——

—

Distributed Programming using
Role-Parametric Session Types

Lin Go

——

2

David Castro!, Raymond Hu?, Sung-Shik Jongmans!?,
Nicholas Ng!, Nobuko Yoshida®

! Imperial College London
2 Open University of the Netherlands

Distributed Programming using ?
Role-Parametric Session Types

lin Go

—_—

1,2

David Castro!, Raymond Hu', Sung-Shik Jongmans!?,
Nicholas Ng!, Nobuko Yoshida®

! Imperial College London
2 Open University of the Netherlands

Distributed Programming using
Role-Parametric Session Types
in Go

——

David Castro!, Raymond Hu?, Sung-Shik Jongmans!?2,

Nicholas Ng!, Nobuko Yoshida®

! Imperial College London
2 Open University of the Netherlands

Introduction (distributed programming in Go)

Long-term research agenda:

Development of theory and tools
to help programmers write
safe concurrent programs

Introduction (distributed programming in Go)

Long-term research agenda:

Development of theory and tools
to help Go programmers write
safe concurrent Go programs

[CC'16, POPL'17, ICSE'18]

Introduction (distributed programming in Go)

- (a) Modern, popular systems language

Introduction (distributed programming in Go)
- (a) Modern, popular systems language

- (b) Primacy of CSP-based concurrency features
- Lightweight threads, called goroutines
- Higher-order, typed native channels (across shared memory)
- First-order, untyped API channels (across a network)

Introduction (distributed programming in Go)
- (a) Modern, popular systems language

- (b) Primacy of CSP-based concurrency features
- Lightweight threads, called goroutines
- Higher-order, typed native channels (across shared memory)
- First-order, untyped API channels (across a network)

— (c) Survey: “Users least agreed that they are able to
effectively debug uses of Go's concurrency features”

. multipart
Introduction (distributed programming in Go) . P y
- session types?

POPL’
- (a) Modern, popular systems language [-0

- (b) Primacy of CSP-based concurrency features
- Lightweight threads, called goroutines

- Higher-order, typed native channels (across shared memory)
- First-order, untyped API channels (across a network)

— (c) Survey: “Users least agreed that they are able to
effectively debug uses of Go's concurrency features”

Introduction (distributed programming in Go)
Motivating example: htcat
(https://github.com/htcat/htcat)
Parallel downloader of webpages
Post-factum verification very difficult

D ©)

Our safe-by-construction version: PGet (&

https://github.com/htcat/htcat

Introduction (distributed programming in Go)
—————

el @
e ® @ @
@

feature 1:
parameterisation
(in #Fetchers)

Introduction (distributed programming in Go)

el @
e ® @ @
@

feature 1:
parameterisation
... (ln #Fetchers)

Introduction (distributed programming in Go)

«—— shared memory channel
¢----» TCP channel

feature 2:
F mixed transports
S & disparate

¢ LocaL !
Master < : . abstractions

Introduction (distributed programming in Go)

«—— shared memory channel
¢----» TCP channel

feature 2:
F mixed transports
S & disparate

¢ LocaL !
Master < : . abstractions

Introduction (distributed programming in Go)

M — F; :GetSize(string)

feature 2:
F mixed transports
S & disparate

¢ LocaL !
Master < : . abstractions

Introduction (distributed programming in Go)

F1 — S :HttpReq(byte[]1)

feature 2:
F mixed transports
S & disparate

¢ LocaL !
Master < : . abstractions

Introduction (distributed programming in Go)

F; — S :HttpReq(byte[]) . S — F; :HttpRes (byte[])

feature 2:
F mixed transports
S & disparate

¢ LocaL !
Master < : . abstractions

Introduction (distributed programming in Go)
R —

Fi — M:Size(int)

feature 2:
F mixed transports
S & disparate

¢ LocaL !
Master < : . abstractions

Introduction (distributed programming in Go)

M— F[l ..n] :GetData(string,int,int)

feature 2:
F mixed transports
S & disparate

Master< poon @ . abstractions
Sogomp el
7 :

Introduction (distributed programming in Go)
———

F[1..n] — S :HttpReq(byte[])

feature 2:
F mixed transports
S & disparate

Master< poon @ . abstractions
Sogomp el
7 :

Introduction (distributed programming in Go)

F[l ..n] — S :HttpReq(byte[]) . S — F[l ..n] :HttpRes (byte[])

feature 2:
I mixed transports
S & disparate

¢ LocaL !
Master < : . abstractions

Introduction (distributed programming in Go)

F[l ..n] —> M :Data(string,chan)

feature 2:
I mixed transports
e & disparate

¢ LocaL .
Master < : / . abstractions

Introduction (distributed programming in Go)

F[l ..n] — M :Data(string,chan)

Introduction (distributed programming in Go)

feature 3:

Master<§ LocaL @ | channel passing

F[l ..n] — M :Data(string,chan)

Introduction (distributed programming in Go)

feature 3:

|\/|aster<§ LocaL @ ‘ channel passing

Introduction (distributed programming in Go)

feature 4-
« heterogeneous
roles

Introduction (distributed programming in Go)

Features:
— Parameterisation (in #Fetchers)

- Mixed transports & disparate abstractions
— Channel passing

- Heterogeneous roles

Introduction (distributed programming in Go)

Features:
— Parameterisation (in #Fetchers)

- Mixed transports & disparate abstractions
— Channel passing
- Heterogeneous roles

Challenges (safety):
- Protocol compliance
- Deadlock-freedom

Introduction (distributed programming in Go)

Features:
— Parameterisation (in #Fetchers)

- Mixed transports & disparate abstractions
— Channel passing

- Heterogeneous roles multiparty

session types:
Challenges (safety):

- Protocol compliance v
— Deadlock-freedom v

Introduction (distributed programming in Go)

Features:
— Parameterisation (in #Fetchers)

- Mixed transports & disparate abstractions
— Channel passing

- Heterogeneous roles

multiparty

| session types:
Challenges (safety): —

- Protocol compliance v
— Deadlock-freedom v

Eal programs need more expressive theory and impl.

Introduction (multiparty session types; MPST)

| @ @ ®

Introduction (multiparty session types; MPST) G =

Wi — Wy : Int .

global type< W2 — W3 :Bool

| @ @ ®

Introduction (multiparty session types; MPST) G =

Wi —> Wy :Int .
global type< W2 — W3 :Bool
A ,
W
local types< L = wy!'Int
Lo = W;?Int.
W3!Bool

processes< @ @ @ L3 = Wy?Bool

Introduction (multiparty session types; MPST) G =

Wi — Wy : Int .

global type< W2 — W3 :Bool

X
local types< . . . L = Wy!Int
 type- : Lo = W;?Int.
heck : :
 chec W3!Bool

processes< @ @ @ 3 = W9?Bool

Introduction (multiparty session types; MPST) G =

Wi — Wy : Int .
global type< W2 — W3 :Bool
local types< . . . L = wy!'Int

 type- Lo = W;?Int.
: check W3!Bool

processes< @ @ @ L3 = Wy?Bool

Nell—typed = protocol compliance A deadlock-freedom]

Introduction (multiparty session types; MPST) G =

Wi — Wy : Int .
global type< W2 — W3 :Bool
local types< . . . L = wy!'Int

type- Lo = W;?Int.
: check W3!Bool

processes< @ @ @ L3 = Wy?Bool

Nell—typed = protocol compliance A deadlock-freedom]

Contributions

Theory:
— MPST + parameterisation + role heterogeneity
— Proofs of decidability and correctness

Contributions

Theory:
— MPST + parameterisation + role heterogeneity
— Proofs of decidability and correctness

Implementation:

- Extension to Scribble [FASE'16, FASE'17]
= Artifact (reusable @ and available &)

Contributions

Theory:
— MPST + parameterisation + role heterogeneity
— Proofs of decidability and correctness

Implementation:
- Extension to Scribble [FASE'16, FASE'17]
= Artifact (reusable @ and available &)

Evaluation:
— Competitive performance
- Wide applicability

Theory

Easy part:
Parameterisation

(G = foreach W[i:1..n-1, j:2..n| do W[i] = W[j] :Msg

Theory

Easy part:
Parameterisation
(G = foreach W[i:1..n-1, j:2..n| do W[i] = W[j] :Msg
Hard part:
Role heterogeneity

How to infer from G there exist three role variants?
(first Worker; middle Workers; last Worker)

Theory
G = foreach W[i:1..n-1, j:2..n| do W[i] — W[j] :Msg
Key insight: Behaviour of Worker x is determined by the

intervals in which z occurs (i.e., if z and y are contained in
the same intervals, Workers = and y behave the same)

Theory
G = foreach W[i:1..n-1, j:2..n| do W[i] — W[j] :Msg

Key insight: Behaviour of Worker x is determined by the
intervals in which z occurs (i.e., if z and y are contained in
the same intervals, Workers = and y behave the same)

r€tl.n-1ATE€2.n = v €2..n-1 (middle Worker)
r€l.n-tAx¢2.n = =1 (first Worker)
r¢1.n-1ANT€2.n = T=n (last Worker)
r¢i.n-tAx¢2.n= L

Theory

— 1. Infer role variants as triples r[D, D], where:
—r is a role name
- D is a set of intervals
- D is a set of “co-intervals”

Theory

— 1. Infer role variants as triples r[D, D], where:
—r is a role name
- D is a set of intervals
- D is a set of “co-intervals”

- 2. Project GG onto inferred role variants, e.g.:
G [W[{1..n-1,2..n}, 0] = W[self-1|?Msg . W[self+1|iMsg

G fw[{l..n—l}, {2..n}] = W[se1f+1]!Msg
G fW[{2..n}, {1..n-1}] = W[self-l]?Msg

Theory
Theorem: Inferring role variants is decidable

Theorem: Checking well-formedness is decidable

() [

Theorem: Projecting G Grestr Gorig
well-formed global types

is semantics-preserving, | O) O lorig
i.e., correct

]L « >> Lr(»str II]] Lorig

Implementation

Extension of protocol description language Scribble

(http://www.scribble.org)

role variants,
well-formedness,

and projection Go code
protocol | (using Z3) state generation AP
_— . _— S
spec machines
~—
global type local types

(role variant-specific)

http://www.scribble.org

Implementation

Extension of protocol description | APlIs guide
programmer
(http://www.scribb] towards
safety

role variants,
well-formedness,

and projection Go code
protocol | (using Z3) state generation APIs
_— X — 5
spec machines
~—
global type local types

(role variant-specific)

http://www.scribble.org

Implementation

(demo video)

Implementation

Guarantees:

- Protocol compliance

— Deadlock-freedom (up to “protocol-unrelated” program
behaviour, premature termination, and delegation)

Achieved through:
- Native Go typing
- Lightweight run-time checks for linearity

Evaluation (benchmarks)

11 11
c;l.().\/—-\“/?t_Y o 1.0= s R S 7
prr} S e e o = — s e B 1
©0.9r~ ©0.9
() (]
208 —-— One-to-Many 08 —— One-to-Many
So7| ---- Many-to-One 207 ---- Many-to-One
o6 —— Many-to-Many o6 —— Many-to-Many

055 3 2 5 6 7 8 9 1011 051 3 3 4 5 6 7 8 9 1011

Parameter k value Parameter k value
SHM TCP

— Microbenchmarks
— Speed-up (t1/t3) of Scribble (t3) vs. native Go (t;)
= Per communication: ~20ns

Evaluation (benchmarks)

11
ol.0
B e
©0.9+"
o
> 0.8]
= —:— One-to-Many
<7 ---- Many-to-One
0.6 —— Many-to-Many

055 3 2 5 6 7 8 9 1011
Parameter k value

SHM

— Microbenchmarks

11

g10

=)
©0.9

%os

2

©0.7

[J]

* 0.6
0.5

—-— One-to-Many
--=- Many-to-One
—— Many-to-Many

1

2

3 4 5 6 7 8 9 10 11
Parameter k value

TCP

— Speed-up (t1/t3) of Scribble (t3) vs. native Go (t;)
— Per communication: ~20ns
— Computer Language Benchmark Games (CLBG)

Evaluation (expressiveness)

Pt Sc Ga FE |Pt Sc Ga FE Pipe MS PP Rec Del
1. One-to-Many (§6.1) [] O _ g 4 Pipeline (§4) [] []
Q2 2. Many-to-One (§6.1) ® O 2% 5 Ring (§3:4) ° () o0
¢ 2 3. Many-to-Many (§6.1)| @ @ O £% 6. Hadamard (§4) |@ °
o= =
S & Above, O are possible alt. implementations ez %’é‘;ihj(o%é) ®ee’®
9. Pget? (O is the difference between the two versions in § 3.2; § 3.3) ® 0 [)
10. Vickrey auction (Supplement, §IV.1.2) o e o0 [[
11. Jacobi solution of discrete Poisson equation. [Bejleri et al. 2009] [N BN [] [J
12. n-body simulation (based on Ring) [Bejleri et al. 2009]) o O
2 13. Iterative linear equation solver (based on Mesh) [Ng and Yoshida 2015] [] [)]
£ 14. k-nucleotide [Gouy 2017] (§6.1) e e
£ 15. regex-redux [Gouy 2017] (§6.1) o0
2 16. spectral-norm [Gouy 2017] (§6.1) [X) [] []
< 17. Fibonacci [Lange et al. 2017] [] []
18. Quote-Request [Austin et al. 2004; Ng and Yoshida 2015] [N BN] [] []
19. P2P multiplayer game [Scalas et al. 2017] [[N] o o o
20. Web Crawler [Akhmadeev 2016; Neykova and Yoshida 2017] [N B B)
21. n-buyers [Coppo et al. 2016; Honda et al. 2016] [] [] [] []

Pt: point-to-point; Sc: Scatter; Ga: Gather; FE: Foreach; Pipe: Pipeline; MS: MS choices; PP: PP choices; Rec: Recursion; Del: Delegation

21 patterns, topologies, and applications
(each uses various features of our framework)

Conclusion

Also in the paper:
- Branching, selection, recursion, merge
- Implementation
- Transport independence
— Linearity checks (Go does not have linear types)

Technical report with all details:

https://www.doc.ic.ac.uk/research/
technicalreports/2018/#4

https://www.doc.ic.ac.uk/research/technicalreports/2018/#4
https://www.doc.ic.ac.uk/research/technicalreports/2018/#4

Conclusion

Theory:
— MPST + parameterisation + role heterogeneity
— Proofs of decidability and correctness

Implementation:
- Extension to Scribble
= Artifact (reusable @ and available &)

Evaluation:
— Competitive performance
- Wide applicability

