ABCD Meeting, London, 17/12/2018

Asynchronous Timed Session Types
& Processes

Laura Bocchi University of Kent
Maurizio Murgia University of Kent
Vasco Thudichum Vasconcelos University of Lisbon

Nobuko Yoshida Imperial College London

Agenaa

e Session types @ Time

e Synchronous [Bartoletti, Cimoli&Murgia@FORTE13]
e Multiparty asynchronous [Bocchi,Yang,Yoshida@CONCUR'14]
* restriction to types/protocols that could be used for type-checking
* |imitations to the expressiveness of the calculus
e Joday
* Designing timed protocols : asynchronous timed duality

* Checking timed programs : a time-sensitive calculus & typing system

2

Time & trouble

* A timed protocol is not correct by definition

Int.?String

IInt(x < 3).75tring(x < 2)

* Usually this is handled by adding some conditions

feasibility [Bocchi, Yang, Yoshida@CONCUR'14],
interaction-enabledness (CTA) [Bocchi, Lange, Yoshida@CONCUR'15],
compliance |Bartoletti, Cimoli, Murgia@FORTE'16]

formation + duality [Bocchi, Murgia, Yoshida, Vasconcelos'18]

I Int(x < 3).75tring(x < 3)

3

Duality & progress

* Duality characterises well-behaved systems
S=!Int(x < 1x).?String(x <2) S =?Int(y <1,y).!String(y < 2)

Synchronous

SIS 25 S|§S 5 9String(x < 2) | !String(y <2) = =25

Duality & progress

* Duality characterises well-behaved systems
S=!Int(x < 1x).?String(x <2) S =?Int(y <1,y).!String(y < 2)

Synchronous

SIS 25 SIS I 9String(x < 2) | !String(y <2) —2» 25
Asynchronous

SIS 25 SIS 225 2String(x < 2) | 2Int(y < 1,y).!String(y < 2)

0.6 ?Int 2 !Strin

> ?7String(x < 2) | !String(y < 2) >° ?String(x < 2)

A 4

@

I

Recelve & asynchrony (1/2)

S = ptlInt(x < 1,2).7String(x < 2).t

func S (a chan<- int, b <-chan string, start time.Time){
for {

time.Sleep (400 * time.Millisecond)
t := time.Now()
a<-10
fmt.Printf("sent int 10 at time %s\n", t.Sub(start))
select{
case c:=<-b
t := time.Now()

fmt.Printf("received string %s at time %s\n", c, t.Sub(start))
case <-time.After(2 * time.Second):

fmt.Println("S Failed! String not received within deadline")

Recelve & asynchrony (2/2)

S =pt.?Int(y <1,y).!String(y < 2).t

func Sd (a <-chan int, b chan<- string, start time.Time) {
for{
select({
case c:=<-a : t := time.Now()
fmt.Printf("received int %d at time %s\n", c, t.Sub(start))
case <-time.After(l * time.Second): fmt.Println("Sd Failed! .."”)

}

time.Sleep (600 * time.Millisecond)
t := time.Now()

b<-"hello!"

fmt.Printf("sent 'hello!' at time %s\n", t.Sub(start))

https://play.golang.org/p/pagByVB4Gtd

Urgent recelve semantics

 Urgent receive semantics: messages are received as soon as

o they are in a channel, and
e the time constraint of the receiver is satisfied

* Urgent receive semantics yields executions that are
* are a bit more synchronous ...
e ... but as asynchronous as when using (common) receive primitives

SIS = S|S U5 ?String(x <2) | 2Int(y < 1,y).!String(y < 2)

0.6

y S 75tring(x <2) | IString(y < 2) * B9 ?String(x < 2)

- HEH

Urgent recelve semantics

 Urgent receive semantics: messages are received as soon as

o they are in a channel, and
e the time constraint of the receiver is satisfied

* Urgent receive semantics yields executions that are
* are a bit more synchronous ...
e ... but as asynchronous as when using (common) receive primitives

Type Progress: (vy,5, M) | (1,,5,, M,) satisties progress if any reachable
state is either success (end types and empty queues) or allows an action,
possibly after some delay.

Theorem (Duality Progress). (v, S, @) | (vy, S, @) enjoys progress

(when using urgent receive semantics).

Subtyping

® Asymmetric as e.g., [Gay&Hole’05][Demangeon&Honda’11]
[Chen,Dezani-Ciancaglini&Yoshida'14]

Definition (Timed Simulation). Fixs; = (v1,S51) and so = (v2,52).
A relation R € (V x 8)? is a timed simulation if (s1,s2) € R implies:

1. 51 = end implies So = end

¢! o ¢!
2. s1 =3) implies 3sh, ma : S9 —= s, (Mo, m1) €S, and (s},sh) € R

t?m t?mq

3. 8o — sh implies s, m1 : 81 — s}, (m1,m2) €S, and (s],s5) € R

? . ? L . !
4. 81 = implies s9 = and sy = implies s =

IString(x =0) <: IString(x <?2)
75tring(x <2) <: ?5tring(x =0)

75tring(x £ 2).!5tring(x = 1) % 15tring(x =0). IString(x = 1)
IString(true) ¢ ?String(true)

Subtyping

® Asymmetric as e.g., [Gay&Hole’05][Demangeon&Honda’11]
[Chen,Dezani-Ciancaglini&Yoshida'14]

Definition (Timed Simulation). Fixs; = (v1,S51) and so = (v2,52).
A relation R € (V x 8)? is a timed simulation if (s1,s2) € R implies:

1. 51 = end implies So = end

tlm)) tlm

2. 81 — s implies 3sh, mo : 85 — 85, (mo,m1) €S, and (s],s5) € R
t?m . . t?m

3. 8o — sh implies s, m1 : 81 — s}, (m1,m2) €S, and (s],s5) € R

? . ? L . !
. S1 = tmplies so = and s, = implies s =
14 1%

Theorem (Safe/Progressing Substitution). Let S’ <: S then
]) (UOsv Sa Q) (VOasla @) S (Vo,S, @) | (U()a gs Q)
2) vy, S, D) | (1, S', D) enjoys progress.

In [Bartoletti,Bocchi,Murgia@CONCUR’18] asymmetric refinement does not preserve
behaviour/progress (it was “local” and did not assume duality)

Implementing dual types

“An SMTP server SHOULD have a timeout of at least 5 minutes while
it is awaiting the next command from the sender” [RFC 5321]

S =7Com(z < 5,z).5 C =!Com(y < 5,y).C"

* This protocol can be implemented e.q., in Go, Erlang (timeout pattern),
Real-Time Java, ...

select{
case <-b : \\ proceed as S’
case <-time.After(5 * time.Second): \\ explode

}

* This protocol cannot be correctly implemented with the calculus Iin
[Boccehi, Yang&Yoshida'14]

12

Implementing dual types

S =7Com(x < 5,x).5" C =!Com(y < 5,y).C’ {npengim%
types

delay(4.90).a(b).P. | delay(4.99).a(HELO).P;

—y a(b).P! | delay(0.09).a(HELO).P’ \’ﬁgg

Wait-freedom [Bocchi,Yang,Yoshida 14]: the solutions of the constraint
of a receive action must be all after any solution of the corresponding
send action

S =7Com(x = 5,x).5 C =!Com(y < 5,y).C"

13

14

Programs

P.:=av.P

adl.P

if v then P else P
P|P

0

def D in P
X{(a;a)

(vab) P

ab : h

time-consuming
| delay(d).P
a“(b).P
a">{1;: P},

n=~I(» non-blocking

....... n =00 Dblocking
°°°°°° n € R, blocking with timeout

C =!Com(y < 5,y).C"
delay(x = 4.90).a"(b).P!
a®(b).P;

Programs

time-consuming

q1.P

. a"(b) . P

if v then P else P .

PP a">{1,: P},

0

det Din P S =?Con(z < 5,).5"

X(a; a) delay(x = 4.99).a(HELO). P,

(UClb) P — /
delay(4.8 < x < 5).a(HELO). P,

ab : h

I'here are also typing rules...

I'Eb:T vES THFP>Aa: (V[A—0],5) [send]
I'Fab.P > Aa: (v,!T(6,N).5)

Vi:v+t=0et<n
Vi<n: T,b0:TFHP > A+ta:(v+itA—0],5) A nott-reading

['Fa™(b).P > Aya: (v,7T(6,1).9)

[rcv]

Vned: I' Fdelay(n).P > A [

[' - delay(d).P > A delay1]

I'-P > A4+n A not n-reading
[+ delay(n).P > A

[delay?]

16

What is a missed deadline?

S =?Com(x < 5,7).8" C =!Com(y < 5,y).C"
delay(4.90).a(b).P. | delay(4.99).a(HELO).P;

' is this really a
—— a(b).P, | delay(0.09).a(HELQ). P, ‘&ﬁ& voaton o
— failed | delay(0.09).a(HELO).P)

* Failing semantics:
¢ See system’s behaviour beyond failure of some parts (-> error handling)

* Reveals relationship between untimed progress and time safety

17

Programs

time-consuming

P:=av.P | delay(5).P
adl.P a"(b). P
if v then P else P . |
PP a">{1,: P},
0
def D in P delay(n).P
X(7 a’) failed
(vab) P run-time
ab : h

18

Subject reduction”

(vab)(ved) a’(e).de.0 | c(e).beO|ab: @ |ba: B |cd: @ |cd: D

— (vab)(vcd)(failed | failed |ab: @ | ba: DB | cd: D | cd : D)

Well typed
dEP>a:(vyS),b:(S), c: (S, d: (S)

S =!Int(x <5,0).end

Subject reduction does not hold in general

19

Subject reduction!

Definition (Live process). P is live if, for each P’ such that P —* P’ :

P' = (vab)Q A a € Wait(Q) = 3Q': Q —* Q' A a € NEQueue(Q')

Theorem (Subject Reduction). Let erase(P) be live. If) = P> () and
P — P’ then 0 - P> (.

Theorem (Time Safety). If erase(P) is live,) - Pr() and P —™* P’ then
P’ is fail-free.

20

N summary

* Duality, subtyping, & urgent receive.

In [Bartoletti,Bocchi,Murgia@CONCUR’18] asymmetric refinement does not
preserve behaviour/progress (it was “local” and did not assume duality)

e Dual types cannot be (correctly) implemented with previous work
on Multiparty Asynchronous Timed Session Types

A time-sensitive calculus with: parametric receive, delays with arbitrary but
constrained delays, and explicit failures upon timeout

A typing system for processes (with delegation) that satisfies subject reduction
and time safety

Considerations on the meaning of progress and failure in a timed context

21

Future work

e Time-sensitive protocol design and implementation EP/N035372/1

e expressiveness (flexible timing schedules) + run-time adjustments

Program \ (Safe) Program
,,\ i

B-Tyne checking | =—
Run-time
Contract _/ —— WEAK -~ :
Instrumentation
Program ‘ ‘ Program ‘ ‘ Program
SyStem : Run-time Run-time Run-time
Instrumentazion Instrumenzation Instrumentation

22

Thank vou!

23

