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Introduction (distributed programming in Go)
Motivating example: htcat
(https://github.com/htcat/htcat)
Parallel downloader of webpages
Post-factum verification very difficult

D ©)

Our safe-by-construction version: PGet (&
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Features:
— Parameterisation (in #Fetchers)

- Mixed transports & disparate abstractions
— Channel passing

- Heterogeneous roles

multiparty

| session types:
Challenges (safety): —

- Protocol compliance v
— Deadlock-freedom v

Eal programs need more expressive theory and impl.
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Easy part:
Parameterisation
(G = foreach W[i:1..n-1, j:2..n| do W[i] = W[j] :Msg
Hard part:
Role heterogeneity

How to infer from G there exist three role variants?
(first Worker; middle Workers; last Worker)
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Theory
G = foreach W[i:1..n-1, j:2..n| do W[i] — W[j] :Msg

Key insight: Behaviour of Worker x is determined by the
intervals in which z occurs (i.e., if z and y are contained in
the same intervals, Workers = and y behave the same)

r€tl.n-1ATE€2.n = v €2..n-1 (middle Worker)
r€l.n-tAx¢2.n = =1 (first Worker)
r¢1.n-1ANT€2.n = T=n (last Worker)
r¢i.n-tAx¢2.n= L
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Theory

— 1. Infer role variants as triples r[D, D], where:
—r is a role name
- D is a set of intervals
- D is a set of “co-intervals”

- 2. Project GG onto inferred role variants, e.g.:
G [W[{1..n-1,2..n}, 0] = W[self-1|?Msg . W[self+1|iMsg

G fw[{l..n—l}, {2..n}] = W[se1f+1]!Msg
G fW[{2..n}, {1..n-1}] = W[self-l]?Msg



Theory
Theorem: Inferring role variants is decidable

Theorem: Checking well-formedness is decidable

() [

Theorem: Projecting G Grestr Gorig
well-formed global types

is semantics-preserving, | O ) O lorig
i.e., correct

]L « >> Lr(»str II]] Lorig
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Extension of protocol description language Scribble

(http://www.scribble.org)

role variants,
well-formedness,

and projection Go code
protocol | (using Z3) state generation AP
_— . _— S
spec machines
~—
global type local types

(role variant-specific)
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Implementation

Extension of protocol description | APlIs guide
programmer
(http://www.scribb] towards
safety

role variants,
well-formedness,

and projection Go code
protocol | (using Z3) state generation APIs
_— X — 5
spec machines
~—
global type local types

(role variant-specific)
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Implementation

(demo video)



Implementation

Guarantees:

- Protocol compliance

— Deadlock-freedom (up to “protocol-unrelated” program
behaviour, premature termination, and delegation)

Achieved through:
- Native Go typing
- Lightweight run-time checks for linearity



Evaluation (benchmarks)
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— Speed-up (t1/t3) of Scribble (t3) vs. native Go (t;)
— Per communication: ~20ns
— Computer Language Benchmark Games (CLBG)



Evaluation (expressiveness)

Pt Sc Ga FE |Pt Sc Ga FE Pipe MS PP Rec Del
1. One-to-Many (§6.1) [ ] O _ g 4 Pipeline (§4) [ ] [ ]
Q2 2. Many-to-One (§6.1) ® O 2% 5 Ring (§3:4) ° () o0
¢ 2 3. Many-to-Many (§6.1)| @ @ O £% 6. Hadamard (§4) |@ °
o= =
S & Above, O are possible alt. implementations ez %’é‘;ihj(o%é) ®ee’®
9. Pget? (O is the difference between the two versions in § 3.2; § 3.3) ® 0 [ )
10. Vickrey auction (Supplement, §IV.1.2) o e o0 [ [
11. Jacobi solution of discrete Poisson equation. [Bejleri et al. 2009] [ N BN [ ] [ J
12. n-body simulation (based on Ring) [Bejleri et al. 2009] ) o O
2 13. Iterative linear equation solver (based on Mesh) [Ng and Yoshida 2015] [ ] [ ) ]
£ 14. k-nucleotide [Gouy 2017] (§6.1) e e
£ 15. regex-redux [Gouy 2017] (§6.1) o0
2 16. spectral-norm [Gouy 2017] (§6.1) [ X ) [ ] [ ]
< 17. Fibonacci [Lange et al. 2017] [ ] [ ]
18. Quote-Request [Austin et al. 2004; Ng and Yoshida 2015] [ N BN ] [ ] [ ]
19. P2P multiplayer game [Scalas et al. 2017] [ [ N ] o o o
20. Web Crawler [Akhmadeev 2016; Neykova and Yoshida 2017] [ N B B )
21. n-buyers [Coppo et al. 2016; Honda et al. 2016] [ ] [ ] [ ] [ ]

Pt: point-to-point; Sc: Scatter; Ga: Gather; FE: Foreach; Pipe: Pipeline; MS: MS choices; PP: PP choices; Rec: Recursion; Del: Delegation

21 patterns, topologies, and applications
(each uses various features of our framework)



Conclusion

Also in the paper:
- Branching, selection, recursion, merge
- Implementation
- Transport independence
— Linearity checks (Go does not have linear types)

Technical report with all details:

https://www.doc.ic.ac.uk/research/
technicalreports/2018/#4
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Conclusion

Theory:
— MPST + parameterisation + role heterogeneity
— Proofs of decidability and correctness

Implementation:
- Extension to Scribble
= Artifact (reusable @ and available &)

Evaluation:
— Competitive performance
- Wide applicability



