
Design and verification of
Bitcoin smart contracts with

BitML
Stefano Lande

Nicola Atzei

Massimo Bartoletti

University of Cagliari

Roberto Zunino

University of Trento

Why smart contracts on Bitcoin?

■ well-understood security of the blockchain
▫ Garay, Kiayias, Leonardos, EUROCRYPT’15

▫ Kosba, Miller, et al., IEEE S&P’16

▫ ...

■ simpler model of computation
▫ Bitcoin: transactions (with minimal scripting)

▫ Ethereum: EVM/Solidity (⇒ subtle bugs)

■ basis for other blockchains (e.g. Litecoin)

2

T1

Bitcoin in a nutshell

3

T1
Alice owns 1 BTC

Satoshi

BobAlice

Bitcoin in a nutshell

4

BobAlice

T2
Bob owns 1 BTC

Alice

T1
Alice owns 1 BTC

Satoshi

T1 T2

Bitcoin transactions

in: (T1,1); (T2,3)

T

5

T1 T2

Bitcoin transactions

in: (T1,1); (T2,3)

out: 1 BTC: fun(x) . e1
2 BTC: fun(y) . e2

T

6

T1 T2

k
x

e + e
e - e
e < e
e = e

H(e)
|e|
versigk(e)

if e then e else e
absAfter t:e
relAfter t:e

Bitcoin transactions

in: (T1,1); (T2,3)

out: 1 BTC: fun(x) . e1
2 BTC: fun(y) . e2

absLock: after 2018.12.17

relLock: 2 days after T1

T

7

T1 T2

k
x

e + e
e - e
e < e
e = e

H(e)
|e|
versigk(e)

if e then e else e
absAfter t:e
relAfter t:e

Bitcoin scripts: limitations

8

■ no loops

■ versig

○ only verify signature of the redeeming tx

○ no signatures on arbitrary messages!

■ arithmetic

○ no multiplication / shift (!?)

○ no ops on long numbers (only equality check)

■ no concatenation of bitstrings

■ no checks on the redeeming tx (only versig)

◎ Smart contracts allow to specify
“programmable” rules to transfer
currency

◎ They are implemented in Bitcoin
as cryptographic protocols,
exploiting the advanced features
of transactions

Smart contracts in Bitcoin

cond

9

A sample of Bitcoin contracts

■ Oracles

■ Escrow and arbitration

■ Fair multi-player lotteries

■ Gambling games (Poker, ...)

■ Crowdfunding

■ Micropayments channels (“Lighting network”)

■ Contingent payments (via ZK proofs)

■ …

10

Example: timed commitment

Problem: when playing a game, if A makes
public her move first, then B can choose a
countermove which makes him always win

◎ A wants to commit a secret s, but reveal it
some time later

◎ B wants to be assured that he will either:
○ learn A’s secret within time t
○ or be economically compensated

[Andrychowicz et al. 2014]
11

Example: timed commitment

◎ A chooses secret
s and broadcasts
h=H(s)

out: 1 BTC: fun x σ .
(H(x)=h and verA(σ)) or
afterAbs t: verB(σ)

Commit

12

Example: timed commitment

◎ A chooses secret
s and broadcasts
h=H(s)

◎ A can get 1 BTC
by revealing s
before time t

out: 1 BTC: fun x σ .
(H(x)=h and verA(σ)) or
afterAbs t: verB(σ)

Commit

13

wit: s
sigA(Reveal)

Reveal

Example: timed commitment

◎ A chooses secret
s and broadcasts
h=H(s)

◎ A can get 1 BTC
by revealing s
before time t

◎ B can get 1BTC if
A does not reveal
s by time t

out: 1 BTC: fun x σ .
(H(x)=h and verA(σ)) or
afterAbs t: verB(σ)

Commit

1414

wit: *
 sigB(Timeout)

absLock: t

Timeout

Problems

15

■ writing Bitcoin contracts is hard
▫ no programming language
▫ contracts usually described as “endpoint” protocols:

▫ send / receive messages
▫ scan blockchain / append transactions

▫ low-level & poorly documented features
▫ scripts, SegWit, signature modifiers, ...

■ no formal specification
⇒ no automatic verification

16

Bitcoin contracts in prose

17

BitML: Bitcoin Modelling Language [B. & Zunino, ACM CCS’18]

18

■ contracts are programs
○ high-level specification of global behaviour
○ abstract from low-level details (e.g. transactions)

■ 3-phases workflow:
○ advertisement: someone broadcasts the contract

and the required preconditions (deposits, secrets)
○ stipulation: participants decide whether to accept

the contract, by satisfying its preconditions
○ execution: participants perform actions, which

must respect the contract logic
■ compiler : BitML → standard Bitcoin transactions

BitML syntax

C ::= D1 + ⋯ + Dn

D ::=
withdraw A
split v1→C1|⋯|vn→Cn
A : D
after t : D
put x . C
reveal a if p . C

19

contract

guarded contract

transfer bal to A

split balance

wait for A’s auth

wait until time t

collect deposits x
reveal secrets a

A basic example

Precondition: A must put a 1฿:
{A:!1฿}

Contract:
PayOrRefund =

A:withdraw B + B:withdraw A

Problem: if neither A nor B give their
authorization, the 1฿ deposit is frozen

20

Mediating disputes (with oracles)

Resolve disputes via a mediator M (paid 0.2฿)

Escrow = PayOrRefund +
A:Resolve +
B:Resolve

Resolve = split
0.2฿ → withdraw M

| 0.8฿ → M:withdraw A + M:withdraw B

21

Timed commitment

{A:!1฿ | A:secret a}

TimedC = reveal a. withdraw A

 + after t : withdraw B

22

A 2-players lottery (wrong version)

reveal a b if |a|=|b|. withdraw A
 + reveal a b if |a|≠|b|. withdraw B

23

{A:!1฿ | A:secret a | B:!1฿ | B:secret b}

A 2-players lottery (almost there…)

split
 2฿ → reveal b . withdraw B
 + after t : withdraw A
|2฿ → reveal a . withdraw A
 + after t : withdraw B
|2฿ → reveal a b if |a|=|b|. withdraw A
 + reveal a b if |a|≠|b|. withdraw B

24

{A:!3฿ | A:secret a | B:!3฿ | B:secret b}

A 2-players lottery (fair version)

split
 2฿ → reveal b if 0≤|b|≤1 . withdraw B
 + after t : withdraw A
|2฿ → reveal a . withdraw A
 + after t : withdraw B
|2฿ → reveal a b if |a|=|b|. withdraw A
 + reveal a b if |a|≠|b|. withdraw B

25

{A:!3฿ | A:secret a | B:!3฿ | B:secret b}

Symbolic vs computational model

26

Bitcoin smart
contracts

Com
putational

BitML smart
contracts

Sym
bolic

Preserving security upon compilation

Theorem (Computational soundness):
For each computational run, there exists a
corresponding symbolic run (with overwhelming probability)

◎ Computational attacks are also observable at
the symbolic level.

◎ A tool can be used to verify security
properties at the symbolic level

27

Liquidity of contracts

A:B:withdraw C + A:B:withdraw D

Problem:
A and B must agree on the recipient of the
donation, otherwise the funds are frozen

⇒ not liquid

28

Liquidity of contracts

{A:!1฿ | A:secret a}

reveal a. withdraw A
 + after t : withdraw B

◎ A can reveal her secret ⇒ liquid
◎ B can delay until time t ⇒ liquid

29

Verifying liquidity

for all finite runs R1 (conforming to A’s strategy)

there exists some extension R2 of R1
(conforming to A’s strategy) such that R2:

1. has no authorizations/reveals of any B ≠ A
2. has no active contracts

Th: liquidity is decidable in BitML

30

WIP: A toolchain for design and verification

31

BitML
compiler

Model
checker

Execution
client

Contract
+ Strategy

Contract
model

Bitcoin transactions
+ Strategy

Liquidity

Thank you

32

A formal ecosystem for Bitcoin smart contracts

33

Contracts as
endpoint protocols

 [POST18]

Formal model of
Bitcoin transactions

 [FC18]

Balzac

Co
m

pu
ta

tio
na

l

BitML
 [CCS18]

BitML
compilerSy

m
bo

lic

BitML verification
 [Submitted]

Timed commitment (output of the BitML compiler)

34

