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Why smart contracts on Bitcoin?

■ well-understood security of the blockchain 
▫ Garay, Kiayias, Leonardos, EUROCRYPT’15

▫ Kosba, Miller, et al., IEEE S&P’16

▫ ...

■ simpler model of computation
▫ Bitcoin: transactions (with minimal scripting)

▫ Ethereum: EVM/Solidity (⇒ subtle bugs)

■ basis for other blockchains (e.g. Litecoin)
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T1

Bitcoin in a nutshell
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Bitcoin in a nutshell
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Bitcoin transactions

in: (T1,1); (T2,3)
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Bitcoin transactions

in: (T1,1); (T2,3)

out: 1 BTC: fun(x) . e1
2 BTC: fun(y) . e2
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Bitcoin transactions

in: (T1,1); (T2,3)

out: 1 BTC: fun(x) . e1
2 BTC: fun(y) . e2

absLock: after 2018.12.17

relLock: 2 days after T1

T
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Bitcoin scripts: limitations
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■ no loops

■ versig

○ only verify signature of the redeeming tx

○ no signatures on arbitrary messages!

■ arithmetic

○ no multiplication / shift (!?)

○ no ops on long numbers (only equality check)

■ no concatenation of bitstrings

■ no checks on the redeeming tx (only versig)



◎ Smart contracts allow to specify 
“programmable” rules to transfer 
currency

◎ They are implemented in Bitcoin 
as cryptographic protocols, 
exploiting the advanced features 
of transactions

Smart contracts in Bitcoin

cond
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A sample of Bitcoin contracts

■ Oracles

■ Escrow and arbitration

■ Fair multi-player lotteries

■ Gambling games (Poker, ...)

■ Crowdfunding

■ Micropayments channels (“Lighting network”)

■ Contingent payments (via ZK proofs)

■ … 
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Example: timed commitment

Problem: when playing a game, if A makes 
public her move first, then B can choose a 
countermove which makes him always win

◎ A wants to commit a secret s, but reveal it 
some time later

◎ B wants to be assured that he will either:
○ learn A’s secret within time t
○ or be economically compensated

[Andrychowicz et al. 2014]
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Example: timed commitment

◎ A chooses secret 
s and broadcasts 
h=H(s)

out: 1 BTC: fun x σ .
( H(x)=h and verA(σ) ) or
afterAbs t: verB(σ)

Commit
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Example: timed commitment

◎ A chooses secret 
s and broadcasts 
h=H(s)

◎ A can get 1 BTC 
by revealing s 
before time t

out: 1 BTC: fun x σ .
( H(x)=h and verA(σ) ) or
afterAbs t: verB(σ)

Commit
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wit: s 
sigA(Reveal)

Reveal



Example: timed commitment

◎ A chooses secret 
s and broadcasts 
h=H(s)

◎ A can get 1 BTC 
by revealing s 
before time t

◎ B can get 1BTC if 
A does not reveal 
s by time t

 

out: 1 BTC: fun x σ .
( H(x)=h and verA(σ) ) or
afterAbs t: verB(σ)

Commit
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wit:  * 
 sigB(Timeout)

absLock: t

Timeout



Problems
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■ writing Bitcoin contracts is hard
▫ no programming language
▫ contracts usually described as “endpoint” protocols:

▫ send / receive messages
▫ scan blockchain / append transactions

▫ low-level & poorly documented features 
▫ scripts, SegWit, signature modifiers, ...

■ no formal specification
⇒ no automatic verification
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Bitcoin contracts in prose
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BitML: Bitcoin Modelling Language [B. & Zunino, ACM CCS’18]
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■ contracts are programs
○ high-level specification of global behaviour
○ abstract from low-level details (e.g. transactions)

■ 3-phases workflow:
○ advertisement: someone broadcasts the contract 

and the required preconditions (deposits, secrets)
○ stipulation: participants decide whether to accept 

the contract, by satisfying its preconditions
○ execution: participants perform actions, which 

must respect the contract logic
■ compiler : BitML → standard Bitcoin transactions



BitML syntax

C ::= D1 + ⋯ + Dn

D ::=
withdraw A
split v1→C1|⋯|vn→Cn
A : D
after t : D
put x . C
reveal a if p . C
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contract

guarded contract

transfer bal to A

split balance

wait for A’s auth

wait until time t

collect deposits x
reveal secrets a



A basic example 

Precondition: A must put a 1฿:
{A:!1฿}

Contract:
PayOrRefund = 

A:withdraw B + B:withdraw A 

Problem: if neither A nor B give their 
authorization, the 1฿ deposit is frozen
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Mediating disputes (with oracles)

Resolve disputes via a mediator M (paid 0.2฿)

Escrow =  PayOrRefund +
A:Resolve + 
B:Resolve

Resolve = split
0.2฿ → withdraw M

| 0.8฿ → M:withdraw A + M:withdraw B 
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Timed commitment

{A:!1฿ | A:secret a}

TimedC = reveal a. withdraw A
  

     + after t : withdraw B
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A 2-players lottery (wrong version)

reveal a b if |a|=|b|. withdraw A
    + reveal a b if |a|≠|b|. withdraw B

23

{A:!1฿ | A:secret a | B:!1฿ | B:secret b}



A 2-players lottery (almost there…)

split
 2฿ → reveal b . withdraw B
    + after t : withdraw A
|2฿ → reveal a . withdraw A
    + after t : withdraw B
|2฿ → reveal a b if |a|=|b|. withdraw A
    + reveal a b if |a|≠|b|. withdraw B
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{A:!3฿ | A:secret a | B:!3฿ | B:secret b}



A 2-players lottery (fair version)

split
 2฿ → reveal b if 0≤|b|≤1 . withdraw B
    + after t : withdraw A
|2฿ → reveal a . withdraw A
    + after t : withdraw B
|2฿ → reveal a b if |a|=|b|. withdraw A
    + reveal a b if |a|≠|b|. withdraw B
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{A:!3฿ | A:secret a | B:!3฿ | B:secret b}



Symbolic vs computational model
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Bitcoin smart 
contracts

Com
putational

BitML smart 
contracts
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Preserving security upon compilation

Theorem (Computational soundness):
For each computational run, there exists a 
corresponding symbolic run (with overwhelming probability)

◎ Computational attacks are also observable at 
the symbolic level.

◎ A tool can be used to verify security 
properties at the symbolic level
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Liquidity of contracts

A:B:withdraw C + A:B:withdraw D 

Problem: 
A and B must agree on the recipient of the 
donation, otherwise the funds are frozen

⇒ not liquid
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Liquidity of contracts

{A:!1฿ | A:secret a}

reveal a. withdraw A
   + after t : withdraw B

◎ A  can reveal her secret ⇒ liquid
◎ B  can delay until time t ⇒ liquid
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Verifying liquidity

for all finite runs R1 (conforming to A’s strategy)

there exists some extension R2 of R1
(conforming to A’s strategy) such that R2:

1. has no authorizations/reveals of any  B ≠ A
2. has no active contracts

Th: liquidity is decidable in BitML
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WIP: A toolchain for design and verification
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Execution 
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+ Strategy
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Thank you
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A formal ecosystem for Bitcoin smart contracts
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Contracts as 
endpoint protocols

                                  [POST18]

Formal model  of 
Bitcoin transactions
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Timed commitment (output of the BitML compiler)
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