
1/19

Distributed Programming using
Role-Parametric Session Types
in Go

David Castro1, Raymond Hu1, Sung-Shik Jongmans1,2,
Nicholas Ng1, Nobuko Yoshida1

1 Imperial College London
2 Open University of the Netherlands

1/19

Distributed Programming using
Role-Parametric Session Types
in Go

David Castro1, Raymond Hu1, Sung-Shik Jongmans1,2,
Nicholas Ng1, Nobuko Yoshida1

1 Imperial College London
2 Open University of the Netherlands

1/19

Distributed Programming using
Role-Parametric Session Types
in Go

David Castro1, Raymond Hu1, Sung-Shik Jongmans1,2,
Nicholas Ng1, Nobuko Yoshida1

1 Imperial College London
2 Open University of the Netherlands

2/19

Introduction (distributed programming in Go)

Long-term research agenda:

Development of theory and tools
to help programmers write
safe concurrent programs

2/19

Introduction (distributed programming in Go)

Long-term research agenda:

Development of theory and tools
to help Go programmers write
safe concurrent Go programs

[CC’16, POPL’17, ICSE’18]

3/19

Introduction (distributed programming in Go)

(a) Modern, popular systems language

(b) Primacy of CSP-based concurrency features
Lightweight threads, called goroutines
Higher-order, typed native channels (across shared memory)
First-order, untyped API channels (across a network)

(c) Survey: “Users least agreed that they are able to
effectively debug uses of Go’s concurrency features”

multiparty
session types?

[POPL’08]

3/19

Introduction (distributed programming in Go)

(a) Modern, popular systems language

(b) Primacy of CSP-based concurrency features
Lightweight threads, called goroutines
Higher-order, typed native channels (across shared memory)
First-order, untyped API channels (across a network)

(c) Survey: “Users least agreed that they are able to
effectively debug uses of Go’s concurrency features”

multiparty
session types?

[POPL’08]

3/19

Introduction (distributed programming in Go)

(a) Modern, popular systems language

(b) Primacy of CSP-based concurrency features
Lightweight threads, called goroutines
Higher-order, typed native channels (across shared memory)
First-order, untyped API channels (across a network)

(c) Survey: “Users least agreed that they are able to
effectively debug uses of Go’s concurrency features”

multiparty
session types?

[POPL’08]

3/19

Introduction (distributed programming in Go)

(a) Modern, popular systems language

(b) Primacy of CSP-based concurrency features
Lightweight threads, called goroutines
Higher-order, typed native channels (across shared memory)
First-order, untyped API channels (across a network)

(c) Survey: “Users least agreed that they are able to
effectively debug uses of Go’s concurrency features”

multiparty
session types?

[POPL’08]

4/19

Introduction (distributed programming in Go)

Motivating example: htcat

(https://github.com/htcat/htcat)

Parallel downloader of webpages

Post-factum verification very difficult

Our safe-by-construction version: PGet ()

https://github.com/htcat/htcat

5/19

Introduction (distributed programming in Go)

M

F1 F2 Fn

S

F1

Master

Fetchers

Server

Local

Remote

feature 1:
parameterisation
(in #Fetchers)

feature 2:

mixed transports

& disparate

abstractions

feature 3:
channel passing

feature 4:
heterogeneous

roles

5/19

Introduction (distributed programming in Go)

M

F1 F2 Fn

S

F1

Master

Fetchers

Server

Local

Remote

feature 1:
parameterisation
(in #Fetchers)

feature 2:

mixed transports

& disparate

abstractions

feature 3:
channel passing

feature 4:
heterogeneous

roles

5/19

Introduction (distributed programming in Go)

M

F1 F2 Fn

S

F1

Master

Fetchers

Server

Local

Remote

feature 1:
parameterisation
(in #Fetchers)

feature 2:

mixed transports

& disparate

abstractions

feature 3:
channel passing

feature 4:
heterogeneous

roles

shared memory channel
TCP channel

5/19

Introduction (distributed programming in Go)

M

F1 F2 Fn

S

F1

Master

Fetchers

Server

Local

Remote

feature 1:
parameterisation
(in #Fetchers)

feature 2:

mixed transports

& disparate

abstractions

feature 3:
channel passing

feature 4:
heterogeneous

roles

shared memory channel
TCP channel

5/19

Introduction (distributed programming in Go)

M

F1 F2 Fn

S

F1

Master

Fetchers

Server

Local

Remote

feature 1:
parameterisation
(in #Fetchers)

feature 2:

mixed transports

& disparate

abstractions

feature 3:
channel passing

feature 4:
heterogeneous

roles

M→ F1 :::GetSize(string)

5/19

Introduction (distributed programming in Go)

M

F1 F2 Fn

S

F1

Master

Fetchers

Server

Local

Remote

feature 1:
parameterisation
(in #Fetchers)

feature 2:

mixed transports

& disparate

abstractions

feature 3:
channel passing

feature 4:
heterogeneous

roles

F1→ S:::HttpReq(byte[])

... S→ F1 :::HttpRes(byte[])

5/19

Introduction (distributed programming in Go)

M

F1 F2 Fn

S

F1

Master

Fetchers

Server

Local

Remote

feature 1:
parameterisation
(in #Fetchers)

feature 2:

mixed transports

& disparate

abstractions

feature 3:
channel passing

feature 4:
heterogeneous

roles

F1→ S:::HttpReq(byte[])... S→ F1 :::HttpRes(byte[])

5/19

Introduction (distributed programming in Go)

M

F1 F2 Fn

S

F1

Master

Fetchers

Server

Local

Remote

feature 1:
parameterisation
(in #Fetchers)

feature 2:

mixed transports

& disparate

abstractions

feature 3:
channel passing

feature 4:
heterogeneous

roles

F1→ M:::Size(int)

5/19

Introduction (distributed programming in Go)

M

F1 F2 Fn

S

F1

Master

Fetchers

Server

Local

Remote

feature 1:
parameterisation
(in #Fetchers)

feature 2:

mixed transports

& disparate

abstractions

feature 3:
channel passing

feature 4:
heterogeneous

roles

M→ F[1..n]:::GetData(string,int,int)

5/19

Introduction (distributed programming in Go)

M

F1 F2 Fn

S

F1

Master

Fetchers

Server

Local

Remote

feature 1:
parameterisation
(in #Fetchers)

feature 2:

mixed transports

& disparate

abstractions

feature 3:
channel passing

feature 4:
heterogeneous

roles

F[1..n]→ S:::HttpReq(byte[])

... S→ F[1..n]:::HttpRes(byte[])

5/19

Introduction (distributed programming in Go)

M

F1 F2 Fn

S

F1

Master

Fetchers

Server

Local

Remote

feature 1:
parameterisation
(in #Fetchers)

feature 2:

mixed transports

& disparate

abstractions

feature 3:
channel passing

feature 4:
heterogeneous

roles

F[1..n]→ S:::HttpReq(byte[])... S→ F[1..n]:::HttpRes(byte[])

5/19

Introduction (distributed programming in Go)

M

F1 F2 Fn

S

F1

Master

Fetchers

Server

Local

Remote

feature 1:
parameterisation
(in #Fetchers)

feature 2:

mixed transports

& disparate

abstractions

feature 3:
channel passing

feature 4:
heterogeneous

roles

F[1..n]→ M:::Data(string,chanchanchan)

5/19

Introduction (distributed programming in Go)

M

F1 F2 Fn

S

F1

Master

Fetchers

Server

Local

Remote

feature 1:
parameterisation
(in #Fetchers)

feature 2:

mixed transports

& disparate

abstractions

feature 3:
channel passing

feature 4:
heterogeneous

roles

F[1..n]→ M:::Data(string,chanchanchan)

5/19

Introduction (distributed programming in Go)

M

F1 F2 Fn

S

F1

Master

Fetchers

Server

Local

Remote

feature 1:
parameterisation
(in #Fetchers)

feature 2:

mixed transports

& disparate

abstractions

feature 3:
channel passing

feature 4:
heterogeneous

roles

F[1..n]→ M:::Data(string,chanchanchan)

5/19

Introduction (distributed programming in Go)

M

F1 F2 Fn

S

F1

Master

Fetchers

Server

Local

Remote

feature 1:
parameterisation
(in #Fetchers)

feature 2:

mixed transports

& disparate

abstractions

feature 3:
channel passing

feature 4:
heterogeneous

roles

5/19

Introduction (distributed programming in Go)

M

F1 F2 Fn

S

F1

Master

Fetchers

Server

Local

Remote

feature 1:
parameterisation
(in #Fetchers)

feature 2:

mixed transports

& disparate

abstractions

feature 3:
channel passing

feature 4:
heterogeneous

roles

6/19

Introduction (distributed programming in Go)

Features:
Parameterisation (in #Fetchers)
Mixed transports & disparate abstractions
Channel passing
Heterogeneous roles

Challenges (safety):
Protocol compliance
Deadlock-freedom

X

X

real programs need more expressive theory and impl.

6/19

Introduction (distributed programming in Go)

Features:
Parameterisation (in #Fetchers)
Mixed transports & disparate abstractions
Channel passing
Heterogeneous roles

Challenges (safety):
Protocol compliance
Deadlock-freedom

X

X

real programs need more expressive theory and impl.

6/19

Introduction (distributed programming in Go)

Features:
Parameterisation (in #Fetchers)
Mixed transports & disparate abstractions
Channel passing
Heterogeneous roles

Challenges (safety):
Protocol compliance
Deadlock-freedom

multiparty
session types:

X

X

real programs need more expressive theory and impl.

6/19

Introduction (distributed programming in Go)

Features:
Parameterisation (in #Fetchers)
Mixed transports & disparate abstractions
Channel passing
Heterogeneous roles

Challenges (safety):
Protocol compliance
Deadlock-freedom

multiparty
session types:

X

X

real programs need more expressive theory and impl.

7/19

Introduction (multiparty session types; MPST)

W1 W2 W3processes

Gglobal type

L1 L2 L3local types

pro
jec

t

type-
check

G =

W1→ W2 :::Int...

W2→ W3 :::Bool

L1 = W2!!!Int

L2 = W1???Int...

W3!!!Bool

L3 = W2???Bool

7/19

Introduction (multiparty session types; MPST)

W1 W2 W3processes

Gglobal type

L1 L2 L3local types

pro
jec

t

type-
check

G =

W1→ W2 :::Int...

W2→ W3 :::Bool

L1 = W2!!!Int

L2 = W1???Int...

W3!!!Bool

L3 = W2???Bool

7/19

Introduction (multiparty session types; MPST)

W1 W2 W3processes

Gglobal type

L1 L2 L3local types

pro
jec

t

type-
check

G =

W1→ W2 :::Int...

W2→ W3 :::Bool

L1 = W2!!!Int

L2 = W1???Int...

W3!!!Bool

L3 = W2???Bool

7/19

Introduction (multiparty session types; MPST)

W1 W2 W3processes

Gglobal type

L1 L2 L3local types

pro
jec

t

type-
check

G =

W1→ W2 :::Int...

W2→ W3 :::Bool

L1 = W2!!!Int

L2 = W1???Int...

W3!!!Bool

L3 = W2???Bool

7/19

Introduction (multiparty session types; MPST)

well-typed ⇒ protocol compliance ∧ deadlock-freedom

W1 W2 W3processes

Gglobal type

L1 L2 L3local types

pro
jec

t

type-
check

G =

W1→ W2 :::Int...

W2→ W3 :::Bool

L1 = W2!!!Int

L2 = W1???Int...

W3!!!Bool

L3 = W2???Bool

7/19

Introduction (multiparty session types; MPST)

well-typed ⇒ protocol compliance ∧ deadlock-freedom

W1 W2 W3processes

Gglobal type

L1 L2 L3local types

pro
jec

t

type-
check

G =

W1→ W2 :::Int...

W2→ W3 :::Bool

L1 = W2!!!Int

L2 = W1???Int...

W3!!!Bool

L3 = W2???Bool

8/19

Contributions

Theory:
MPST + parameterisation + role heterogeneity
Proofs of decidability and correctness

Implementation:
Extension to Scribble [FASE’16, FASE’17]
Artifact (reusable and available)

Evaluation:
Competitive performance
Wide applicability

8/19

Contributions

Theory:
MPST + parameterisation + role heterogeneity
Proofs of decidability and correctness

Implementation:
Extension to Scribble [FASE’16, FASE’17]
Artifact (reusable and available)

Evaluation:
Competitive performance
Wide applicability

8/19

Contributions

Theory:
MPST + parameterisation + role heterogeneity
Proofs of decidability and correctness

Implementation:
Extension to Scribble [FASE’16, FASE’17]
Artifact (reusable and available)

Evaluation:
Competitive performance
Wide applicability

9/19

Theory

Easy part:
Parameterisation

G = foreachforeachforeach W[i:1..n-1, j:2..n] dododo W[i]→ W[j]:::Msg

Hard part:
Role heterogeneity

How to infer from G there exist three role variants?
(first Worker; middle Workers; last Worker)

9/19

Theory

Easy part:
Parameterisation

G = foreachforeachforeach W[i:1..n-1, j:2..n] dododo W[i]→ W[j]:::Msg

Hard part:
Role heterogeneity

How to infer from G there exist three role variants?
(first Worker; middle Workers; last Worker)

10/19

Theory

G = foreachforeachforeach W[i:1..n-1, j:2..n] dododo W[i]→ W[j]:::Msg

Key insight: Behaviour of Worker x is determined by the
intervals in which x occurs (i.e., if x and y are contained in
the same intervals, Workers x and y behave the same)

x ∈ 1..n-1 ∧ x ∈ 2..n ⇒ x ∈ 2..n-1 (middle Worker)
x ∈ 1..n-1 ∧ x /∈ 2..n ⇒ x = 1 (first Worker)
x /∈ 1..n-1 ∧ x ∈ 2..n ⇒ x = n (last Worker)
x /∈ 1..n-1 ∧ x /∈ 2..n ⇒ ⊥

10/19

Theory

G = foreachforeachforeach W[i:1..n-1, j:2..n] dododo W[i]→ W[j]:::Msg

Key insight: Behaviour of Worker x is determined by the
intervals in which x occurs (i.e., if x and y are contained in
the same intervals, Workers x and y behave the same)

x ∈ 1..n-1 ∧ x ∈ 2..n ⇒ x ∈ 2..n-1 (middle Worker)
x ∈ 1..n-1 ∧ x /∈ 2..n ⇒ x = 1 (first Worker)
x /∈ 1..n-1 ∧ x ∈ 2..n ⇒ x = n (last Worker)
x /∈ 1..n-1 ∧ x /∈ 2..n ⇒ ⊥

11/19

Theory

1. Infer role variants as triples r[D, D̄], where:
r is a role name
D is a set of intervals
D̄ is a set of “co-intervals”

2. Project G onto inferred role variants, e.g.:

G � W[{1..n-1, 2..n}, ∅] = W[selfselfself-1]???Msg... W[selfselfself+1]!!!Msg

G � W[{1..n-1}, {2..n}] = W[selfselfself+1]!!!Msg

G � W[{2..n}, {1..n-1}] = W[selfselfself-1]???Msg

11/19

Theory

1. Infer role variants as triples r[D, D̄], where:
r is a role name
D is a set of intervals
D̄ is a set of “co-intervals”

2. Project G onto inferred role variants, e.g.:

G � W[{1..n-1, 2..n}, ∅] = W[selfselfself-1]???Msg... W[selfselfself+1]!!!Msg

G � W[{1..n-1}, {2..n}] = W[selfselfself+1]!!!Msg

G � W[{2..n}, {1..n-1}] = W[selfselfself-1]???Msg

12/19

Theory

Theorem: Inferring role variants is decidable

Theorem: Checking well-formedness is decidable

Theorem: Projecting
well-formed global types
is semantics-preserving,
i.e., correct

13/19

Implementation

Extension of protocol description language Scribble

(http://www.scribble.org)

protocol
spec

state
machines APIs

role variants,
well-formedness,
and projection

(using Z3)
Go code

generation

global type local types
(role variant-specific)

APIs guide
programmer
towards
safety

http://www.scribble.org

13/19

Implementation

Extension of protocol description language Scribble

(http://www.scribble.org)

protocol
spec

state
machines APIs

role variants,
well-formedness,
and projection

(using Z3)
Go code

generation

global type local types
(role variant-specific)

APIs guide
programmer
towards
safety

http://www.scribble.org

14/19

Implementation

(demo video)

15/19

Implementation

Guarantees:
Protocol compliance
Deadlock-freedom (up to “protocol-unrelated” program
behaviour, premature termination, and delegation)

Achieved through:
Native Go typing
Lightweight run-time checks for linearity

16/19

Evaluation (benchmarks)

shm tcp

Microbenchmarks
Speed-up (t1/t2) of Scribble (t2) vs. native Go (t1)
Per communication: ∼20ns

Computer Language Benchmark Games (CLBG)

16/19

Evaluation (benchmarks)

shm tcp

Microbenchmarks
Speed-up (t1/t2) of Scribble (t2) vs. native Go (t1)
Per communication: ∼20ns

Computer Language Benchmark Games (CLBG)

17/19

Evaluation (expressiveness)

21 patterns, topologies, and applications
(each uses various features of our framework)

18/19

Conclusion

Also in the paper:
Branching, selection, recursion, merge
Implementation
Transport independence
Linearity checks (Go does not have linear types)

Technical report with all details:

https://www.doc.ic.ac.uk/research/
technicalreports/2018/#4

https://www.doc.ic.ac.uk/research/technicalreports/2018/#4
https://www.doc.ic.ac.uk/research/technicalreports/2018/#4

19/19

Conclusion

Theory:
MPST + parameterisation + role heterogeneity
Proofs of decidability and correctness

Implementation:
Extension to Scribble
Artifact (reusable and available)

Evaluation:
Competitive performance
Wide applicability

