Thinking About Mechanizing the Meta-Theory of Session Types

Francisco Ferreira (joint work with Nobuko Yoshida)

ABCD Meeting - Imperial College London

Engineering the Meta-Theory of Session Types

Francisco Ferreira (joint work with Nobuko Yoshida)

ABCD Meeting - Imperial College London

"The limits of my language mean the limits of my world."

-Ludwig Wittgenstein

- · I did my PhD at McGill University, advised by Brigitte Pientka.
- I worked with Higher Order Abstract Syntax.
- Also on the meta-theory of programming languages.

- · I did my PhD at McGill University, advised by Brigitte Pientka.
- · I worked with Higher Order Abstract Syntax.
- Also on the meta-theory of programming languages.
- I worked in the implementation of:

- · I did my PhD at McGill University, advised by Brigitte Pientka.
- · I worked with Higher Order Abstract Syntax.
- Also on the meta-theory of programming languages.
- I worked in the implementation of:
 - Beluga My supervisor's project on computational reasoning about LF definitions.

- · I did my PhD at McGill University, advised by Brigitte Pientka.
- · I worked with Higher Order Abstract Syntax.
- Also on the meta-theory of programming languages.
- I worked in the implementation of:
 - Beluga My supervisor's project on computational reasoning about LF definitions.
 - Babybel Our project on supporting HOAS in functional programming languages (e.g.: OCaml).

- · I did my PhD at McGill University, advised by Brigitte Pientka.
- · I worked with Higher Order Abstract Syntax.
- Also on the meta-theory of programming languages.
- I worked in the implementation of:
 - Beluga My supervisor's project on computational reasoning about LF definitions.
 - Babybel Our project on supporting **HOAS** in functional programming languages (e.g.: OCaml).
 - Orca Our project on combining HOAS and Type Theory.

Mechanising the Meta-Theory Session Types

- · Names are ubiquitous.
- The binding structure is quite rich.
- · Channels are handled linearly.
- Names exist besides binders. Names are a first class notion.

The First Step

- Do a case study:
 - Language Primitives and Type Discipline for Structured Communication-Based Programming Revisited, by Yoshida and Vasconcelos.

How Best To Represent Session Types Calculi?

Constructive FOL + Induction

Logical framework LF

Contextual types

How Best To Represent Session Types Calculi?

Constructive FOL + Induction

Nominal Equation Logic

• What if we relax the requirement for α -conversion?

- What if we relax the requirement for α -conversion?
- · Work by Ernesto Copello, Maribel Fernandez, et al.
 - Defines a notion of α -compatible relations.
 - Defines a notion of α -structural induction.

- What if we relax the requirement for α -conversion?
- Work by Erne It can be readily implemented in Agda and Coq! Fernandez, et al.
 - Defines a notion of α-compatible relations.
 - Defines a notion of α -structural induction.

- What if we relax the requirement for α -conversion?
- Work by Erne It can be read implement and Defines a notion of Defines a notion of a problem in this approach.
 - · Defines a notion of α-structural induction.

Time To Consider Existing Solutions

- Well established work on Locally Nameless:
 - · Use names for free variables.
 - Use indices for bound variables.
 - Mediate between them with open & close operations.

t := bvar x | fvar p | abs t | app t t

 $t := bvar x \mid fvar p \mid abs t \mid app t t$

 $t := bvar x \mid fvar p \mid abs t \mid app t t$

t := bvar x | fvar p | abs t | app t t

 $t := bvar x \mid fvar p \mid abs t \mid app t t$

$$t^{x} \equiv \{0 \to x\} t \qquad \qquad ^{\setminus x} t \equiv \{0 \leftarrow x\} t$$

$$t := bvar x | fvar p | abs t | app t t$$

$$t^x \equiv \{0 \to x\} t$$

$$^{\setminus x}t \equiv \{0 \leftarrow x\}t$$

$$\frac{\operatorname{ok} E \quad (x : T) \in E}{E \vdash \operatorname{fvar} x : T} \text{ TYPING-VAR}$$

$$\frac{\text{ok } E \quad (x:T) \in E}{E \vdash \text{fvar } x:T} \text{ TYPING-VAR} \qquad \frac{E \vdash t_1:T_1 \to T_2}{E \vdash \text{app } t_1 \, t_2:T_2} \xrightarrow{\text{TYPING-APP}} \text{TYPING-APP}$$

$$\frac{\forall x \notin L, \quad E, \ x : T_1 \vdash t^x : T_2}{E \vdash \mathsf{abs}\, t : T_1 \to T_2} \text{ TYPING-ABS}$$

$$t := bvar x | fvar p | abs t | app t t$$

$$t^x \equiv \{0 \to x\} t \qquad \qquad ^{\setminus x} t \equiv \{0 \leftarrow x\} t$$

$$\frac{\text{ok } E \quad (x:T) \in E}{E \vdash \text{fvar } x:T} \text{ TYPING-VAR} \qquad \frac{E \vdash t_1:T_1 \to T_2}{E \vdash \text{app } t_1 t_2:T_2} \xrightarrow{\text{TYPING-APP}} \text{TYPING-APP}$$

$$\frac{\forall x \notin L, \quad E, \ x : T_1 \vdash t^x : T_2}{E \vdash \mathsf{abs}\, t : T_1 \nearrow T_2}$$
 TYPING-ABS

$$t := bvar x | fvar p | abs t | app t t$$

$$t^x \equiv \{0 \to x\} t \qquad \qquad ^{\setminus x} t \equiv \{0 \leftarrow x\} t$$

$$\frac{\text{ok } E \quad (x:T) \in E}{E \vdash \text{fvar } x:T} \text{ TYPING-VAR} \qquad \frac{E \vdash t_1:T_1 \to T_2}{E \vdash \text{app } t_1 \, t_2:T_2} \xrightarrow{\text{TYPING-APP}} \text{TYPING-APP}$$

$$\forall x \notin L$$
 $E, x : T_1 \vdash t^x : T_2$
 $E \vdash \text{abs } t : T_1 \rightarrow T_2$
TYPING-ABS

$$t := bvar x | fvar p | abs t | app t t$$

$$t^x \equiv \{0 \to x\} t$$

$$^{\setminus x}t \equiv \{0 \leftarrow x\}t$$

$$\frac{\operatorname{ok} E \quad (x : T) \in E}{E \vdash \operatorname{fvar} x : T} \text{ TYPING-VAR}$$

$$\frac{\text{ok } E \quad (x:T) \in E}{E \vdash \text{fvar } x:T} \text{ TYPING-VAR} \qquad \frac{E \vdash t_1:T_1 \to T_2}{E \vdash \text{app } t_1 \, t_2:T_2} \xrightarrow{\text{TYPING-APP}} \text{TYPING-APP}$$

$$\frac{\forall x \notin L, \quad E, \ x : T_1 \vdash t^x : T_2}{E \vdash \mathsf{abs}\, t : T_1 \to T_2} \text{ TYPING-ABS}$$

The Send Receive System and its Cousins the Relaxed and the Revisited System.

Electronic Notes in Theoretical Computer Science

Electronic Notes in Theoretical Computer Science 171 (2007) 73-93

www.elsevier.com/locate/entcs

Language Primitives and Type Discipline for Structured Communication-Based Programming Revisited: $Two\ Systems\ for$ $Higher-Order\ Session\ Communication$

Nobuko Yoshida¹

Imperial College London

Vasco T. Vasconcelos²

University of Lisbon

The Send Receive System and its Cousins the Relaxed and the Revisited System.

A Tale of Three Systems

- We set out to represent the three systems described in the paper:
 - The Honda, Vasconcelos, Kubo system from ESOP'98
 - · Its naïve but ultimately unsound extension
 - Its revised system inspired by Gay and Hole in Acta Informatica

The Send Receive System

```
P ::= \mathtt{request} \ a(k) \ \mathtt{in} \ P
                                                                                        session request
         accept \ a(k) \ in \ P
                                                                                   session acceptance
         k![\tilde{e}]; P
                                                                                           data sending
         k?(\tilde{x}) in P
                                                                                        data reception
        | k \triangleleft l; P
                                                                                         label selection
        | k \rhd \{l_1 : P_1 | \cdots | l_n : P_n\}
                                                                                       label branching
         throw k[k']; P
                                                                                      channel sending
         \mathtt{catch}\ k(k')\ \mathtt{in}\ P
                                                                                    channel reception
         \quad \text{if } e \text{ then } P \text{ else } Q
                                                                                  conditional branch
         P \mid Q
                                                                                parallel composition
         inact
                                                                                                 inaction
         |(\nu u)P|
                                                                               name/channel hiding
         \operatorname{def} D \operatorname{in} P
                                                                                               recursion
         |X[\tilde{e}\tilde{k}]|
                                                                                     process variables
 e ::= c
                                                                                                constant
        |e+e'|e-e'|e\times e|\operatorname{not}(e)|\dots
                                                                                               operators
D ::= X_1(\tilde{x}_1\tilde{k}_1) = P_1 \text{ and } \cdots \text{ and } X_n(\tilde{x}_n\tilde{k}_n) = P_n
                                                                         declaration for recursion
```

The Send Receive System

```
P ::= \mathtt{request} \ a(k) \ \mathtt{in} \ P
                                                                                 session request
         accept \ a(k) \ in \ P
                                                                             session acceptance
        k![\tilde{e}]; P
                                                                                    data sending
        k?(\tilde{x}) in P
                                                                                  data reception
       | k \triangleleft l; P
                                                                                  label selection
       | k \rhd \{l_1: P_1 | \cdots | l_n: P_n\}
                                                                                label branching
        throw k[k']; P
                                                                                channel sending
        \mathtt{catch}\ k(k')\ \mathtt{in}\ P
                                                                              channel reception
        if e then P else Q
                                                                            conditional branch
        P \mid Q
                                                                          parallel composition
                                                                                          inaction
         inact
        (\nu u)P
                                                                         name/channel hiding
         \mathtt{def}\ D\ \mathtt{in}\ P
                                                                                         recursion
        X[\tilde{e}k]
                                                                               process variables
 e ::= c
                                                                                          constant
       |e+e'|e-e'|e\times e|\operatorname{not}(e)|\dots
                                                                                         operators
D ::= X_1(\tilde{x}_1\tilde{k}_1) = P_1 \text{ and } \cdots \text{ and } X_n(\tilde{x}_n\tilde{k}_n) = P_n
                                                                    declaration for recursion
```

α-Conversion for Free

· The original system depends crucially on names

$$(ext{throw } k[k']; P_1) \mid (ext{catch } k(k') ext{ in } P_2) \rightarrow P_1 \mid P_2$$

α-Conversion for Free

· The original system depends crucially on names

$$(\texttt{throw}\ k[k']; P_1) \mid \ (\texttt{catch}\ k(k')\ \texttt{in}\ P_2)\ \rightarrow\ P_1 \mid\ P_2$$

α-Conversion for Free

· The original system depends crucially on names

$$(\texttt{throw}\ k[k']; P_1) \mid \ (\texttt{catch}\ k(k')\ \texttt{in}\ P_2)\ \rightarrow\ P_1 \mid\ P_2$$

This is a bound variable.

α-Conversion for Free

· The original system depends crucially on names

$$(\texttt{throw}\ k[k']; P_1) \mid \ (\texttt{catch}\ k(k')\ \texttt{in}\ P_2)\ \rightarrow\ P_1 \mid\ P_2$$

This is a bound variable.

• If α -conversion is built in, this rule collapses to:

$$(\mathtt{throw}\; k[k']; P_1) \mid (\mathtt{catch}\; k(k'') \; \mathtt{in}\; P_2) \; o \; P_1 \mid \; P_2[k'/k'']$$

α-Conversion for Free

· The original system depends crucially on names

 $(exttt{throw } k[k']; P_1) \mid (exttt{catch})$

Locally Nameless makes it impossible to express the original system's name handling!

• If α-conversion is built

 $(exttt{throw } k[k']; P_1) \mid (exttt{catch } k(k'') \text{ i}$

$$\frac{\Theta; \Gamma \vdash P \triangleright \Delta \qquad \Theta; \Gamma \vdash Q \triangleright \Delta'}{\Theta; \Gamma \vdash P \mid Q \triangleright \Delta \circ \Delta'} (\Delta \simeq \Delta')$$
 [Conc]

$$\frac{\Theta; \Gamma \vdash P \triangleright \Delta \qquad \Theta; \Gamma \vdash Q \triangleright \Delta'}{\Theta; \Gamma \vdash P \mid Q \triangleright \Delta \circ \Delta'} (\Delta \asymp \Delta')$$
 [Conc]

$$\frac{\Theta; \Gamma \vdash P \triangleright \Delta \qquad \Theta; \Gamma \vdash Q \triangleright \Delta'}{\Theta; \Gamma \vdash P \mid Q \triangleright \Delta \circ \Delta'} (\Delta \times \Delta')$$
 [Conc]

The rule for parallel composition is where the fun begins:

$$\frac{\Theta; \Gamma \vdash P \triangleright \Delta \qquad \Theta; \Gamma \vdash Q \triangleright \Delta'}{\Theta; \Gamma \vdash P \mid Q \triangleright \Delta \circ \Delta'} (\Delta \asymp \Delta')$$
 [Conc]

Definition 2.4 (Type algebra) Typings Δ_0 and Δ_1 are compatible, written $\Delta_0 \simeq \Delta_1$, if $\Delta_0(k) = \overline{\Delta_1(k)}$ for all $k \in \text{dom}(\Delta_0) \cap \text{dom}(\Delta_1)$. When $\Delta_0 \simeq \Delta_1$, the composition of Δ_0 and Δ_1 , written $\Delta_0 \circ \Delta_1$, is given as a typing such that $(\Delta_0 \circ \Delta_1)(k)$ is $(1) \perp$, if $k \in \text{dom}(\Delta_0) \cap \text{dom}(\Delta_1)$; $(2) \Delta_i(k)$, if $k \in \text{dom}(\Delta_i) \setminus \text{dom}(\Delta_{i+1 \text{ mod } 2})$ for $i \in \{0,1\}$; and (3) undefined otherwise.

```
Definition tp_env := \{finMap atom_ordType \rightarrow tp\}.
(* lift dual to option *)
Definition option_dual (d : option tp) : option tp :=
  match d with
  | None ⇒ None
  | Some T \Rightarrow Some (dual T)
  end.
(* compatible envs *)
Definition compatible (D1 D2 : tp_env) : bool :=
  all (fun k \Rightarrow fnd \ k \ D1 = option_dual (fnd k \ D2))
      (filter (fun k \Rightarrow k \setminus in supp D1) (supp D2)).
(* composition of envs *)
Definition comp (D1 D2 : tp_env) : tp_env :=
  let: (D1, D12, D2) := split D1 D2 in
  fcat (fcat D1 (update_all_with bot D12)) D2.
```

```
Definition tp_env := \{finMap atom_ordType \rightarrow tp\}.
(* lift dual to option *)
Definition option_dual (d : option tp) : option tp :=
  match d with
  | None ⇒ None
  | Some T \Rightarrow Some (dual T)
  end.
(* compatible envs *)
Definition compatible (D1 D2 : tp_env) : bool :=
  all (fun k \Rightarrow fnd \ k \ D1 = option_dual (fnd k \ D2))
      (filter (fun k \Rightarrow k \setminus in supp D1) (supp D2)).
(* composition of envs *)
Definition comp (D1 D2 : tp_env) : tp_env :=
  let: (D1, D12, D2) := split D1 D2 in
  fcat (fcat D1 (update_all_with bot D12)) D2.
```

- Store their assumptions in a unique order (easy to compare)
- Only store unique assumptions
 (easy to split)

· Store their assumptions in a unique order

(easy to compare)

Only store unique assumptions
 (easy to split)

This
together requires
implementing our
own LN infrastructure.
But it allows for names
and linearity.

The Revisited System

- Now we distinguish between the endpoints of channels.
- It can be represented with LN-variables and names.

Two Kinds of Atoms

```
(* variables that can be substituted
  for channels and expressions *)
Inductive var :=
| Free of VA.atom (* a variable waiting to be instantiated *)
| Bound of nat (* a bound variable *)
(* The variables for channel names,
   bound in restrictions (Never substituted) *)
Inductive nvar :=
| NFree of NA.atom
| NBound of nat
```

Two Kinds of Atoms

```
(* variables that can be substituted
  for channels and expressions *)
Inductive var :=
Free of VA.atom (* a variable waiting to be instantiated *)
| Bound of nat (* a bound variable *)
(* The variables for channel names,
   bound in restrictions (Never substituted) *)
Inductive nvar :=
| NFree of NA.atom
| NBound of nat
```

Channels and Expressions

```
(* Channels use both *)
Inductive channel :=
| Ch of (nvar * polarity) %type (* a channel with polarity *)
| Var of var
.

(* Expressions use only variables *)
Inductive exp : Set :=
| tt| ff|...
| V of var
.
```

Channels and Expressions

Channels and Expressions

```
(* Channels use both *)
Inductive channel :=
| Ch of (nvar * polarity) %type (* a channel with polarity *)
| Var of var
.

(* Expressions use only variables *)
Inductive exp : Set :=
| tt| ff|...
| V of var
.
```

```
(* processes bind variables and channels,
   but they are in channels and expressions*)
Inductive proc : Set :=
| par : proc → proc → proc
| send : channel → exp → proc → proc
| receive : channel → proc → proc
 throw: channel \rightarrow channel \rightarrow proc \rightarrow proc
| catch : channel → proc → proc
 nu_nm : proc → proc (* hides a name *)
 nu_ch : proc → proc (* hides a channel name *)
```

```
(* processes bind variables and channels,
   but they are in channels and expressions*)
Inductive proc : Set :=
| par : proc → proc → proc
| send : channel → exp → proc → proc
 receive : channel \rightarrow proc \rightarrow proc
 throw: channel \rightarrow channel \rightarrow proc \rightarrow proc
| catch : channel → proc → proc
 nu_nm : proc → proc (* hides a name *)
 nu_ch : proc → proc (* hides a channel name *)
```

```
(* processes bind variables and channels,
   but they are in channels and expressions*)
Inductive proc : Set :=
| par : proc → proc → proc
| send : channel → exp → proc → proc
 receive : channel \rightarrow proc \rightarrow proc
 throw: channel \rightarrow channel \rightarrow proc \rightarrow proc
 catch : channel → proc → proc
 nu_nm : proc → proc (* hides a name *)
 nu_ch : proc → proc (* hides a channel name *)
```

```
(* processes bind variables and channels,
   but they are in channels and expressions*)
Inductive proc : Set :=
| par : proc → proc → proc
| send : channel → exp → proc → proc
 receive : channel \rightarrow proc \rightarrow proc
 throw: channel \rightarrow channel \rightarrow proc \rightarrow proc
 catch : channel → proc → proc
 nu_nm : proc → proc (* hides a name *)
  nu_ch : proc → proc (* hides a channel name *)
```

But Mechanical Proofs Are..

 Well, very mechanical. We have to be very precise with the theorems.

The typing judgements:

```
Inductive oft_exp (G : sort_env) : exp → sort → Prop :=
...
Inductive oft : sort_env → proc → tp_env → Prop :=
...
```

Lemma 3.1 (Channel Replacement) If Θ ; $\Gamma \vdash P \triangleright \Delta \cdot x : \alpha$, then Θ ; $\Gamma \vdash P [\kappa^p/x] \triangleright \Delta \cdot \kappa^p : \alpha$.

Proof. A straightforward induction on the derivation tree for P.

Lemma 3.1 (Channel Replacement) If Θ ; $\Gamma \vdash P \triangleright \Delta \cdot x : \alpha$, then Θ ; $\Gamma \vdash P [\kappa^p/x] \triangleright \Delta \cdot \kappa^p : \alpha$.

Proof. A straightforward induction on the derivation tree for P.

Becomes:

```
Theorem ChannelReplacement G P x kp D:
   def (subst_env_ch x (ce kp) D) → 
   oft G P D → oft G (s[ x → (ch kp)]p P) (subst_env_ch x (ce kp) D).

Proof.
(* ... *)
```

Lemma 3.1 (Channel Replacement) If Θ ; $\Gamma \vdash P \triangleright \Delta \cdot x : \alpha$, then Θ ; $\Gamma \vdash P [\kappa^p/x] \triangleright \Delta \cdot \kappa^p : \alpha$.

Proof. A straightforward induction on the derivation tree for P.

Becomes:

```
Theorem ChannelReplacement G P x kp D:
    def (subst_env_ch x (ce kp) D) → 
    oft G P D → oft G (s[ x → (ch kp)]p P) (subst_env_ch x (ce kp) D).
Proof.
(* ... *)
```

Lemma 3.1 (Channel Replacement) If Θ ; $\Gamma \vdash P \triangleright \Delta \cdot x : \alpha$, then Θ ; $\Gamma \vdash P [\kappa^p/x] \triangleright \Delta \cdot \kappa^p : \alpha$.

Proof. A straightforward induction on the derivation tree for P.

Becomes:

```
Theorem ChannelReplacement G P x kp D:

def (subst_env_ch x (ce kp) D) → 
oft G P D → oft G (s[ x → (ch kp)]p P) (subst_env_ch x (ce kp) D).

Proof.

(* ... *)
```

Lemma 3.1 (Channel Replacement) If Θ ; $\Gamma \vdash P \triangleright \Delta \cdot x : \alpha$, then Θ ; $\Gamma \vdash P [\kappa^p/x] \triangleright \Delta \cdot \kappa^p : \alpha$.

Proof. A straightforward induction on the derivation tree for P.

Becomes:

```
Theorem ChannelReplacement G P x kp D:

def (subst_env_ch x (ce kp) D) → 
oft G P D → oft G (s[ x → (ch kp)]p P) (su

Proof.

(* ... *)
```

Coq also
demanded to be
convinced about
substituting expressions
and various weakening
lemmas

Subject Reduction

Theorem 3.3 (Subject Reduction) If Θ ; $\Gamma \vdash P \triangleright \Delta$ with Δ balanced and $P \rightarrow^* Q$, then Θ ; $\Gamma \vdash Q \triangleright \Delta'$ and Δ' balanced.

Subject Reduction

Theorem 3.3 (Subject Reduction) If Θ ; $\Gamma \vdash P \triangleright \Delta$ with Δ balanced and $P \rightarrow^* Q$, then Θ ; $\Gamma \vdash Q \triangleright \Delta'$ and Δ' balanced.

Is straightforward to represent:

```
Theorem SubjectReductionStep G P Q D:
oft G P D → balanced D → P → Q → exists D', balanced D' /\ oft G Q D'.
Proof.
```

```
Lemma SubjectReductionStep' G P Q D D' ka:
  oft G P D \rightarrow balanced D \rightarrow P --- ka ---> Q \rightarrow D \sim\sim ka \sim\sim> D' \rightarrow oft G Q D'.
(* ... *)
Lemma admissible_label P Q:
  P \longrightarrow Q \rightarrow exists ka, P --- ka ---> Q.
(* ... *)
Lemma well_typed_step G P Q D ka:
  oft G P D \rightarrow P --- ka ---> Q \rightarrow exists D', D ~~~ ka ~~~> D'.
(* ... *)
Lemma typ_step_preserves_balance D D' ka:
  D ~~~ ka ~~~> D' \rightarrow balanced D \rightarrow balanced D'.
(* ... *)
```

```
Lemma SubjectReductionStep' G P Q D D' ka:
  oft G P D \rightarrow balanced D \rightarrow P --- ka ---> Q \rightarrow D \sim\sim ka \sim\sim> D' \rightarrow oft G Q D'.
(* ... *)
Lemma admissible_label P Q:
  P \longrightarrow Q \rightarrow exists ka, P --- ka ---> Q.
(* ... *)
Lemma well_typed_step G P Q D ka:
  oft G P D \rightarrow P --- ka ---> Q \rightarrow exists D', D ~~~ ka ~~~> D'.
(* ... *)
Lemma typ_step_preserves_balance D D' ka:
  D ~~~ ka ~~~> D' \rightarrow balanced D \rightarrow balanced D'.
(* ... *)
```

```
Lemma SubjectReductionStep' G P Q D D' ka:
  oft G P D \rightarrow balanced D \rightarrow P --- ka ---> Q \rightarrow D \sim\sim ka \sim\sim> D' \rightarrow oft G Q D'.
(* ... *)
Lemma admissible_label P Q:
  P \longrightarrow Q \rightarrow exists ka, P --- ka ---> Q.
(* ... *)
Lemma well_typed_step G P Q D ka:
  oft G P D \rightarrow P --- ka ---> Q \rightarrow exists D', D ~~~ ka ~~~> D'.
(* ... *)
Lemma typ_step_preserves_balance D D' ka:
  D ~~~ ka ~~~> D' \rightarrow balanced D \rightarrow balanced D'.
(* ... *)
```

```
Lemma SubjectReductionStep' G P Q D D' ka:
  oft G P D \rightarrow balanced D \rightarrow P --- ka ---> Q \rightarrow D \sim\sim ka \sim\sim> D' \rightarrow oft G Q D'.
(* ... *)
Lemma admissible_label P Q:
  P \longrightarrow Q \rightarrow exists ka, P --- ka ---> Q.
(* ... *)
Lemma well_typed_step G P Q D ka:
  oft G P D \rightarrow P --- ka ---> Q \rightarrow exists D', D ~~~ ka ~~~> D'.
(* ... *)
Lemma typ_step_preserves_balance D D' ka:
  D ~~~ ka ~~~> D' \rightarrow balanced D \rightarrow balanced D'.
(* ... *)
```

```
Lemma SubjectReductionStep' G P Q D D' ka:
  oft G P D \rightarrow balanced D \rightarrow P --- ka ---> Q \rightarrow D \sim\sim ka \sim\sim> D' \rightarrow oft G Q D'.
(* ... *)
Lemma admissible_label P Q:
  P \longrightarrow Q \rightarrow exists ka, P --- ka ---> Q.
(* ... *)
Lemma well_typed_step G P Q D ka:
  oft G P D \rightarrow P --- ka ---> Q \rightarrow exists D', D ~~~ ka ~~~> D'.
(* ... *)
Lemma typ_step_preserves_balance D D' ka:
  D ~~~ ka ~~~> D' \rightarrow balanced D \rightarrow balanced D'.
(* ... *)
```

```
Lemma SubjectReductionStep' G P Q D D' ka:
  oft G P D \rightarrow balanced D \rightarrow P --- ka ---> Q \rightarrow D \sim\sim ka \sim\sim> D' \rightarrow oft G Q D'.
(* ... *)
Lemma admissible_label P Q:
  P \longrightarrow Q \rightarrow exists ka, P --- ka ---> Q.
(* ... *)
Lemma well_typed_step G P Q D ka:
  oft G P D \rightarrow P --- ka ---> Q \rightarrow exists D', D ~~~ ka ~~~> D'.
(* ... *)
Lemma typ_step_preserves_balance D D' ka:
  D ~~~ ka ~~~> D' \rightarrow balanced D \rightarrow balanced D'.
(* ... *)
```

```
Lemma SubjectReductionStep' G P Q D D' ka:
  oft G P D \rightarrow balanced D \rightarrow P --- ka ---> Q \rightarrow D \sim\sim ka \sim\sim> D' \rightarrow oft G Q D'.
(* ... *)
Lemma admissible_label P Q:
  P \longrightarrow Q \rightarrow exists ka, P --- ka ---> Q.
(* ... *)
Lemma well_typed_step G P Q D ka:
  oft G P D \rightarrow P --- ka ---> Q \rightarrow exists D', D ~~~ ka ~~~> D'.
(* ... *)
Lemma typ_step_preserves_balance D D' ka:
  D ~~~ ka ~~~> D' \rightarrow balanced D \rightarrow balanced D'.
(* ... *)
```

Finally:

```
Theorem SubjectReduction G P Q D:
  oft G P D \rightarrow balanced D \rightarrow P \longrightarrow Q \rightarrow exists D', balanced D' /\setminus oft G Q D'.
Proof.
  move⇒Hp Hb Hs.
  apply admissible_label in Hs.
  destruct Hs.
  have HH := well_typed_step Hp H.
  destruct HH.
  exists x0.
  split.
  apply: typ_step_preserves_balance ; [apply: H0 | apply: Hb].
  apply: SubjectReductionStep' ;
    [apply: Hp | apply: Hb | apply: H | apply: H0].
Qed.
```

What We Have:

- The definition two systems, the unsound proved with a counter example, and the revised with a proof by induction.
- There are still some lemmas to prove (≈4.5 KLOC so far).
- · All using a locally nameless representation
- Some use ssreflect and overloaded-lemmas to simply proofs.
 - More automation using overloaded-lemmas in the future.

What We Have:

• The definition two syst bund proved with a counter example, a proof by induction.

Thanks for your

attention.

Questions?

KLOC so far).

- There are still s
- All using a locally nan
- Some use ssreflect and overloaded-lemmas to simply proofs.
 - More automation using overloaded-lemmas in the future.