e. we learned some hard 
lessons while struggling to finish the proof).



What did we 
mechanise?



A tale of three systems

• We set out to represent the three systems described in the 
paper:

• The Honda, Vasconcelos, Kubo system from ESOP’98
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A tale of three systems

• We set out to represent the three systems described in the 
paper:

• The Honda, Vasconcelos, Kubo system from ESOP’98

• Its revised system inspired by Gay and Hole in Acta 
Informatica

• Its naïve but ultimately unsound extension



The Send Receive System
P ::= request a(k) in P session request

| accept a(k) in P session acceptance

| k![ẽ];P data sending

| k?(x̃) in P data reception

| k ! l;P label selection

| k " {l1 : P1[] · · · []ln : Pn} label branching

| throw k[k′];P channel sending

| catch k(k′) in P channel reception

| if e then P else Q conditional branch

| P | Q parallel composition

| inact inaction

| (νu)P name/channel hiding

| def D in P recursion

| X[ẽk̃] process variables

e ::= c constant

| e + e′ | e − e′ | e × e | not(e) | . . . operators

D ::= X1(x̃1k̃1) = P1 and · · · and Xn(x̃nk̃n) = Pn declaration for recursion

Fig. 1. Syntax

We use the following base sets: names, ranged over by a, b, x, y, z . . . ; channels,
ranged over by k, k′; constants (including names, integers and booleans), ranged
over by c, c′, . . . ; labels, ranged over by l, l′, . . . ; and process variables, ranged over
by X,Y, . . . Letters u, u′, . . . denote names and channels together. Then processes,
ranged over by P,Q . . . , and expressions, ranged over by e, e′, . . . are given by the
grammar in Figure 1. The typing system in Figure 6 makes sure that, in process
X[ẽk̃], the channels in k̃ are pairwise distinct.

P ≡ Q if P ≡α Q

P | inact ≡ P P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R)

(νu)P | Q ≡ (νu)(P | Q) if u $∈ fu(Q)

(νu)inact ≡ inact

def D in inact ≡ inact

(νu)def D in P ≡ def D in (νu)P if u $∈ fu(D)

(def D in P ) | Q ≡ def D in (P | Q) if dpv(D) ∩ fpv(Q) = ∅

def D in (def D′ in P ) ≡ def D and D′ in P if dpv(D) ∩ dpv(D′) = ∅.

Fig. 2. Structural Congruence

The bindings for names are k?(x̃) in P , X(x̃k̃) = P , and (νa)P ; those for
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| X[ẽk̃] process variables

e ::= c constant

| e + e′ | e − e′ | e × e | not(e) | . . . operators

D ::= X1(x̃1k̃1) = P1 and · · · and Xn(x̃nk̃n) = Pn declaration for recursion

Fig. 1. Syntax

We use the following base sets: names, ranged over by a, b, x, y, z . . . ; channels,
ranged over by k, k′; constants (including names, integers and booleans), ranged
over by c, c′, . . . ; labels, ranged over by l, l′, . . . ; and process variables, ranged over
by X,Y, . . . Letters u, u′, . . . denote names and channels together. Then processes,
ranged over by P,Q . . . , and expressions, ranged over by e, e′, . . . are given by the
grammar in Figure 1. The typing system in Figure 6 makes sure that, in process
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We consider terms up-to 
α-conversion

Then we cannot distinguish: 
k?(x) in inact  

and  
k?(y) in inact



α-conversion curse or 
Blessing?

• The original system depends crucially on names

Now by [Conc], we have

Θ · X : S̃α̃;Γ ! P [c̃/x̃] | Q " ∆′′ · k̃ : α̃

Finally by [Bot] (∆′′ ≺ ∆′), then by [Def], we obtain:

Θ;Γ ! def X(x̃k̃) = P in (P [c̃/x̃] | Q) " ∆′ · k̃ : α̃

Then we can apply [Bot] to obtain ∆, as desired.

Case [Str]. By Subject-Congruence.

To formalise Type Safety, we need the following notions. A k-process is a process
prefixed by subject k (such as k![ẽ];P and catch k(k′) in P ). Next, a k-redex is the
parallel composition of two k-processes, i.e. either of form (k![ẽ];P | k?(x̃) in Q),
(k! l;P | k"{l1 : Q1[] · · · []ln : Qn}), or (throw k[k′];P | catch k(k′′) in Q). Then
P is an error if P ≡ (νũ)(def D in (Q | R)) where Q is, for some k, the parallel
composition of either two k-processes that do not form a k-redex, or three or more
k-processes. We then have:

Theorem 2.11 (Type Safety) A typable program never reduces to an error.

Proof. By Subject Reduction it suffices to show that typable programs are not
errors. The proof is by reductio ad absurdum, assuming error processes typable.
Suppose that Θ;Γ ! def D in (νũ)(P | Q) " ∆. Analysing the derivation tree for
the process, we conclude that Θ;Γ ! P " ∆′, for some ∆′. We now analyse the two
classes of error processes.

When P = P1 | P2 is the parallel composition of two k-processes that do not
form a redex, there are several cases to consider. They are all alike; take for example
the pair label-select/throw. Applying [Conc] on P , we have Θ;Γ ! P1 " ∆′

1 and
Θ;Γ ! P2 " ∆′

2 with ∆′ ≺ ∆′
1 ◦ ∆′

2. Applying [Sel] on P1 and [Thr] on P2 we
conclude that k : ⊕{l1 : α1, . . . , ln : αn} ∈ ∆′

1 and k : ![α];β ∈ ∆′

2. But then ∆′

1 ◦∆′

2

is not defined, hence def D in (νũ)(P | Q) is not typable.

When P is the parallel composition of three or more k-processes, we concentrate
on the case of three processes, for the remaining cases reduce to this. So let P =
(P1 | P2) | P3. Applying [Conc], we know that Θ;Γ ! P1 | P2 "Σ and Θ;Γ ! P3 "Σ′

with ∆′ ≺ Σ ◦ Σ′. If P1 | P2 is not a k-redex, we use the case above. Otherwise, it
must be the case that k : ⊥ ∈ Σ. From Lemma 2.7(ii), we know that k ∈ dom(Σ′),
thus Σ ◦ Σ′ is not defined, hence def D in (νũ)(P | Q) is not typable.

3 A More Liberal Session Passing Style

Rule [Pass] in the original ESOP’98 system

(throw k[k′];P1) | (catch k(k′) in P2) → P1 | P2
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When P is the parallel composition of three or more k-processes, we concentrate
on the case of three processes, for the remaining cases reduce to this. So let P =
(P1 | P2) | P3. Applying [Conc], we know that Θ;Γ ! P1 | P2 "Σ and Θ;Γ ! P3 "Σ′

with ∆′ ≺ Σ ◦ Σ′. If P1 | P2 is not a k-redex, we use the case above. Otherwise, it
must be the case that k : ⊥ ∈ Σ. From Lemma 2.7(ii), we know that k ∈ dom(Σ′),
thus Σ ◦ Σ′ is not defined, hence def D in (νũ)(P | Q) is not typable.
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P is an error if P ≡ (νũ)(def D in (Q | R)) where Q is, for some k, the parallel
composition of either two k-processes that do not form a k-redex, or three or more
k-processes. We then have:

Theorem 2.11 (Type Safety) A typable program never reduces to an error.

Proof. By Subject Reduction it suffices to show that typable programs are not
errors. The proof is by reductio ad absurdum, assuming error processes typable.
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This is a bound variable.

• If α-conversion is built in, this rule collapses to:

does not allow the transmission of an arbitrary channel. In most situations a process
catch k(k′′) in P2 can be alpha-converted ahead of communication 3 so that the
bound variable k′′ syntactically matches the free variable k′ in the throw process.
The exception happens exactly when k′ is free in P2: alpha-conversion becomes
impossible (for it would capture free variable k′), and communication cannot occur.

A more liberal rule would allow the transmission of an arbitrary channel, im-
plying a substitution on the client side.

(throw k[k′];P1) | (catch k(k′′) in P2) → P1 | P2[k
′/k′′]

Unfortunately this rule breaks Subject Reduction (Theorem 2.10). A counter-
example is a process which, possessing one end of a channel, receives the second
end. The process:

throw k[k′] | catch k(k′′) in k′′?(y) in k′![1] (4)

is typable under typing k : ⊥, k′ : ⊥, but reduces to process

k′?(x) in k′![1]

which is not typable under the same typing [7].

One might think that the simplest solution of the above problem is to add
the side condition k′ #∈ fc(P2) to the above rule proposal. This reduction rule,
however, implies that the condition of free channels is checked at runtime, which
contradicts the aim of static type checking to preserve Subject Reduction. The same
sort of situation occurs in the ESOP’98 system, where, in presence of a process
throw k[k′];P1 | catch k(k′′) in P2, the runtime system has to check whether
k′ ∈ fc(P2) in order to alpha-convert the catch-process before applying rule [Pass]
above.

A different alternative would be to type the contractum with a different typing.
In the above case and for the catch process in the redex, we have k′ : ![nat]; end,
and k′′ : ?[nat]; end. In the contractum, channels k′ and k′′ are aliased and it is not
obvious how to build, from the premises, the correct type ?[nat]; ![nat]; end for k′.

A solution, due to Gay and Hole [12], explicitly distinguishes between the two
ends of a channel. For a channel κ, its two ends are denoted κ+ and κ−. Channels
are now runtime entities (they are not supposed to occur in programs) created by
rule [Link], which becomes:

(accept a(x) in P1) | (request a(x) in P2) → (νκ)(P1[κ
+/x] | P2[κ

−/x])

Rules that synchronise two processes on a given channel are updated so that
each process explicitly mentions one of the ends. For example rule [Thr] becomes:

(throw κp[k′];P1) | (catch κp(x) in P2) → P1 | P2[k
′/x]

3 Cf. Paragraph Relationship with the Rewriting Rules of the π-Calculus in Section 2.1.

N. Yoshida, V.T. Vasconcelos / Electronic Notes in Theoretical Computer Science 171 (2007) 73–9386



The Naïve 
Representation



The Naïve 
Representation

• It “looks like” the original Send Receive system.



The Naïve 
Representation

• It “looks like” the original Send Receive system.

• You start suspecting is wrong when defining the reduction 
relation.



The Naïve 
Representation

• It “looks like” the original Send Receive system.

• You start suspecting is wrong when defining the reduction 
relation.

• You know there is a problem when the proof fails.
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• I see this problem in one of two ways:

• Either, we require proofs of adequacy.

• Or we consider the meaning of the mechanisation “first-
class”.



The Revisited system

• Now we distinguish between the endpoints of channels.

• It can be represented with LN-variables and names.
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Typing environments

• Store their assumptions in a unique order  
(easy to compare)

• Only store unique assumptions  
(easy to split)

• They come with many lemmas 
(less induction proofs)

These are generic 
enough and easy to 

use. #artefact



Subject Reduction

Proof. The proof follows the pattern of that of Lemma 2.9, albeit slightly simplified
by the absence of the non-structural [Bot] rule. We detail the two most interesting
cases.

Case P | inact ≡ P . We show that if Θ;Γ " P | inact ! ∆, then Θ;Γ " P ! ∆.
Suppose that

Θ;Γ " P ! ∆1 and Θ;Γ " inact ! ∆2

with ∆1 · ∆2 = ∆. Note that ∆2 only contains end. Applying Weakening to P , we
have Θ;Γ " P ! ∆1 · ∆2 as required.

For the other direction we start with derivation Θ;Γ " inact ! ∅, and then apply
rule [Conc].

Case (νu)(P | Q) ≡ (νu)P | Q if u $∈ fu(Q). The case when u is a name is standard.
Suppose u is channel k and assume Θ;Γ " (νκ)(P | Q)!∆. We consider the [CRes]
case (the [CRes’] case is simpler):

Θ;Γ " P ! ∆1 Θ;Γ " Q ! ∆2

Θ;Γ " P | Q ! ∆ · κp : α · κp : α

First notice that κp and κp can be both in either ∆i or one in each. When they
are both in ∆1 we conclude the case by applying [CRes] and [Conc]. When they
are both in ∆2, by the Channel Lemma we know that the types for κp and κp in
∆2 are end. We conclude the case by applying Strengthening twice to Q before
applying [CRes’] and [Conc]. Finally, when κp is in ∆′

1 and κp in ∆′
2, we apply

Strengthening to Q and Weakening to P , before applying [CRes] and [Conc].

The other direction is simpler.

Theorem 3.3 (Subject Reduction) If Θ;Γ " P ! ∆ with ∆ balanced and P →∗

Q, then Θ;Γ " Q ! ∆′ and ∆′ balanced.

Proof. The proof is similar to that of Theorem 2.10. We concentrate on the four
new reduction rules, and reuse the remaining cases.

Case [Link] (accept a(x) in P1) | (request a(x) in P2) → (νκ)(P1[κ+/x] |
P2[κ−/x]). The assumption is derived from

Θ;Γ " P1 ! ∆ · x : α

Θ;Γ, a : 〈α,α〉 " accept a(x) in P1 ! ∆

from
Θ;Γ " P2 ! ∆ · x : α

Θ;Γ, a : 〈α,α〉 " request a(x) in P2 ! ∆

and from [Conc] with ∆1 · ∆2 = ∆. Applying the Channel Replacement Lemma
to P1 and also to P2, we have Θ;Γ " P1[κ+/x] ! ∆ · κ+ : α, and Θ;Γ " P2[κ−/x] !
∆ · κ− : α. The case concludes with the application of rule [Conc] followed by rule
[CRes].

Case [Com] (κp![ẽ];P1) | (κp?(x̃) in P2) → P1 | P2[c̃/x̃]. The assumption is
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Is straightforward to represent:



We have a tech report and 
a repository for the proof.

• The code for the proof can be found at: 

• https://github.com/emtst/

• We have a technical report:

• Engineering the Meta-Theory of Session Types

• at: https://www.doc.ic.ac.uk/research/technicalreports/2019/
DTRS19-4.pdf

https://github.com/emtst/


Onwards and Upwards



We are moving to 
Multiparty Session Types

• Lessons learned:

• Doing a complete calculus just to have a similar calculus to 
the literature takes a lot of effort.

• Locally nameless worked well. Particularly/Even with the 
multiple name scopes.

• Mechanising proof is great, but if one squints mechanisation is 
akin to very careful implementation.



MPST

• There’s four of us now: David, Francisco, Lorenzo, and Nobuko.

• We are mechanising the meta-theory of multiparty session 
types.

• We will build upon our locally nameless and environment 
implementation.

• We plan to extract certified implementations from the proofs.



Certified MPST

Multiparty Compatibility in Communicating Automata:  
Characterisation and Synthesis of Global Session Types 

 Deniélou, Yoshida, 2013 



Certified MPST

We want Scribble-style  
protocol specifications

Featherweight Scribble, 
Neykova, Yoshida, 2019
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Certified Code



Mechanical Progress

• We talked about the binary session types meta-theory proof 
we formalised.
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Mechanical Progress

• We talked about the binary session types meta-theory proof 
we formalised.

• We talked about our current project and our future plans.

Thanks for your  
kind attention!  

Questions?


