Design and verification of
Bitcoin smart contracts with

BitML

Stefano Lande
Nicola Atzel

Massimo Bartoletti Roberto Zunino

University of Cagliari University of Trento

Why smart contracts on Bitcoin?

well-understood security of the blockchain
o Garay, Kiayias, Leonardos, EUROCRYPT’15
o Kosba, Miller, etal., IEEE S&P’16

O

simpler model of computation
o Bitcoin: transactions (with minimal scripting)

o Ethereum: EVM/Solidity (= subtle bugs)

basis for other blockchains (e.g. Litecoin)

Bitcoin in a nutshell

T1

Alice owns 1 BTC

Satoshi

Bitcoin in a nutshell

Alice Bob

T1 12

Aliceowns1BTC f------------1 Bob owns 1 BTC

Satoshi Alice

Bitcoin transactions

T1

T2

O

T

in:

(T1,1); (72,3)

Bitcoin transactions

T1

T2

O

T

in:

out:

(T1,1);5 (72,3)

1 BTC: fun(x)
2 BTC: fun(y)

. el £
. e2

=~

® ® Md ®d
|
® ® Md ®d

H(e)
el
versig, (e)

if e then e else e
absAfter t:e
relAfter t:e

S
N
N
N\
N
S
,

Bitcoin transactions K
T1 T2 e + e
e — e
e < e
00 (5 coC
H(e)
- le|
versig, (e)
in: (T1,1); (T2,3)

if e then e else e

out: 1 BTC: fun(x) . el Z absAfter t:e
2 BTC: fun(y) . e2 relAfter t:e

absLock: after 2018.12.17

relLock: 2 days after T1

4 A
4 RN

O 00

Bitcoin scripts: limitations

no loops

versig

o only verify signature of the redeeming tx

O no signatures on arbitrary messages!
arithmetic

o no multiplication / shift (!?)

o no ops on long numbers (only equality check)
no concatenation of bitstrings

no checks on the redeeming tx (only versig)

Smart contracts in Bitcoin

Smart contracts allow to specify
“programmable” rules to transfer
currency

They are implemented in Bitcoin
as cryptographic protocols,
exploiting the advanced features
of transactions

A sample of Bitcoin contracts

Oracles

Escrow and arbitration

Fair multi-player lotteries

Gambling games (Poker, ...)

Crowdfunding

Micropayments channels (“Lighting network”)

Contingent payments (via ZK proofs)

10

Example: timed commitment

Problem: when playing a game, if A makes
public her move first, then B can choose a
countermove which makes him always win

A wants to commit a secret s, but reveal it
some time later

B wants to be assured that he will either:
learn A’s secret within time t

or be economically compensated

[Andrychowicz et al. 2014]

11

Example: timed commitment

A chooses secret

s and broadcasts
h=H(s)

Commit

out:

1 BTC: fun xo .
(H(x)=h and ver,(c)) or
afterAbs t: ver,(o)

12

Example: timed commitment

A chooses secret

s and broadcasts
h=H(s)

Acan get1BTC
by revealing s
beforetime t

Commit

out:

1 BTC: fun xo .

(H(x)=h and ver,(c)) or
afterAbs t: ver,(o)

O

Reveal

wit:

s
sig, (Reveal)

l

&

13

Example: timed commitment

Commit
A chooses secret out: 1 BTC: fun xo .
s and broadcasts (H(x)=h and ver,(c)) or
h=H(S) afterAbs t: ver (o)

Acan get1BTC

by revealing s >

Timeout
beforetime t L
wit: *
. sig, (Timeout)
B can get 1BTC if beLocks <
A does not reveal 5
s by timet *

Problems

writing Bitcoin contracts is hard
= no programming language

= contracts usually described as “endpoint” protocols:

send / receive messages

scan blockchain / append transactions
> low-level & poorly documented features

scripts, SegWit, signature modifiers, ...

no formal specification

=> no automatic verification

15

Example 4: Using external state

Scripts are, by design, pure functions. They cannot poll external servers or import any state that may change as it would allow an attacker to
outrun the block chain. What's more, the scripting language is extremely limited in what it can do. Fortunately, we can make transactions
connected to the world in other ways.

Consider the example of an old man who wishes to give an inheritance to his grandson, either on the grandson's 18th birthday or when the man
dies, whichever comes first.

To solve this, the man first sends the amount of the inheritance to himself so there is a single output of the right amount. Then he creates a
transaction with a lock time of the grandson's 18th birthday that pays the coins to another key owned by the grandson, signs it, and gives it to him -
but does not broadcast it. This takes care of the 18th birthday condition. If the date passes, the grandson broadcasts the transaction and claims the
coins. He could do it before then, but it doesn't let him get the coins any earlier, and some nodes may choose to drop transactions in the memory
pool with lock times far in the future.

The death condition is harder. As Bitcoin nodes cannot measure arbitrary conditions, we must rely on an oracle. An oracle is a server that has a
keypair, and signs transactions on request when a user-provided expression evaluates to true.

Here is an example. The man creates a transaction spending his output, and sets the output to:

<hash> OP DROP 2 <sons pubkey> <oracle pubkey> CHECKMULTISIG

This is the oracle script. It has an unusual form - it pushes data to the stack then immediately deletes it again. The pubkey is published on the
oracle's website and is well-known. The hash is set to be the hash of the user-provided expression stating that he has died, written in a form the
oracle knows how to evaluate. For example, it could be the hash of the string:

if (has_died('john smith', born on=1950/01/02)) return (10.0, 1JxgRXEHBi86zYzHN2U4KMyRCg4LvwNUrp);

This little language is hypothetical, it'd be defined by the oracle and could be anything. The return value is an output: an amount of value and an
address owned by the grandson.

Once more, the man creates this transaction but gives it directly to his grandson instead of broadcasting it. He also provides the expression thatis
hashed into the transaction and the name of the oracle that can unlock it.

It is used in the following algorithm:

1. The oracle accepts a measurement request. The request contains the user-provided expression, a copy of the output script, and a partially
complete transaction provided by the user. Everything in this transaction is finished except for the scriptSig, which contains just one
signature (the grandson's) - not enough to unlock the output.

2. The oracle checks the user-provided expression hashes to the value in the provided output script. If it doesn't, it returns an error.

. The oracle evaluates the expression. If the result is not the destination address of the output, it returns an error.

W

4. Otherwise the oracle signs the transaction and returns the signature to the user. Note that when signing a Bitcoin transaction, the input script
is set to the connected output script. The reason is that when OP_CHECKSIG runs, the script containing the opcode is putin the input being
evaluated, _not_ the script containing the signature itself. The oracle has never seen the full output it is being asked to sign, but it doesn't
have to. It knows the output script, its own public key, and the hash of the user-provided expression, which is everything it needs to check the
output script and finish the transaction.

5. The user accepts the new signature, inserts it into the scriptSig and broadcasts the transaction.

16

Bitcoin contracts in prose

)]
2)

3)
4)

5)

6)

n _ Pre-condition:
The key pair of C is C' and the key pair of each P; is F;.

The Ledger contains n unredeemed transactions Ulc, ..., US, which can be redeemed with key (' each having value d B.

The CS.Commit(C,d. 1, s) phase
The Committer C computes h = H(s). He sends to the Ledger the transactions Commity, ..., Commit,. This obviously means that
he reveals h, as it is a part of each Commit;.
If within time maxj ¢gger Some of the Commit; transactions does not appear on the Ledger, or if they look incorrect (e.g. they differ in
the h value) then the parties abort.
The Committer C creates the bodies of the transactions PayDeposit,,. .., PayDeposit . signs them and for all i sends the signed body
[PayDeposit;| to P;. If an appropriate transaction does not arrive to P;, then he halts.

The CS.Open(C,d,t, s) phase

The Committer C sends to the Ledger the transactions Open,, ..., Open,, what reveals the secret s.
If within time £ the transaction Open; does not appear on the Ledger then P; signs and sends the transaction PayDeposit; to the Ledger
and earns d B.

17

BitML: Bitcoin Modelling Language [B. & Zunino, ACM CCS'18]

contracts are programs
high-level specification of global behaviour
abstract from low-level details (e.g. transactions)

3-phases workflow:
advertisement: someone broadcasts the contract
and the required preconditions (deposits, secrets)
stipulation: participants decide whether to accept
the contract, by satisfying its preconditions
execution: participants perform actions, which
must respect the contract logic

compiler : BitML - standard Bitcoin transactions

18

BitML syntax

D ::=
withdraw A
split v,»>C |~|v >C_
A : D
after t : D
put x . C

reveal a if p . C

contract

guarded contract
transfer bal to A
split balance
wait for A’s auth
wait until time t
collect deposits x

reveal secrets a

19

A basic example

Precondition: A must put a 1B:
{A: 1B}

Contract:

PayOrRefund =
A:withdraw B + B:withdraw A

Problem: if neither A nor B give their
authorization, the 1B deposit is frozen

20

Mediating disputes (with oracles)
Resolve disputes via a mediator M (paid 0.2B)

Escrow = PayOrRefund +
A:Resolve +
B:Resolve

Resolve = split
0.2B > withdraw M
| 0.8B > M:withdraw A + M:withdraw B

21

Timed commitment

{A:11B | A:secret a}

TimedC =

+

reveal a.

after t

withdraw A

withdraw B

22

A 2-players lottery (wrong version)

{A:11B | A:secret a | B:!1B | B:secret b}

reveal a b if |a|=|b|. withdraw A

+ reveal a b 1if |a|#|b|. withdraw B

23

A 2-players lottery (almost there..)

{A:!3B | A:secret a | B:!3B | B:secret b}

split
2B > reveal b . withdraw B
+ after t : withdraw A
|12B > reveal a . withdraw A
+ after t : withdraw B
|12B > reveal a b if |a|=|b]|. withdraw A

+ reveal a b if |a|Z|b|. withdraw B

24

A 2-players lottery (fair version)

{A:13B | A:secret a | B:!3B | B:secret b}

split

2B > reveal b if 0s|b|=1 . withdraw B
+ after t : withdraw A

|12B > reveal a . withdraw A
+ after t : withdraw B

|12B > reveal a b if |a|=|b]|. withdraw A

+ reveal a b if |a|Z|b|. withdraw B

25

Symbolic vs computational model

BitML smart
contracts

Bitcoin smart
contracts

dljoquiAs

jeuoneindwo?d

26

Preserving security upon compilation

Theorem (Computational soundness):

For each computational run, there exists a
Corresponding sym bolic run (with overwhelming probability)

Computational attacks are also observable at
the symbolic level.

A tool can be used to verify security
properties at the symbolic level

27

Liquidity of contracts

A:B:withdraw C + A:B:withdraw D

Problem:
A and B must agree on the recipient of the
donation, otherwise the funds are frozen

= not liquid

28

Liquidity of contracts

{A:11B | A:secret a}

reveal a. withdraw A

+ after t : withdraw B

© A canreveal her secret
© B candelayuntiltimet

= liquid
= liquid

29

Verifying liquidity

for all finite runs R1 (conforming to A’s strategy)
there exists some extension R2 of R1

(conforming to A’s strategy) such that R2:

has no authorizations/reveals of any B#A
has no active contracts

Th: liquidity is decidable in BitML

30

WIP: A toolchain for design and verification

Contract
model

Contract
+ Strategy)
BitML
—> .
compiler
Bitcoin transactions
+ Strategy
\d
Execution
client

Model
checker

—

Liquidity

31

Thank you

Symbolic

Computational

A formal ecosystem for Bitcoin smart contracts

BitML verification
[Submitted]

BitML
[CCS18]

Contracts as

endpoint protocols
[POST18]

)

Formal model of

Bitcoin transactions
[FC18]

BitML
compiler

Balzac

33

Timed commitment (output of the BitML compiler)

Tini{

in0P Ty, 1T,

wit: 0 sigK(A),l b SigK(B)
out: (AGP.versigyp (a5n(©) A H(B) =h, AlBIZ 1
Vv versiggp, (a.51)(S) 1B)

Treveal

in: Tinit

wit:sigK(DhM'B” [s4]
out: (AS.versigy s tnaraw A, (4,5)(S)> 1B)

T‘.’\ T B

in: Ligsasi in: Tinit

wit: SIgy ithdraw AL (A.B)) || VIt S8k, .(AB) T
out: (Ag. versigy 4 (S), 1B) || out: (Ag. versigy) (5), 1B)
absLock: t

