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Introduction (distributed programming in Go)

(a) Modern, popular systems language

(b) Primacy of CSP-based concurrency features
Lightweight threads, called goroutines
Higher-order, typed native channels (across shared memory)
First-order, untyped API channels (across a network)

(c) Survey: “Users least agreed that they are able to
effectively debug uses of Go’s concurrency features”

multiparty
session types?
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Introduction (distributed programming in Go)

Motivating example: htcat

(https://github.com/htcat/htcat)

Parallel downloader of webpages

Post-factum verification very difficult

Our safe-by-construction version: PGet ( )

https://github.com/htcat/htcat
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Introduction (distributed programming in Go)

Features:
Parameterisation (in #Fetchers)
Mixed transports & disparate abstractions
Channel passing
Heterogeneous roles

Challenges (safety ):
Protocol compliance
Deadlock-freedom

X

X

real programs need more expressive theory and impl.
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Introduction (multiparty session types; MPST)
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W3!!!Bool

L3 = W2???Bool
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well-typed ⇒ protocol compliance ∧ deadlock-freedom
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Contributions

Theory:
MPST + parameterisation + role heterogeneity
Proofs of decidability and correctness

Implementation:
Extension to Scribble [FASE’16, FASE’17]
Artifact (reusable and available )

Evaluation:
Competitive performance
Wide applicability
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Theory

Easy part:
Parameterisation

G = foreachforeachforeach W[i:1..n-1, j:2..n] dododo W[i]→ W[j]:::Msg

Hard part:
Role heterogeneity

How to infer from G there exist three role variants?
(first Worker; middle Workers; last Worker)
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Theory

G = foreachforeachforeach W[i:1..n-1, j:2..n] dododo W[i]→ W[j]:::Msg

Key insight: Behaviour of Worker x is determined by the
intervals in which x occurs (i.e., if x and y are contained in
the same intervals, Workers x and y behave the same)

x ∈ 1..n-1 ∧ x ∈ 2..n ⇒ x ∈ 2..n-1 (middle Worker)
x ∈ 1..n-1 ∧ x /∈ 2..n ⇒ x = 1 (first Worker)
x /∈ 1..n-1 ∧ x ∈ 2..n ⇒ x = n (last Worker)
x /∈ 1..n-1 ∧ x /∈ 2..n ⇒ ⊥
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Theory

1. Infer role variants as triples r[D, D̄], where:
r is a role name
D is a set of intervals
D̄ is a set of “co-intervals”

2. Project G onto inferred role variants, e.g.:

G � W[{1..n-1, 2..n}, ∅] = W[selfselfself-1]???Msg... W[selfselfself+1]!!!Msg

G � W[{1..n-1}, {2..n}] = W[selfselfself+1]!!!Msg

G � W[{2..n}, {1..n-1}] = W[selfselfself-1]???Msg
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Theory

Theorem: Inferring role variants is decidable

Theorem: Checking well-formedness is decidable

Theorem: Projecting
well-formed global types
is semantics-preserving,
i.e., correct
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Implementation

Extension of protocol description language Scribble

(http://www.scribble.org)

protocol
spec

state
machines APIs

role variants,
well-formedness,
and projection

(using Z3)
Go code

generation

global type local types
(role variant-specific)

APIs guide
programmer
towards
safety

http://www.scribble.org
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Implementation

(demo video)
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Implementation

Guarantees:
Protocol compliance
Deadlock-freedom (up to “protocol-unrelated” program
behaviour, premature termination, and delegation)

Achieved through:
Native Go typing
Lightweight run-time checks for linearity
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Evaluation (benchmarks)

shm tcp

Microbenchmarks
Speed-up (t1/t2) of Scribble (t2) vs. native Go (t1)
Per communication: ∼20ns

Computer Language Benchmark Games (CLBG)
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Evaluation (expressiveness)

21 patterns, topologies, and applications
(each uses various features of our framework)
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Conclusion

Also in the paper:
Branching, selection, recursion, merge
Implementation
Transport independence
Linearity checks (Go does not have linear types)

Technical report with all details:

https://www.doc.ic.ac.uk/research/
technicalreports/2018/#4

https://www.doc.ic.ac.uk/research/technicalreports/2018/#4
https://www.doc.ic.ac.uk/research/technicalreports/2018/#4
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Conclusion

Theory:
MPST + parameterisation + role heterogeneity
Proofs of decidability and correctness

Implementation:
Extension to Scribble
Artifact (reusable and available )

Evaluation:
Competitive performance
Wide applicability


