Mechanising Session Types
Onwards and Upwards

Francisco Ferreira and Lorenzo Gheri
(joint work with David Castro, and Nobuko Yoshida)

2019

ABCD Meeting
Imperial College
London

The First Step

® Do a case study:

® [anguage Primitives and Type Discipline for Structured
Communication-Based Programming Revisited, by Yoshida
and Vasconcelos.

The send receive system
and its cousin the relaxed
and the revisited system.

Available online at www.sciencedirect.com

“+.“ ScienceDirect e

Science

Electronic Notes in Theoretical Computer Science 171 (2007) 73-93

www.elsevier.com/locate/entcs

Language Primitives and Type Discipline for
Structured Communication-Based
Programming Revisited:

Two Systems for
Higher-Order Session Communication

Nobuko Yoshida'

Imperial College London

Vasco T. Vasconcelos’

University of Lisbon

md

Available online at www.sciencedirect.com
e
Electronic Notes in

“».” ScienceDirect P oseeteal Commies

Science

Electronic Notes in Theoretical Computer Science 171 (2007) 73-93
www.elsevier.com/locate/entcs

md

Language Primitives and Type Discipline for
Structured Communication-Based d
Programming Revisited:
Two Systems for
Hzigher-Order Session Communai

Nobuko Yoshida'

Imperial College London

Vasco T. Vasconcelos®

University of Lisbon

A e

What do we have?

A proof of type preservation formalised in Coq using
ssreflect.

A library to implement locally nameless with multiple name
scopes and handle environments in a versatile way.

We have a TACAS 2020 submission describing our tool.

We built some in-team expertise (i.e. we learned some hard
lessons while struggling to finish the proof).

What did we
mechanise?

A tale of three systems

¢ We set out to represent the three systems described in the
paper:

¢ The Honda,Vasconcelos, Kubo system from ESOP’98

A tale of three systems

¢ We set out to represent the three systems described in the
paper:

¢ The Honda,Vasconcelos, Kubo system from ESOP’98

¢ [ts naive but ultimately unsound extension

A tale of three systems

¢ We set out to represent the three systems described in the
paper:

¢ The Honda,Vasconcelos, Kubo system from ESOP’98
¢ [ts naive but ultimately unsound extension

¢ |ts revised system inspired by Gay and Hole in Acta
Informatica

P ::=request a(k) in P

accept a(k) in P

klle]; P

k?(x) in P

k<l P
ko>{li: P - |ln: Po}
throw k[k']; P

catch k(k') in P

if e then P else ()

The Send Receive System

session request
session acceptance
data sending

data reception
label selection
label branching
channel sending
channel reception

conditional branch

P|Q parallel composition
inact Inaction
(vu)P name/channel hiding

def D in P recursion
X|[ek] process variables

e n=c¢ constant
le+e | e—€¢ | exe | notle) | ... operators

D ::= X (#1k1) = P, and---and X,,(Z,k,) = P, declaration for recursion

The Send Receive System

P ::=request a(k) in P session request
accept a(k) in P session acceptance
klle]; P data sending
k?(Z) in P data reception
k<l; P label selection
k> {ly: P - |ln: Pn} label branching
throw k[k']; P channel sending
catch k(k') in P channel reception

- o, e
if e then P else () conditional branch
P|Q parallel composition
inact Inaction
() P name/channel hiding
def D in P recursion
—
X|ek] process variables

e n=c¢ constant

le+e | e—€¢ | exe | notle) | ... operators

D ::= X (#1k1) = P, and---and X,,(Z,k,) = P, declaration for recursion

The Send Receive System

iest a(k) in P

BEYy
We consider terms up-to talk)dn .

X-conversion
in P

;P

> {l P |l P}
throw k[k']; P
catch k(k') in P

if e then P else Q
PlQ

inact

syu!P

def D in P

X|[ek]

e i —¢C

le+e | e—€¢ | exe | notle) | ...
D = Xl(fllgl) = P1 and - --and Xn(in]%n)

session request
session acceptance
data sending

data reception

label selection

label branching
channel sending
channel reception
conditional branch
parallel composition
inaction
name/channel hiding

recursion

process variables
constant

operators

declaration for recursion

The Send Receive System

est a(k) in P session request

as k: in P session acceptance

data sending

data reception
P label selection
>{l1: P [ln: Po} label branching
throw k[k']; P :
catch k(k') in P

if e then P else Q
PlQ

inact

syu!P

def D in P

X[ek] |

e =20

le+e | e—¢ | exe | mnot(e) | ...
D = X (Z1k1) = P and- - - and X, (Znkn) = Py

o=conversion curse or
Blessing?

(throw k[k']; P1) | (catch k(k') in P) — P | P

® The original system depends crucially on names

o=conversion curse or
Blessing?

(throw k[k']; P1) | (catch k(k') in P) — P | P

® The original system depends crucially on names

o=conversion curse or
Blessing?

(throw k[k']; P1) | (catch k(k') in P) — P | P

® The original system depends cruci. ~ on names

This is a bound variable.

o=conversion curse or
Blessing?

(throw k[k']; P1) | (catch k(k') in P) — P | P

® The original system depends cruci. ~ on names

This is a bound variable.

* [f X-conversion is built in, this rule collapses to:

(throw k[K']; P1) | (catch k(k") in P,) — P | Pk /K"]

The Nalve
Representation

The Nalve
Representation

o [t“looks like” the original Send Receive system.

The Nalve
Representation

o [t“looks like” the original Send Receive system.

® You start suspecting is wrong when defining the reduction
relation.

The Nalve
Representation

o [t“looks like” the original Send Receive system.

® You start suspecting is wrong when defining the reduction
relation.

® You know there is a problem when the proof fails.

We have to discuss
Adequacy

® | see this problem in one of two ways:
e FEither, we require proofs of adequacy.

®* Or we consider the meaning of the mechanisation “first-
class”.

We have to discuss
Adequacy

JFP 17 (4&5): 613-673, 2007. '© 2007 Cambrnidge University Press 613
doi:10.1017/S0956 796807006430 First publhished online 6 July 2007 Printed i the United Kingdom

Mechanizing metatheory in a logical framework

ROBERT HARPER and DANIEL R. LICATA

Carnegie Mellon University, Pittsburgh, PA 15213, USA
(e-mail: {rwh,drl }@cs.cmu.edu)

CcIasy .

We have to discuss
Adequacy

JFP 17 (4 & 5): 613-673, 2007. (© 2007 Cambridge University Press
doi:10.1017/S0956 796807006430 First published online 6 July 2007 Printed in the United Kingdom

Mechanizing metatheory in a logical framework

ROBERT HARPER and DANIEL R. LICATA

Carnegie Mellon University, Pittsburgh, PA 15213, USA
(e-mail: {rwh,drl }€cs.cmu.edu)

| s

We have to discuss
Adequacy

A Machine-Checked Proof
of the Odd Order Theorem

Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril Cohen,
Francois Garillot, Stéphane Le Roux. Assia Mahboubi. Russell O'Connor,
Sidi Ould Biha, Ioana Pasca, Laurence Rideau. Alexey Solovyev, Enrico Tassi,
and Laurent Théry

Microsoft Research - Inria Joint Centre

We have to discuss
Adequacy

® | see this problem in one of two ways:
e FEither, we require proofs of adequacy.

®* Or we consider the meaning of the mechanisation “first-
class”.

The Revisited system

* Now we distinguish between the endpoints of channels.

® [t can be represented with LN-variables and names.

Four kinds of atoms

Inductive proc : Set :=
| request :
| accept :

<
scvar — proc — proc -
scvar — proc — proc

| send : channel — exp — proc — proc

| receive : channel — proc — proc

-~
-~
-~
~
-~
-~

| select : ~ o
channel — 1label — proc — proc

| branch :
channel — proc — proc — proc

| throw :
channel — channel — proc — proc
| catch : channel — proc — proc

~
-
-~
-~
-~

| ife : exp = proc — proc — proc - _
| par : proc — proc — proc
| inact : proc

(* hides a channel name *)
| nu_ch :
(* hides a name *)

~—
| nu_nm : proc — proc
(* process replication *)
| bang : proc — proc

Prot =5 “Proc = = == = e oo oo _ _ .

“ - binds variable

’

R -~ from Agc

~ o binds variable
- - /J

T from Agy

y binds variable
- ffOInLﬁch

-~ _ binds channel

from Ay

Four kinds of atoms

Inductive proc : Set :=
| request :
| accept :

<
scvar — proc — proc -
scvar — proc — proc

| send : channel — exp — proc — proc

| receive : channel — proc — proc

-~
-~
-~
~
-~
-~

| select : ~ o
channel — 1label — proc — proc

| branch :
channel — proc — proc — proc

| throw :
channel — channel — proc — proc
| catch : channel — proc — proc

~
-
-~
-~
-~

| ife : exp = proc — proc — proc - _
| par : proc — proc — proc
| inact : proc

(* hides a channel name *)
| nu_ch :
(* hides a name *)

~—
| nu_nm : proc — proc
(* process replication *)
| bang : proc — proc

Prot =5 “Proc = = == = e oo oo _ _ .

“ - binds variable

’

R -~ from Agc

~ o binds variable
- - /J

T from Agy

y binds variable
- ffOInLﬁch

-~ _ binds channel

from Ay

Four kinds of atoms

Inductive proc : Set :=
| request :
| accept :

<
scvar — proc — proc -
scvar — proc — proc

| send : channel — exp — proc — proc

| receive : channel — proc — proc

-~
-~
-~
~
-~
-~

| select : ~ o
channel — 1label — proc — proc

| branch :
channel — proc — proc — proc

| throw :
channel — channel — proc — proc
| catch : channel — proc — proc

~
-
-~
-~
-~

| ife : exp = proc — proc — proc - _
| par : proc — proc — proc
| inact : proc

(* hides a channel name *)
| nu_ch :
(* hides a name *)

~—
| nu_nm : proc — proc
(* process replication *)
| bang : proc — proc

Prot =5 “Proc = = == = e oo oo _ _ .

“ - binds variable

’

R -~ from Agc

~ o binds variable
- - /J

T from Agy

y binds variable
- ffOInLﬁch

-~ _ binds channel

from Ay

Four kinds of atoms

Inductive proc : Set :=
| request :
| accept :

<
scvar — proc — proc -
scvar — proc — proc

| send : channel — exp — proc — proc

| receive : channel — proc — proc

-~
-~
-~
~
-~
-~

| select : ~ o
channel — 1label — proc — proc

| branch :
channel — proc — proc — proc

| throw :
channel — channel — proc — proc
| catch : channel — proc — proc

~
-
-~
-~
-~

| ife : exp = proc — proc — proc - _
| par : proc — proc — proc
| inact : proc

(* hides a channel name *)
| nu_ch :
(* hides a name *)

~—
| nu_nm : proc — proc
(* process replication *)
| bang : proc — proc

Prot =5 “Proc = = == = e oo oo _ _ .

“ - binds variable

’

R -~ from Agc

~ o binds variable
- - /J

T from Agy

y binds variable
- ffOInLﬁch

-~ _ binds channel

from Ay

Four kinds of atoms

Inductive proc : Set :=
| request :
| accept :

<
scvar — proc — proc -
scvar — proc — proc

| send : channel — exp — proc — proc

| receive : channel — proc — proc

-~
-~
-~
~
-~
-~

| select : ~ o
channel — 1label — proc — proc

| branch :
channel — proc — proc — proc

| throw :
channel — channel — proc — proc
| catch : channel — proc — proc

~
-
-~
-~
-~

| ife : exp = proc — proc — proc - _
| par : proc — proc — proc
| inact : proc

(* hides a channel name *)
| nu_ch :
(* hides a name *)

~—
| nu_nm : proc — proc
(* process replication *)
| bang : proc — proc

Prot =5 “Proc = = == = e oo oo _ _ .

“ - binds variable

’

R -~ from Agc

~ o binds variable
- - /J

T from Agy

y binds variable
- ffOInLﬁch

-~ _ binds channel

from Ay

Typing environments

® Store their assumptions in a unique order
(easy to compare)

® Only store unique assumptions
(easy to split)

® They come with many lemmas
(less induction proofs)

Typing environments

® Store their assumptions in a unique order
(easy to compare)

® Only store unique assumptions
(easy to split)

® They come with many lemmas These are generic

(less induction proofs) enough and easy to
use. #artefact

Subject Reduction

Theorem 3.3 (Subject Reduction) If O:T' - P> A with A balanced and P —*
Q, then O:T'F Q> A’ and A’ balanced.

Is straightforward to represent:

Theorem SubjectReduction G P Q D:
oft G PD — balanced D - P —* Q — exists D', balanced D' /\ oft G Q D'.

We have a tech report and
a repository for the proof.

® The code for the proof can be found at:

® https://github.com/emtst/

® We have a technical report:
® Engineering the Meta-Theory of Session Types

e at: https://www.doc.ic.ac.uk/research/technicalreports/2019/
DTRS19-4.pdf

https://github.com/emtst/

Onwards and Upwards

We are moving to
Multiparty Session Types

e | essons learned:

® Doing a complete calculus just to have a similar calculus to
the literature takes a lot of effort.

® | ocally nameless worked well. Particularly/Even with the
multiple name scopes.

® Mechanising proof is great, but if one squints mechanisation is
akin to very careful implementation.

MPST

There’s four of us now: David, Francisco, Lorenzo, and Nobuko.

We are mechanising the meta-theory of multiparty session
types.

We will build upon our locally nameless and environment
implementation.

We plan to extract certified implementations from the proofs.

Certified MPST

¢
Global Type Semanves GT-LTS
Projection trace equivalence
semantics

— LT-LTS

Local Type

Multiparty Compatibility in Communicating Automata:
Characterisation and Synthesis of Global Session Types
Deniélou, Yoshida, 2013

Certified MPST

. (=) o [] \ semantics .
Seribble Global Protocol » SNF » Global Type » GT-LTS
Projection Projection trace equivalence
+ < t.. W
Scribble Local Protocol » LSNF » Local Type Semam e, LT-LTS

We want Scribble-style
protocol specifications

Featherweight Scribble,
Neykova, Yoshida, 2019

Certified MPST

{-)
Scribble Global Protocol > SNF
Projection
Scribble Local Protocol > LSNF

We want Scribble-style
protocol specifications

» Global Type

semantics

Projection

semantics

» GT-LTS

trace equivalence

-» LT-LTS

» Local Type

CFSM

A

Program

We also want to reason
about concurrent

programs.

Certified MPST

_ (=) o [-] , semantics .

Scribble Global Protocol » SNF » Global Type » GT-LTS
Projection . Projection trace equivalence

Certified Code
W N t' W
Scribble Local Protocol > LSNF » Lical Type Semam e, LT-LTS
(CFSM
We want Scribble-style , We also want to reason

protocol specifications d about concurrent

Program programs.

Mechanical Progress

® We talked about the binary session types meta-theory proof
we formalised.

® We talked about our current project and our future plans.

Mechanical Progress

* Ve talked about the Thanks for your :ory proof

we formalised. kind attention!
Questions?

® We talked about our, e plans.

