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–Ludwig Wittgenstein

“The limits of my language mean the limits of my world.”

 3



/27

Who Am I?
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Mechanising the Meta-Theory 
Session Types

• Names are ubiquitous.

• The binding structure is quite rich.

• Channels are handled linearly.

• Names exist besides binders. Names are a first 
class notion.
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The First Step

• Do a case study:

• Language Primitives and Type Discipline for 
Structured Communication-Based Programming 
Revisited, by Yoshida and Vasconcelos.
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How Best To Represent Session 
Types Calculi?

Logical framework LF

Constructive FOL  
+  

Induction

Contextual types
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should be possible”  

problem in this 
approach.
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Time To Consider Existing 
Solutions

• Well established work on Locally Nameless:

• Use names for free variables.

• Use indices for bound variables.

• Mediate between them with open & close 
operations.
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The Locally Nameless Representation 365

locally nameless representation. (The paper by Aydemir et al. [4] contains a survey
of binding techniques.) Most issues related to variable bindings can be studied on
a language as simple as the pure λ-calculus. Thus, only the syntax of λ-terms is
considered throughout the core of the paper. Support for more advanced binding
structures is investigated afterwards (Section 7).

2.1 Named Representations: Raw Terms and Quotiented Terms

The most common representation of λ-terms relies on the use of names: each
abstraction and each variable bear a name. The syntax of raw named terms is de-
scribed by the following grammar.

t := var x | abs x t | app t t

The objects from this grammar are called raw terms because they are not isomor-
phic to λ-terms. For example, the two raw terms “abs x (var x)” and “abs y (var y)”
are two different objects, although the two λ-terms “λx. x” and “λy. y” should
be considered equal because the theory of λ-calculus identifies terms that are α-
equivalent. Due to the mismatch between raw terms and λ-terms, there are pieces
of reasoning from λ-calculus textbooks that cannot be formalized using raw terms.

In order to obtain a representation of terms truly isomorphic to λ-terms, we need
to build a quotient structure, quotienting the set of raw terms with respect to alpha-
equivalence. This construction based on a quotient corresponds very closely to the
of presentation from standard textbooks on λ-calculus.

In practice, though, working formally with a quotient structure is not that straight-
forward. In order to define a function or a relation on λ-terms, we need to first define
it on raw terms, then show it compatible with α-equivalence, and finally lift it to
the quotient structure. For instance, if f is a unary function on terms in the named
representation, then, for f to be accepted as a definition on λ-terms, we must prove
that, for any two alpha-equivalent terms t1 and t2, the two applications f (t1) and f (t2)
yield α-equivalent results. Lifting definitions to the quotient structure is typically
long and tedious. Fortunately, a lot of this work can be automated. For example,
Urban’s nominal package [44] aims at factorizing and automating definitions and
proofs about data types involving binders. Yet, at this time, there are still a number
of advanced binding structures that are not supported by the nominal package.

2.2 The Locally Named Representation

The locally nameless representation is closely related to the locally named rep-
resentation, which has been extensively developed by McKinna and Pollack [24].
This representation syntactically distinguishes between bound variables and free
variables. Bound variables are represented using a name, written x. Free variables,
also called parameters, are represented using another kind of names, written p.
Abstractions, which always bind “bound variables”, carry a bound variable name.
The grammar of locally named terms can thus be described as follows.

t := bvar x | fvar p | abs x t | app t t

The main interest of the locally named representation is that a bound name and
a free name can never be confused. In particular, one never needs to α-rename
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The implementation of variable opening needs to traverse a term recursively,
and find all the leaves of the form “ bvar i” whose index i is equal to the number
of abstractions enclosing that variable. Variable opening is thus defined in terms
of a recursive function, written “ {k → x } t”, that keeps track of the number k of
abstractions that have been passed by. Initially, the value of k is 0, so variable opening
is defined as:

t x ≡ {0 → x } t

The value of k is then incremented each time an abstraction is traversed. When
reaching a bound variable with index i, the value of i is compared against the current
value of k. If i is equal to k, then the bound variable is replaced with the free variable
named x , otherwise it is unchanged. Note that free variables already occurring in the
term are never affected by a variable opening operation.

{k → x } (bvar i) ≡ if (i = k) then (fvar x ) else (bvar i)
{k → x } (fvar y ) ≡ fvar y
{k → x } (app t1 t2) ≡ app ({k → x } t1) ({k → x } t2)
{k → x } (abs t) ≡ abs ({(k + 1) → x } t)

3.2 Variable Closing

Symmetrically to variable opening, we may want to build an abstraction given its
body. With the named representation, we consider a term t and a name x , and we
simply build the abstraction “ λx . t”. All the variables named x are abstracted, except
those that already appear below an abstraction named x . With the locally nameless
representation, we consider a term t and a name x to be abstracted in t, and we
build a term, written \x t, by applying the variable closing operation to t and x . All
the variables named x occurring in t are abstracted, without exception (indeed, no
shadowing is possible with the locally nameless syntax). The abstraction may then
be constructed as “ abs (\x t)”. More precisely, the term \x t is a copy of t in which all
the free variables named x have been replaced with a bound variable. The indices of
those variables are chosen in such a way that all the bound variables introduced are
pointing towards the outer abstraction of “ abs (\x t)”.

The implementation of variable closing follows a pattern similar to the imple-
mentation of variable opening. Its implementation is based on a recursive function,
written “ {k ← x } t”, that keeps track of the number k of abstractions that have been
passed by. Again, the value of k is 0 initially and it is incremented at each abstraction.
Variable closing is defined as follows:

\x t ≡ {0 ← x } t

When the recursive function reaches a free variable with name y , it compares the
name y with the name x . If the two names match, then the free variable y is replaced
with a bound variable of index k, otherwise it is left unchanged. Note that bound
variables already occurring in the term are never affected by variable closing.

{k ← x } (bvar i) ≡ bvar i
{k ← x } (fvar y ) ≡ if (x = y ) then (bvar k) else (fvar y )

{k ← x } (app t1 t2) ≡ app ({k ← x } t1) ({k ← x } t2)
{k ← x } (abs t) ≡ abs ({(k + 1) ← x } t)
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those variables are chosen in such a way that all the bound variables introduced are
pointing towards the outer abstraction of “ abs (\x t)”.

The implementation of variable closing follows a pattern similar to the imple-
mentation of variable opening. Its implementation is based on a recursive function,
written “ {k ← x } t”, that keeps track of the number k of abstractions that have been
passed by. Again, the value of k is 0 initially and it is incremented at each abstraction.
Variable closing is defined as follows:

\x t ≡ {0 ← x } t

When the recursive function reaches a free variable with name y , it compares the
name y with the name x . If the two names match, then the free variable y is replaced
with a bound variable of index k, otherwise it is left unchanged. Note that bound
variables already occurring in the term are never affected by variable closing.

{k ← x } (bvar i) ≡ bvar i
{k ← x } (fvar y ) ≡ if (x = y ) then (bvar k) else (fvar y )

{k ← x } (app t1 t2) ≡ app ({k ← x } t1) ({k ← x } t2)
{k ← x } (abs t) ≡ abs ({(k + 1) ← x } t)
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The formal rules defining the typing judgment for the simply-typed λ-calculus in
locally nameless style can be stated as follows.

ok E (x : T) ∈ E

E ⊢ fvar x : T
typing-var

E ⊢ t1 : T1 → T2 E ⊢ t2 : T1

E ⊢ app t1 t2 : T2
typing-app

∀ x ̸∈ L, E, x : T1 ⊢ t x : T2

E ⊢ abs t : T1 → T2
typing-abs

The regularity lemma associated with this judgment states that whenever a typing
relation “ E ⊢ t : T” holds, E is a well-formed environment and t is a locally closed
term. The proof of this lemma is straightforward by induction.

typing_regular: E ⊢ t : T ⇒ ok E ∧ lc t

5.4 System F<:

This example focuses on System F<:. This system is particularly interesting with
respect to binding issues, as it mixes two kinds of variables: type variables and
term variables.3 The conventional presentation of the grammars of types, terms
and environments is as follows. Types are made of type variables, the maximum
type “ Top”, arrow types and universal types with bounded quantification. Terms are
made of term variables, term abstractions, term applications, type abstractions and
type applications. Environments are made of the empty environment, environments
extended with term variable bindings and environments extended with type variable
bindings.

T := X | Top | T → T | ∀X<:T. T
t := x | λx :T. t | t t | "X<:T. T | t [T]
E := ∅ | E, x :T | E, X<:T

In order to describe the corresponding grammar in locally nameless syntax, we
need to introduce distinct constructors for bound variables and for free variables.
Thereafter, four constructors for variables are involved: one for bound type variables
(typ_bvar), one for free type variables (typ_fvar), one for bound term variables
(trm_bvar) and one for free term variables (trm_fvar). It is not needed that the atoms
used to represent free type variables be different from the atoms used to represent
free term variables, as free term variable names can never end up being mixed
with free type variable names. Note that universal types, abstractions and type
abstractions become nameless.

T := typ_bvar i | typ_fvar x | Top | T → T | ∀<:T. T
t := trm_bvar i | trm_fvar X | λ:T. t | t t | "<:T. T | t [T]

For the sake of presentation of typing and subtyping rules, we introduce the
following convention. Whenever we write a lowercase name, it stands for the free

3The formalization of System F<: and a proof of its soundness are the heart of the POPLMark
challenge [2 ], which was designed as a good stress test for comparing binding technologies.
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locally nameless representation. (The paper by Aydemir et al. [4] contains a survey
of binding techniques.) Most issues related to variable bindings can be studied on
a language as simple as the pure λ-calculus. Thus, only the syntax of λ-terms is
considered throughout the core of the paper. Support for more advanced binding
structures is investigated afterwards (Section 7).

2.1 Named Representations: Raw Terms and Quotiented Terms

The most common representation of λ-terms relies on the use of names: each
abstraction and each variable bear a name. The syntax of raw named terms is de-
scribed by the following grammar.

t := var x | abs x t | app t t

The objects from this grammar are called raw terms because they are not isomor-
phic to λ-terms. For example, the two raw terms “abs x (var x)” and “abs y (var y)”
are two different objects, although the two λ-terms “λx. x” and “λy. y” should
be considered equal because the theory of λ-calculus identifies terms that are α-
equivalent. Due to the mismatch between raw terms and λ-terms, there are pieces
of reasoning from λ-calculus textbooks that cannot be formalized using raw terms.

In order to obtain a representation of terms truly isomorphic to λ-terms, we need
to build a quotient structure, quotienting the set of raw terms with respect to alpha-
equivalence. This construction based on a quotient corresponds very closely to the
of presentation from standard textbooks on λ-calculus.

In practice, though, working formally with a quotient structure is not that straight-
forward. In order to define a function or a relation on λ-terms, we need to first define
it on raw terms, then show it compatible with α-equivalence, and finally lift it to
the quotient structure. For instance, if f is a unary function on terms in the named
representation, then, for f to be accepted as a definition on λ-terms, we must prove
that, for any two alpha-equivalent terms t1 and t2, the two applications f (t1) and f (t2)
yield α-equivalent results. Lifting definitions to the quotient structure is typically
long and tedious. Fortunately, a lot of this work can be automated. For example,
Urban’s nominal package [44] aims at factorizing and automating definitions and
proofs about data types involving binders. Yet, at this time, there are still a number
of advanced binding structures that are not supported by the nominal package.

2.2 The Locally Named Representation

The locally nameless representation is closely related to the locally named rep-
resentation, which has been extensively developed by McKinna and Pollack [24].
This representation syntactically distinguishes between bound variables and free
variables. Bound variables are represented using a name, written x. Free variables,
also called parameters, are represented using another kind of names, written p.
Abstractions, which always bind “bound variables”, carry a bound variable name.
The grammar of locally named terms can thus be described as follows.

t := bvar x | fvar p | abs x t | app t t

The main interest of the locally named representation is that a bound name and
a free name can never be confused. In particular, one never needs to α-rename
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The implementation of variable opening needs to traverse a term recursively,
and find all the leaves of the form “ bvar i” whose index i is equal to the number
of abstractions enclosing that variable. Variable opening is thus defined in terms
of a recursive function, written “ {k → x } t”, that keeps track of the number k of
abstractions that have been passed by. Initially, the value of k is 0, so variable opening
is defined as:

t x ≡ {0 → x } t

The value of k is then incremented each time an abstraction is traversed. When
reaching a bound variable with index i, the value of i is compared against the current
value of k. If i is equal to k, then the bound variable is replaced with the free variable
named x , otherwise it is unchanged. Note that free variables already occurring in the
term are never affected by a variable opening operation.

{k → x } (bvar i) ≡ if (i = k) then (fvar x ) else (bvar i)
{k → x } (fvar y ) ≡ fvar y
{k → x } (app t1 t2) ≡ app ({k → x } t1) ({k → x } t2)
{k → x } (abs t) ≡ abs ({(k + 1) → x } t)

3.2 Variable Closing

Symmetrically to variable opening, we may want to build an abstraction given its
body. With the named representation, we consider a term t and a name x , and we
simply build the abstraction “ λx . t”. All the variables named x are abstracted, except
those that already appear below an abstraction named x . With the locally nameless
representation, we consider a term t and a name x to be abstracted in t, and we
build a term, written \x t, by applying the variable closing operation to t and x . All
the variables named x occurring in t are abstracted, without exception (indeed, no
shadowing is possible with the locally nameless syntax). The abstraction may then
be constructed as “ abs (\x t)”. More precisely, the term \x t is a copy of t in which all
the free variables named x have been replaced with a bound variable. The indices of
those variables are chosen in such a way that all the bound variables introduced are
pointing towards the outer abstraction of “ abs (\x t)”.

The implementation of variable closing follows a pattern similar to the imple-
mentation of variable opening. Its implementation is based on a recursive function,
written “ {k ← x } t”, that keeps track of the number k of abstractions that have been
passed by. Again, the value of k is 0 initially and it is incremented at each abstraction.
Variable closing is defined as follows:

\x t ≡ {0 ← x } t

When the recursive function reaches a free variable with name y , it compares the
name y with the name x . If the two names match, then the free variable y is replaced
with a bound variable of index k, otherwise it is left unchanged. Note that bound
variables already occurring in the term are never affected by variable closing.

{k ← x } (bvar i) ≡ bvar i
{k ← x } (fvar y ) ≡ if (x = y ) then (bvar k) else (fvar y )

{k ← x } (app t1 t2) ≡ app ({k ← x } t1) ({k ← x } t2)
{k ← x } (abs t) ≡ abs ({(k + 1) ← x } t)
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The formal rules defining the typing judgment for the simply-typed λ-calculus in
locally nameless style can be stated as follows.

ok E (x : T) ∈ E

E ⊢ fvar x : T
typing-var

E ⊢ t1 : T1 → T2 E ⊢ t2 : T1

E ⊢ app t1 t2 : T2
typing-app

∀ x ̸∈ L, E, x : T1 ⊢ t x : T2

E ⊢ abs t : T1 → T2
typing-abs

The regularity lemma associated with this judgment states that whenever a typing
relation “ E ⊢ t : T” holds, E is a well-formed environment and t is a locally closed
term. The proof of this lemma is straightforward by induction.

typing_regular: E ⊢ t : T ⇒ ok E ∧ lc t

5.4 System F<:

This example focuses on System F<:. This system is particularly interesting with
respect to binding issues, as it mixes two kinds of variables: type variables and
term variables.3 The conventional presentation of the grammars of types, terms
and environments is as follows. Types are made of type variables, the maximum
type “ Top”, arrow types and universal types with bounded quantification. Terms are
made of term variables, term abstractions, term applications, type abstractions and
type applications. Environments are made of the empty environment, environments
extended with term variable bindings and environments extended with type variable
bindings.

T := X | Top | T → T | ∀X<:T. T
t := x | λx :T. t | t t | "X<:T. T | t [T]
E := ∅ | E, x :T | E, X<:T

In order to describe the corresponding grammar in locally nameless syntax, we
need to introduce distinct constructors for bound variables and for free variables.
Thereafter, four constructors for variables are involved: one for bound type variables
(typ_bvar), one for free type variables (typ_fvar), one for bound term variables
(trm_bvar) and one for free term variables (trm_fvar). It is not needed that the atoms
used to represent free type variables be different from the atoms used to represent
free term variables, as free term variable names can never end up being mixed
with free type variable names. Note that universal types, abstractions and type
abstractions become nameless.

T := typ_bvar i | typ_fvar x | Top | T → T | ∀<:T. T
t := trm_bvar i | trm_fvar X | λ:T. t | t t | "<:T. T | t [T]

For the sake of presentation of typing and subtyping rules, we introduce the
following convention. Whenever we write a lowercase name, it stands for the free

3The formalization of System F<: and a proof of its soundness are the heart of the POPLMark
challenge [2 ], which was designed as a good stress test for comparing binding technologies.

 10



/27

STLC

The Locally Nameless Representation 365

locally nameless representation. (The paper by Aydemir et al. [4] contains a survey
of binding techniques.) Most issues related to variable bindings can be studied on
a language as simple as the pure λ-calculus. Thus, only the syntax of λ-terms is
considered throughout the core of the paper. Support for more advanced binding
structures is investigated afterwards (Section 7).

2.1 Named Representations: Raw Terms and Quotiented Terms

The most common representation of λ-terms relies on the use of names: each
abstraction and each variable bear a name. The syntax of raw named terms is de-
scribed by the following grammar.

t := var x | abs x t | app t t

The objects from this grammar are called raw terms because they are not isomor-
phic to λ-terms. For example, the two raw terms “abs x (var x)” and “abs y (var y)”
are two different objects, although the two λ-terms “λx. x” and “λy. y” should
be considered equal because the theory of λ-calculus identifies terms that are α-
equivalent. Due to the mismatch between raw terms and λ-terms, there are pieces
of reasoning from λ-calculus textbooks that cannot be formalized using raw terms.

In order to obtain a representation of terms truly isomorphic to λ-terms, we need
to build a quotient structure, quotienting the set of raw terms with respect to alpha-
equivalence. This construction based on a quotient corresponds very closely to the
of presentation from standard textbooks on λ-calculus.

In practice, though, working formally with a quotient structure is not that straight-
forward. In order to define a function or a relation on λ-terms, we need to first define
it on raw terms, then show it compatible with α-equivalence, and finally lift it to
the quotient structure. For instance, if f is a unary function on terms in the named
representation, then, for f to be accepted as a definition on λ-terms, we must prove
that, for any two alpha-equivalent terms t1 and t2, the two applications f (t1) and f (t2)
yield α-equivalent results. Lifting definitions to the quotient structure is typically
long and tedious. Fortunately, a lot of this work can be automated. For example,
Urban’s nominal package [44] aims at factorizing and automating definitions and
proofs about data types involving binders. Yet, at this time, there are still a number
of advanced binding structures that are not supported by the nominal package.

2.2 The Locally Named Representation

The locally nameless representation is closely related to the locally named rep-
resentation, which has been extensively developed by McKinna and Pollack [24].
This representation syntactically distinguishes between bound variables and free
variables. Bound variables are represented using a name, written x. Free variables,
also called parameters, are represented using another kind of names, written p.
Abstractions, which always bind “bound variables”, carry a bound variable name.
The grammar of locally named terms can thus be described as follows.

t := bvar x | fvar p | abs x t | app t t

The main interest of the locally named representation is that a bound name and
a free name can never be confused. In particular, one never needs to α-rename
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The implementation of variable opening needs to traverse a term recursively,
and find all the leaves of the form “ bvar i” whose index i is equal to the number
of abstractions enclosing that variable. Variable opening is thus defined in terms
of a recursive function, written “ {k → x } t”, that keeps track of the number k of
abstractions that have been passed by. Initially, the value of k is 0, so variable opening
is defined as:

t x ≡ {0 → x } t

The value of k is then incremented each time an abstraction is traversed. When
reaching a bound variable with index i, the value of i is compared against the current
value of k. If i is equal to k, then the bound variable is replaced with the free variable
named x , otherwise it is unchanged. Note that free variables already occurring in the
term are never affected by a variable opening operation.

{k → x } (bvar i) ≡ if (i = k) then (fvar x ) else (bvar i)
{k → x } (fvar y ) ≡ fvar y
{k → x } (app t1 t2) ≡ app ({k → x } t1) ({k → x } t2)
{k → x } (abs t) ≡ abs ({(k + 1) → x } t)

3.2 Variable Closing

Symmetrically to variable opening, we may want to build an abstraction given its
body. With the named representation, we consider a term t and a name x , and we
simply build the abstraction “ λx . t”. All the variables named x are abstracted, except
those that already appear below an abstraction named x . With the locally nameless
representation, we consider a term t and a name x to be abstracted in t, and we
build a term, written \x t, by applying the variable closing operation to t and x . All
the variables named x occurring in t are abstracted, without exception (indeed, no
shadowing is possible with the locally nameless syntax). The abstraction may then
be constructed as “ abs (\x t)”. More precisely, the term \x t is a copy of t in which all
the free variables named x have been replaced with a bound variable. The indices of
those variables are chosen in such a way that all the bound variables introduced are
pointing towards the outer abstraction of “ abs (\x t)”.

The implementation of variable closing follows a pattern similar to the imple-
mentation of variable opening. Its implementation is based on a recursive function,
written “ {k ← x } t”, that keeps track of the number k of abstractions that have been
passed by. Again, the value of k is 0 initially and it is incremented at each abstraction.
Variable closing is defined as follows:

\x t ≡ {0 ← x } t

When the recursive function reaches a free variable with name y , it compares the
name y with the name x . If the two names match, then the free variable y is replaced
with a bound variable of index k, otherwise it is left unchanged. Note that bound
variables already occurring in the term are never affected by variable closing.

{k ← x } (bvar i) ≡ bvar i
{k ← x } (fvar y ) ≡ if (x = y ) then (bvar k) else (fvar y )

{k ← x } (app t1 t2) ≡ app ({k ← x } t1) ({k ← x } t2)
{k ← x } (abs t) ≡ abs ({(k + 1) ← x } t)
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The formal rules defining the typing judgment for the simply-typed λ-calculus in
locally nameless style can be stated as follows.
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E ⊢ fvar x : T
typing-var
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typing-app

∀ x ̸∈ L, E, x : T1 ⊢ t x : T2

E ⊢ abs t : T1 → T2
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The regularity lemma associated with this judgment states that whenever a typing
relation “ E ⊢ t : T” holds, E is a well-formed environment and t is a locally closed
term. The proof of this lemma is straightforward by induction.

typing_regular: E ⊢ t : T ⇒ ok E ∧ lc t

5.4 System F<:

This example focuses on System F<:. This system is particularly interesting with
respect to binding issues, as it mixes two kinds of variables: type variables and
term variables.3 The conventional presentation of the grammars of types, terms
and environments is as follows. Types are made of type variables, the maximum
type “ Top”, arrow types and universal types with bounded quantification. Terms are
made of term variables, term abstractions, term applications, type abstractions and
type applications. Environments are made of the empty environment, environments
extended with term variable bindings and environments extended with type variable
bindings.

T := X | Top | T → T | ∀X<:T. T
t := x | λx :T. t | t t | "X<:T. T | t [T]
E := ∅ | E, x :T | E, X<:T

In order to describe the corresponding grammar in locally nameless syntax, we
need to introduce distinct constructors for bound variables and for free variables.
Thereafter, four constructors for variables are involved: one for bound type variables
(typ_bvar), one for free type variables (typ_fvar), one for bound term variables
(trm_bvar) and one for free term variables (trm_fvar). It is not needed that the atoms
used to represent free type variables be different from the atoms used to represent
free term variables, as free term variable names can never end up being mixed
with free type variable names. Note that universal types, abstractions and type
abstractions become nameless.

T := typ_bvar i | typ_fvar x | Top | T → T | ∀<:T. T
t := trm_bvar i | trm_fvar X | λ:T. t | t t | "<:T. T | t [T]

For the sake of presentation of typing and subtyping rules, we introduce the
following convention. Whenever we write a lowercase name, it stands for the free

3The formalization of System F<: and a proof of its soundness are the heart of the POPLMark
challenge [2 ], which was designed as a good stress test for comparing binding technologies.
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locally nameless representation. (The paper by Aydemir et al. [4] contains a survey
of binding techniques.) Most issues related to variable bindings can be studied on
a language as simple as the pure λ-calculus. Thus, only the syntax of λ-terms is
considered throughout the core of the paper. Support for more advanced binding
structures is investigated afterwards (Section 7).

2.1 Named Representations: Raw Terms and Quotiented Terms

The most common representation of λ-terms relies on the use of names: each
abstraction and each variable bear a name. The syntax of raw named terms is de-
scribed by the following grammar.

t := var x | abs x t | app t t

The objects from this grammar are called raw terms because they are not isomor-
phic to λ-terms. For example, the two raw terms “abs x (var x)” and “abs y (var y)”
are two different objects, although the two λ-terms “λx. x” and “λy. y” should
be considered equal because the theory of λ-calculus identifies terms that are α-
equivalent. Due to the mismatch between raw terms and λ-terms, there are pieces
of reasoning from λ-calculus textbooks that cannot be formalized using raw terms.

In order to obtain a representation of terms truly isomorphic to λ-terms, we need
to build a quotient structure, quotienting the set of raw terms with respect to alpha-
equivalence. This construction based on a quotient corresponds very closely to the
of presentation from standard textbooks on λ-calculus.

In practice, though, working formally with a quotient structure is not that straight-
forward. In order to define a function or a relation on λ-terms, we need to first define
it on raw terms, then show it compatible with α-equivalence, and finally lift it to
the quotient structure. For instance, if f is a unary function on terms in the named
representation, then, for f to be accepted as a definition on λ-terms, we must prove
that, for any two alpha-equivalent terms t1 and t2, the two applications f (t1) and f (t2)
yield α-equivalent results. Lifting definitions to the quotient structure is typically
long and tedious. Fortunately, a lot of this work can be automated. For example,
Urban’s nominal package [44] aims at factorizing and automating definitions and
proofs about data types involving binders. Yet, at this time, there are still a number
of advanced binding structures that are not supported by the nominal package.

2.2 The Locally Named Representation

The locally nameless representation is closely related to the locally named rep-
resentation, which has been extensively developed by McKinna and Pollack [24].
This representation syntactically distinguishes between bound variables and free
variables. Bound variables are represented using a name, written x. Free variables,
also called parameters, are represented using another kind of names, written p.
Abstractions, which always bind “bound variables”, carry a bound variable name.
The grammar of locally named terms can thus be described as follows.

t := bvar x | fvar p | abs x t | app t t

The main interest of the locally named representation is that a bound name and
a free name can never be confused. In particular, one never needs to α-rename
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The implementation of variable opening needs to traverse a term recursively,
and find all the leaves of the form “ bvar i” whose index i is equal to the number
of abstractions enclosing that variable. Variable opening is thus defined in terms
of a recursive function, written “ {k → x } t”, that keeps track of the number k of
abstractions that have been passed by. Initially, the value of k is 0, so variable opening
is defined as:

t x ≡ {0 → x } t

The value of k is then incremented each time an abstraction is traversed. When
reaching a bound variable with index i, the value of i is compared against the current
value of k. If i is equal to k, then the bound variable is replaced with the free variable
named x , otherwise it is unchanged. Note that free variables already occurring in the
term are never affected by a variable opening operation.

{k → x } (bvar i) ≡ if (i = k) then (fvar x ) else (bvar i)
{k → x } (fvar y ) ≡ fvar y
{k → x } (app t1 t2) ≡ app ({k → x } t1) ({k → x } t2)
{k → x } (abs t) ≡ abs ({(k + 1) → x } t)

3.2 Variable Closing

Symmetrically to variable opening, we may want to build an abstraction given its
body. With the named representation, we consider a term t and a name x , and we
simply build the abstraction “ λx . t”. All the variables named x are abstracted, except
those that already appear below an abstraction named x . With the locally nameless
representation, we consider a term t and a name x to be abstracted in t, and we
build a term, written \x t, by applying the variable closing operation to t and x . All
the variables named x occurring in t are abstracted, without exception (indeed, no
shadowing is possible with the locally nameless syntax). The abstraction may then
be constructed as “ abs (\x t)”. More precisely, the term \x t is a copy of t in which all
the free variables named x have been replaced with a bound variable. The indices of
those variables are chosen in such a way that all the bound variables introduced are
pointing towards the outer abstraction of “ abs (\x t)”.

The implementation of variable closing follows a pattern similar to the imple-
mentation of variable opening. Its implementation is based on a recursive function,
written “ {k ← x } t”, that keeps track of the number k of abstractions that have been
passed by. Again, the value of k is 0 initially and it is incremented at each abstraction.
Variable closing is defined as follows:

\x t ≡ {0 ← x } t

When the recursive function reaches a free variable with name y , it compares the
name y with the name x . If the two names match, then the free variable y is replaced
with a bound variable of index k, otherwise it is left unchanged. Note that bound
variables already occurring in the term are never affected by variable closing.

{k ← x } (bvar i) ≡ bvar i
{k ← x } (fvar y ) ≡ if (x = y ) then (bvar k) else (fvar y )

{k ← x } (app t1 t2) ≡ app ({k ← x } t1) ({k ← x } t2)
{k ← x } (abs t) ≡ abs ({(k + 1) ← x } t)
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The formal rules defining the typing judgment for the simply-typed λ-calculus in
locally nameless style can be stated as follows.

ok E (x : T) ∈ E

E ⊢ fvar x : T
typing-var

E ⊢ t1 : T1 → T2 E ⊢ t2 : T1

E ⊢ app t1 t2 : T2
typing-app

∀ x ̸∈ L, E, x : T1 ⊢ t x : T2

E ⊢ abs t : T1 → T2
typing-abs

The regularity lemma associated with this judgment states that whenever a typing
relation “ E ⊢ t : T” holds, E is a well-formed environment and t is a locally closed
term. The proof of this lemma is straightforward by induction.

typing_regular: E ⊢ t : T ⇒ ok E ∧ lc t

5.4 System F<:

This example focuses on System F<:. This system is particularly interesting with
respect to binding issues, as it mixes two kinds of variables: type variables and
term variables.3 The conventional presentation of the grammars of types, terms
and environments is as follows. Types are made of type variables, the maximum
type “ Top”, arrow types and universal types with bounded quantification. Terms are
made of term variables, term abstractions, term applications, type abstractions and
type applications. Environments are made of the empty environment, environments
extended with term variable bindings and environments extended with type variable
bindings.

T := X | Top | T → T | ∀X<:T. T
t := x | λx :T. t | t t | "X<:T. T | t [T]
E := ∅ | E, x :T | E, X<:T

In order to describe the corresponding grammar in locally nameless syntax, we
need to introduce distinct constructors for bound variables and for free variables.
Thereafter, four constructors for variables are involved: one for bound type variables
(typ_bvar), one for free type variables (typ_fvar), one for bound term variables
(trm_bvar) and one for free term variables (trm_fvar). It is not needed that the atoms
used to represent free type variables be different from the atoms used to represent
free term variables, as free term variable names can never end up being mixed
with free type variable names. Note that universal types, abstractions and type
abstractions become nameless.

T := typ_bvar i | typ_fvar x | Top | T → T | ∀<:T. T
t := trm_bvar i | trm_fvar X | λ:T. t | t t | "<:T. T | t [T]

For the sake of presentation of typing and subtyping rules, we introduce the
following convention. Whenever we write a lowercase name, it stands for the free

3The formalization of System F<: and a proof of its soundness are the heart of the POPLMark
challenge [2 ], which was designed as a good stress test for comparing binding technologies.
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locally nameless representation. (The paper by Aydemir et al. [4] contains a survey
of binding techniques.) Most issues related to variable bindings can be studied on
a language as simple as the pure λ-calculus. Thus, only the syntax of λ-terms is
considered throughout the core of the paper. Support for more advanced binding
structures is investigated afterwards (Section 7).

2.1 Named Representations: Raw Terms and Quotiented Terms

The most common representation of λ-terms relies on the use of names: each
abstraction and each variable bear a name. The syntax of raw named terms is de-
scribed by the following grammar.

t := var x | abs x t | app t t

The objects from this grammar are called raw terms because they are not isomor-
phic to λ-terms. For example, the two raw terms “abs x (var x)” and “abs y (var y)”
are two different objects, although the two λ-terms “λx. x” and “λy. y” should
be considered equal because the theory of λ-calculus identifies terms that are α-
equivalent. Due to the mismatch between raw terms and λ-terms, there are pieces
of reasoning from λ-calculus textbooks that cannot be formalized using raw terms.

In order to obtain a representation of terms truly isomorphic to λ-terms, we need
to build a quotient structure, quotienting the set of raw terms with respect to alpha-
equivalence. This construction based on a quotient corresponds very closely to the
of presentation from standard textbooks on λ-calculus.

In practice, though, working formally with a quotient structure is not that straight-
forward. In order to define a function or a relation on λ-terms, we need to first define
it on raw terms, then show it compatible with α-equivalence, and finally lift it to
the quotient structure. For instance, if f is a unary function on terms in the named
representation, then, for f to be accepted as a definition on λ-terms, we must prove
that, for any two alpha-equivalent terms t1 and t2, the two applications f (t1) and f (t2)
yield α-equivalent results. Lifting definitions to the quotient structure is typically
long and tedious. Fortunately, a lot of this work can be automated. For example,
Urban’s nominal package [44] aims at factorizing and automating definitions and
proofs about data types involving binders. Yet, at this time, there are still a number
of advanced binding structures that are not supported by the nominal package.

2.2 The Locally Named Representation

The locally nameless representation is closely related to the locally named rep-
resentation, which has been extensively developed by McKinna and Pollack [24].
This representation syntactically distinguishes between bound variables and free
variables. Bound variables are represented using a name, written x. Free variables,
also called parameters, are represented using another kind of names, written p.
Abstractions, which always bind “bound variables”, carry a bound variable name.
The grammar of locally named terms can thus be described as follows.

t := bvar x | fvar p | abs x t | app t t

The main interest of the locally named representation is that a bound name and
a free name can never be confused. In particular, one never needs to α-rename
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The implementation of variable opening needs to traverse a term recursively,
and find all the leaves of the form “ bvar i” whose index i is equal to the number
of abstractions enclosing that variable. Variable opening is thus defined in terms
of a recursive function, written “ {k → x } t”, that keeps track of the number k of
abstractions that have been passed by. Initially, the value of k is 0, so variable opening
is defined as:

t x ≡ {0 → x } t

The value of k is then incremented each time an abstraction is traversed. When
reaching a bound variable with index i, the value of i is compared against the current
value of k. If i is equal to k, then the bound variable is replaced with the free variable
named x , otherwise it is unchanged. Note that free variables already occurring in the
term are never affected by a variable opening operation.

{k → x } (bvar i) ≡ if (i = k) then (fvar x ) else (bvar i)
{k → x } (fvar y ) ≡ fvar y
{k → x } (app t1 t2) ≡ app ({k → x } t1) ({k → x } t2)
{k → x } (abs t) ≡ abs ({(k + 1) → x } t)

3.2 Variable Closing

Symmetrically to variable opening, we may want to build an abstraction given its
body. With the named representation, we consider a term t and a name x , and we
simply build the abstraction “ λx . t”. All the variables named x are abstracted, except
those that already appear below an abstraction named x . With the locally nameless
representation, we consider a term t and a name x to be abstracted in t, and we
build a term, written \x t, by applying the variable closing operation to t and x . All
the variables named x occurring in t are abstracted, without exception (indeed, no
shadowing is possible with the locally nameless syntax). The abstraction may then
be constructed as “ abs (\x t)”. More precisely, the term \x t is a copy of t in which all
the free variables named x have been replaced with a bound variable. The indices of
those variables are chosen in such a way that all the bound variables introduced are
pointing towards the outer abstraction of “ abs (\x t)”.

The implementation of variable closing follows a pattern similar to the imple-
mentation of variable opening. Its implementation is based on a recursive function,
written “ {k ← x } t”, that keeps track of the number k of abstractions that have been
passed by. Again, the value of k is 0 initially and it is incremented at each abstraction.
Variable closing is defined as follows:

\x t ≡ {0 ← x } t

When the recursive function reaches a free variable with name y , it compares the
name y with the name x . If the two names match, then the free variable y is replaced
with a bound variable of index k, otherwise it is left unchanged. Note that bound
variables already occurring in the term are never affected by variable closing.

{k ← x } (bvar i) ≡ bvar i
{k ← x } (fvar y ) ≡ if (x = y ) then (bvar k) else (fvar y )

{k ← x } (app t1 t2) ≡ app ({k ← x } t1) ({k ← x } t2)
{k ← x } (abs t) ≡ abs ({(k + 1) ← x } t)
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The formal rules defining the typing judgment for the simply-typed λ-calculus in
locally nameless style can be stated as follows.

ok E (x : T) ∈ E

E ⊢ fvar x : T
typing-var

E ⊢ t1 : T1 → T2 E ⊢ t2 : T1

E ⊢ app t1 t2 : T2
typing-app

∀ x ̸∈ L, E, x : T1 ⊢ t x : T2

E ⊢ abs t : T1 → T2
typing-abs

The regularity lemma associated with this judgment states that whenever a typing
relation “ E ⊢ t : T” holds, E is a well-formed environment and t is a locally closed
term. The proof of this lemma is straightforward by induction.

typing_regular: E ⊢ t : T ⇒ ok E ∧ lc t

5.4 System F<:

This example focuses on System F<:. This system is particularly interesting with
respect to binding issues, as it mixes two kinds of variables: type variables and
term variables.3 The conventional presentation of the grammars of types, terms
and environments is as follows. Types are made of type variables, the maximum
type “ Top”, arrow types and universal types with bounded quantification. Terms are
made of term variables, term abstractions, term applications, type abstractions and
type applications. Environments are made of the empty environment, environments
extended with term variable bindings and environments extended with type variable
bindings.

T := X | Top | T → T | ∀X<:T. T
t := x | λx :T. t | t t | "X<:T. T | t [T]
E := ∅ | E, x :T | E, X<:T

In order to describe the corresponding grammar in locally nameless syntax, we
need to introduce distinct constructors for bound variables and for free variables.
Thereafter, four constructors for variables are involved: one for bound type variables
(typ_bvar), one for free type variables (typ_fvar), one for bound term variables
(trm_bvar) and one for free term variables (trm_fvar). It is not needed that the atoms
used to represent free type variables be different from the atoms used to represent
free term variables, as free term variable names can never end up being mixed
with free type variable names. Note that universal types, abstractions and type
abstractions become nameless.

T := typ_bvar i | typ_fvar x | Top | T → T | ∀<:T. T
t := trm_bvar i | trm_fvar X | λ:T. t | t t | "<:T. T | t [T]

For the sake of presentation of typing and subtyping rules, we introduce the
following convention. Whenever we write a lowercase name, it stands for the free

3The formalization of System F<: and a proof of its soundness are the heart of the POPLMark
challenge [2 ], which was designed as a good stress test for comparing binding technologies.
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The Send Receive System
P ::= request a(k) in P session request

| accept a(k) in P session acceptance

| k![ẽ];P data sending

| k?(x̃) in P data reception

| k ✁ l;P label selection

| k ✄ {l1 : P1[] · · · []ln : Pn} label branching

| throw k[k′];P channel sending

| catch k(k′) in P channel reception

| if e then P else Q conditional branch

| P | Q parallel composition

| inact inaction

| (νu)P name/channel hiding

| def D in P recursion

| X[ẽk̃] process variables

e ::= c constant

| e + e′ | e − e′ | e × e | not(e) | . . . operators

D ::= X1(x̃1k̃1) = P1 and · · · and Xn(x̃nk̃n) = Pn declaration for recursion

Fig. 1. Syntax

We use the following base sets: names, ranged over by a, b, x, y, z . . . ; channels,
ranged over by k, k′; constants (including names, integers and booleans), ranged
over by c, c′, . . . ; labels, ranged over by l, l′, . . . ; and process variables, ranged over
by X,Y, . . . Letters u, u′, . . . denote names and channels together. Then processes,
ranged over by P,Q . . . , and expressions, ranged over by e, e′, . . . are given by the
grammar in Figure 1. The typing system in Figure 6makes sure that, in process
X[ẽk̃], the channels in k̃ are pairwise distinct.

P ≡ Q if P ≡α Q

P | inact ≡ P P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R)

(νu)P | Q ≡ (νu)(P | Q) if u ̸∈ fu(Q)

(νu)inact ≡ inact

def D in inact ≡ inact

(νu)def D in P ≡ def D in (νu)P if u ̸∈ fu(D)

(def D in P ) | Q ≡ def D in (P | Q) if dpv(D) ∩ fpv(Q) = ∅

def D in (def D′ in P ) ≡ def D and D′ in P if dpv(D) ∩ dpv(D′) = ∅.

Fig. 2. Structural Congruence

The bindings for names are k?(x̃) in P , X(x̃k̃) = P , and (νa)P ; those for

N. Yoshida, V.T. Vasconcelos / Electronic Notes in Theoretical Computer Science 171 (2007) 73–93 75
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over by c, c′, . . . ; labels, ranged over by l, l′, . . . ; and process variables, ranged over
by X,Y, . . . Letters u, u′, . . . denote names and channels together. Then processes,
ranged over by P,Q . . . , and expressions, ranged over by e, e′, . . . are given by the
grammar in Figure 1. The typing system in Figure 6makes sure that, in process
X[ẽk̃], the channels in k̃ are pairwise distinct.

P ≡ Q if P ≡α Q

P | inact ≡ P P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R)

(νu)P | Q ≡ (νu)(P | Q) if u ̸∈ fu(Q)

(νu)inact ≡ inact

def D in inact ≡ inact

(νu)def D in P ≡ def D in (νu)P if u ̸∈ fu(D)

(def D in P ) | Q ≡ def D in (P | Q) if dpv(D) ∩ fpv(Q) = ∅

def D in (def D′ in P ) ≡ def D and D′ in P if dpv(D) ∩ dpv(D′) = ∅.

Fig. 2. Structural Congruence

The bindings for names are k?(x̃) in P , X(x̃k̃) = P , and (νa)P ; those for
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α-Conversion for Free

• The original system depends crucially on names

Now by [Conc], we have

Θ · X : S̃α̃;Γ ⊢ P [c̃/x̃] | Q ◃ ∆′′ · k̃ : α̃

Finally by [Bot] (∆′′ ≺ ∆′), then by [Def], we obtain:

Θ;Γ ⊢ def X(x̃k̃) = P in (P [c̃/x̃] | Q) ◃ ∆′ · k̃ : α̃

Then we can apply [Bot] to obtain ∆, as desired.

Case [Str]. By Subject-Congruence.

To formalise Type Safety, we need the following notions. A k-process is a process
prefixed by subject k (such as k![ẽ];P and catch k(k′) in P ). Next, a k-redex is the
parallel composition of two k-processes, i.e. either of form (k![ẽ];P | k?(x̃) in Q),
(k✁ l;P | k✄{l1 : Q1[] · · · []ln : Qn}), or (throw k[k′];P | catch k(k′′) in Q). Then
P is an error if P ≡ (νũ)(def D in (Q | R)) where Q is, for some k, the parallel
composition of either two k-processes that do not form a k-redex, or three or more
k-processes. We then have:

Theorem 2.11 (Type Safety) A typable program never reduces to an error.

Proof. By Subject Reduction it suffices to show that typable programs are not
errors. The proof is by reductio ad absurdum, assuming error processes typable.
Suppose that Θ;Γ ⊢ def D in (νũ)(P | Q) ◃ ∆. Analysing the derivation tree for
the process, we conclude that Θ;Γ ⊢ P ◃ ∆′, for some ∆′. We now analyse the two
classes of error processes.

When P = P1 | P2 is the parallel composition of two k-processes that do not
form a redex, there are several cases to consider. They are all alike; take for example
the pair label-select/throw. Applying [Conc] on P , we have Θ;Γ ⊢ P1 ◃ ∆′

1 and
Θ;Γ ⊢ P2 ◃ ∆′

2 with ∆′ ≺ ∆′
1 ◦ ∆′

2. Applying [Sel] on P1 and [Thr] on P2 we
conclude that k : ⊕ {l1 : α1, . . . , ln : αn} ∈ ∆′

1 and k : ![α];β ∈ ∆′

2. But then ∆′

1 ◦∆′

2

is not defined, hence def D in (νũ)(P | Q) is not typable.

When P is the parallel composition of three or more k-processes, we concentrate
on the case of three processes, for the remaining cases reduce to this. So let P =
(P1 | P2) | P3. Applying [Conc], we know that Θ;Γ ⊢ P1 | P2 ◃Σ and Θ;Γ ⊢ P3 ◃Σ′

with ∆′ ≺ Σ ◦ Σ′. If P1 | P2 is not a k-redex, we use the case above. Otherwise, it
must be the case that k : ⊥ ∈ Σ. From Lemma 2.7(ii), we know that k ∈ dom(Σ′),
thus Σ ◦ Σ′ is not defined, hence def D in (νũ)(P | Q) is not typable.

3 A More Liberal Session Passing Style

Rule [Pass] in the original ESOP’98 system

(throw k[k′];P1) | (catch k(k′) in P2) → P1 | P2
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is not defined, hence def D in (νũ)(P | Q) is not typable.

When P is the parallel composition of three or more k-processes, we concentrate
on the case of three processes, for the remaining cases reduce to this. So let P =
(P1 | P2) | P3. Applying [Conc], we know that Θ;Γ ⊢ P1 | P2 ◃Σ and Θ;Γ ⊢ P3 ◃Σ′

with ∆′ ≺ Σ ◦ Σ′. If P1 | P2 is not a k-redex, we use the case above. Otherwise, it
must be the case that k : ⊥ ∈ Σ. From Lemma 2.7(ii), we know that k ∈ dom(Σ′),
thus Σ ◦ Σ′ is not defined, hence def D in (νũ)(P | Q) is not typable.

3 A More Liberal Session Passing Style

Rule [Pass] in the original ESOP’98 system
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is not defined, hence def D in (νũ)(P | Q) is not typable.

When P is the parallel composition of three or more k-processes, we concentrate
on the case of three processes, for the remaining cases reduce to this. So let P =
(P1 | P2) | P3. Applying [Conc], we know that Θ;Γ ⊢ P1 | P2 ◃Σ and Θ;Γ ⊢ P3 ◃Σ′
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must be the case that k : ⊥ ∈ Σ. From Lemma 2.7(ii), we know that k ∈ dom(Σ′),
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Θ;Γ ⊢ def X(x̃k̃) = P in (P [c̃/x̃] | Q) ◃ ∆′ · k̃ : α̃

Then we can apply [Bot] to obtain ∆, as desired.
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To formalise Type Safety, we need the following notions. A k-process is a process
prefixed by subject k (such as k![ẽ];P and catch k(k′) in P ). Next, a k-redex is the
parallel composition of two k-processes, i.e. either of form (k![ẽ];P | k?(x̃) in Q),
(k✁ l;P | k✄{l1 : Q1[] · · · []ln : Qn}), or (throw k[k′];P | catch k(k′′) in Q). Then
P is an error if P ≡ (νũ)(def D in (Q | R)) where Q is, for some k, the parallel
composition of either two k-processes that do not form a k-redex, or three or more
k-processes. We then have:

Theorem 2.11 (Type Safety) A typable program never reduces to an error.

Proof. By Subject Reduction it suffices to show that typable programs are not
errors. The proof is by reductio ad absurdum, assuming error processes typable.
Suppose that Θ;Γ ⊢ def D in (νũ)(P | Q) ◃ ∆. Analysing the derivation tree for
the process, we conclude that Θ;Γ ⊢ P ◃ ∆′, for some ∆′. We now analyse the two
classes of error processes.

When P = P1 | P2 is the parallel composition of two k-processes that do not
form a redex, there are several cases to consider. They are all alike; take for example
the pair label-select/throw. Applying [Conc] on P , we have Θ;Γ ⊢ P1 ◃ ∆′

1 and
Θ;Γ ⊢ P2 ◃ ∆′

2 with ∆′ ≺ ∆′
1 ◦ ∆′

2. Applying [Sel] on P1 and [Thr] on P2 we
conclude that k : ⊕ {l1 : α1, . . . , ln : αn} ∈ ∆′

1 and k : ![α];β ∈ ∆′

2. But then ∆′

1 ◦∆′

2

is not defined, hence def D in (νũ)(P | Q) is not typable.

When P is the parallel composition of three or more k-processes, we concentrate
on the case of three processes, for the remaining cases reduce to this. So let P =
(P1 | P2) | P3. Applying [Conc], we know that Θ;Γ ⊢ P1 | P2 ◃Σ and Θ;Γ ⊢ P3 ◃Σ′

with ∆′ ≺ Σ ◦ Σ′. If P1 | P2 is not a k-redex, we use the case above. Otherwise, it
must be the case that k : ⊥ ∈ Σ. From Lemma 2.7(ii), we know that k ∈ dom(Σ′),
thus Σ ◦ Σ′ is not defined, hence def D in (νũ)(P | Q) is not typable.

3 A More Liberal Session Passing Style

Rule [Pass] in the original ESOP’98 system

(throw k[k′];P1) | (catch k(k′) in P2) → P1 | P2
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This is a bound variable.

• If α-conversion is built in, this rule collapses to:

does not allow the transmission of an arbitrary channel. In most situations a process
catch k(k′′) in P2 can be alpha-converted ahead of communication 3 so that the
bound variable k′′ syntactically matches the free variable k′ in the throw process.
The exception happens exactly when k′ is free in P2: alpha-conversion becomes
impossible (for it would capture free variable k′), and communication cannot occur.

A more liberal rule would allow the transmission of an arbitrary channel, im-
plying a substitution on the client side.

(throw k[k′];P1) | (catch k(k′′) in P2) → P1 | P2[k
′/k′′]

Unfortunately this rule breaks Subject Reduction (Theorem 2.10). A counter-
example is a process which, possessing one end of a channel, receives the second
end. The process:

throw k[k′] | catch k(k′′) in k′′?(y) in k′![1] (4)

is typable under typing k : ⊥, k′ : ⊥, but reduces to process

k′?(x) in k′![1]

which is not typable under the same typing [7].

One might think that the simplest solution of the above problem is to add
the side condition k′ ̸∈ fc(P2) to the above rule proposal. This reduction rule,
however, implies that the condition of free channels is checked at runtime, which
contradicts the aim of static type checking to preserve Subject Reduction. The same
sort of situation occurs in the ESOP’98 system, where, in presence of a process
throw k[k′];P1 | catch k(k′′) in P2, the runtime system has to check whether
k′ ∈ fc(P2) in order to alpha-convert the catch-process before applying rule [Pass]
above.

A different alternative would be to type the contractum with a different typing.
In the above case and for the catch process in the redex, we have k′ : ![nat]; end,
and k′′ : ?[nat]; end. In the contractum, channels k′ and k′′ are aliased and it is not
obvious how to build, from the premises, the correct type ?[nat]; ![nat]; end for k′.

A solution, due to Gay and Hole [12], explicitly distinguishes between the two
ends of a channel. For a channel κ, its two ends are denoted κ+ and κ−. Channels
are now runtime entities (they are not supposed to occur in programs) created by
rule [Link], which becomes:

(accept a(x) in P1) | (request a(x) in P2) → (νκ)(P1[κ
+/x] | P2[κ

−/x])

Rules that synchronise two processes on a given channel are updated so that
each process explicitly mentions one of the ends. For example rule [Thr] becomes:

(throw κp[k′];P1) | (catch κp(x) in P2) → P1 | P2[k
′/x]

3 Cf. Paragraph Relationship with the Rewriting Rules of the π-Calculus in Section 2.1.
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• The original system depends crucially on names

Now by [Conc], we have

Θ · X : S̃α̃;Γ ⊢ P [c̃/x̃] | Q ◃ ∆′′ · k̃ : α̃

Finally by [Bot] (∆′′ ≺ ∆′), then by [Def], we obtain:

Θ;Γ ⊢ def X(x̃k̃) = P in (P [c̃/x̃] | Q) ◃ ∆′ · k̃ : α̃

Then we can apply [Bot] to obtain ∆, as desired.

Case [Str]. By Subject-Congruence.

To formalise Type Safety, we need the following notions. A k-process is a process
prefixed by subject k (such as k![ẽ];P and catch k(k′) in P ). Next, a k-redex is the
parallel composition of two k-processes, i.e. either of form (k![ẽ];P | k?(x̃) in Q),
(k✁ l;P | k✄{l1 : Q1[] · · · []ln : Qn}), or (throw k[k′];P | catch k(k′′) in Q). Then
P is an error if P ≡ (νũ)(def D in (Q | R)) where Q is, for some k, the parallel
composition of either two k-processes that do not form a k-redex, or three or more
k-processes. We then have:

Theorem 2.11 (Type Safety) A typable program never reduces to an error.

Proof. By Subject Reduction it suffices to show that typable programs are not
errors. The proof is by reductio ad absurdum, assuming error processes typable.
Suppose that Θ;Γ ⊢ def D in (νũ)(P | Q) ◃ ∆. Analysing the derivation tree for
the process, we conclude that Θ;Γ ⊢ P ◃ ∆′, for some ∆′. We now analyse the two
classes of error processes.

When P = P1 | P2 is the parallel composition of two k-processes that do not
form a redex, there are several cases to consider. They are all alike; take for example
the pair label-select/throw. Applying [Conc] on P , we have Θ;Γ ⊢ P1 ◃ ∆′

1 and
Θ;Γ ⊢ P2 ◃ ∆′

2 with ∆′ ≺ ∆′
1 ◦ ∆′

2. Applying [Sel] on P1 and [Thr] on P2 we
conclude that k : ⊕ {l1 : α1, . . . , ln : αn} ∈ ∆′

1 and k : ![α];β ∈ ∆′
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1 ◦∆′

2

is not defined, hence def D in (νũ)(P | Q) is not typable.
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The Typing Judgement

The rule for parallel composition is where the fun begins:
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Γ · a : S ⊢ a ◃ S Γ ⊢ 1 ◃ nat Γ ⊢ true, false ◃ bool
Γ ⊢ ei ◃ nat

Γ ⊢ e1 + e2 ◃ nat

[NameI],[Nat],[Bool],[Sum]

Θ;Γ ⊢ P ◃ ∆ · k : end

Θ;Γ ⊢ P ◃ ∆ · k : ⊥

∆ completed

Θ;Γ ⊢ inact ◃ ∆
[Bot],[Inact]

Γ ⊢ a ◃ ⟨α,α⟩ Θ;Γ ⊢ P ◃ ∆ · k : α

Θ;Γ ⊢ accept a(k) in P ◃ ∆
[Acc]

Γ ⊢ a ◃ ⟨α,α⟩ Θ;Γ ⊢ P ◃ ∆ · k : α

Θ;Γ ⊢ request a(k) in P ◃ ∆
[Req]

Γ ⊢ ẽ ◃ S̃ Θ;Γ ⊢ P ◃ ∆ · k : α

Θ;Γ ⊢ k![ẽ];P ◃ ∆ · k : ![S̃];α
[Send]

Θ;Γ · x̃ : S̃ ⊢ P ◃ ∆ · k : α

Θ;Γ ⊢ k?(x̃) in P ◃ ∆ · k : ?[S̃];α
[Rcv]

Θ;Γ ⊢ P1 ◃ ∆ · k : α1 · · · Θ;Γ ⊢ Pn ◃ ∆ · k : αn

Θ;Γ ⊢ k ✄ {l1 : P1[] · · · []ln : Pn} ◃ ∆ · k : &{l1 : α1, . . . , ln : αn}
[Br]

Θ;Γ ⊢ P ◃ ∆ · k : αj

Θ;Γ ⊢ k ✁ lj ;P ◃ ∆ · k : ⊕ {l1 : α1, . . . , ln : αn}
(1 ≤ j ≤ n) [Sel]

Θ;Γ ⊢ P ◃ ∆ · k : β

Θ;Γ ⊢ throw k[k′];P ◃ ∆ · k : ![α];β · k′ : α
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This 
together requires 
implementing our 

own LN infrastructure. 
But it allows for names 

and linearity.
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The Revisited System

• Now we distinguish between the endpoints of 
channels.

• It can be represented with LN-variables and 
names.
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But Mechanical Proofs Are..

• Well, very mechanical. We have to be very precise 
with the theorems.

 22
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One of the Substitution Lemmas

Γ ⊢ a : ⟨α,α⟩ Θ;Γ ⊢ P ◃ ∆ · x : α

Θ;Γ ⊢ accept a(x) in P ◃ ∆
[Acc]

Γ ⊢ a : ⟨α,α⟩ Θ;Γ ⊢ P ◃ ∆ · x : α

Θ;Γ ⊢ request a(x) in P ◃ ∆
[Req]

Θ;Γ ⊢ P ◃ ∆ · k : β · x : α

Θ;Γ ⊢ catch k(x) in P ◃ ∆ · k : ?[α];β
[Cat]

Θ · X : S̃α̃;Γ · x̃ : S̃ ⊢ P ◃ ỹ : α̃ Θ · X : S̃α̃;Γ ⊢ Q ◃ ∆

Θ;Γ ⊢ def X(x̃ỹ) = P in Q ◃ ∆
[Def]

Θ;Γ ⊢ P ◃ ∆ Θ;Γ ⊢ Q ◃ ∆′

Θ;Γ ⊢ P | Q ◃ ∆ · ∆′
[Conc]

Θ;Γ ⊢ P ◃ ∆ · κ+ : α · κ− : α

Θ;Γ ⊢ (νκ)P ◃ ∆
[CRes]

Θ;Γ ⊢ P ◃ ∆ κ not in ∆

Θ;Γ ⊢ (νκ)P ◃ ∆
[CRes’]

In rule [Var], Figure 6, typing k1. . . kn : α1. . . αn is understood as k1: α1 ·
. . . · kn : αn, defined only when the ki are pairwise distinct. This restriction is
crucial in controlling channel aliasing during reduction via the [Def] rule, now
that a substitution is performed. Suppose that we judge as valid a sequent of the
form X : SS ⊢ X[kk] ◃ k : S. Then, taking for D the process definition X(k′k′′) =
k′![1].k′′![2], process def D in X[kk] would be typable under typing k : !nat.end, but
reduces to process def D in k![1].k![2] which is not typable under the same typing.

3.3 Subject Reduction and Type Safety

The absence of typing compatibility (in rule [Conc]) is compensated by balanced
typings. We say that a typing ∆ is balanced if whenever κ+ : α,κ− : β ∈ ∆, then
α = β [12]. Subject-Reduction (Theorem 3.3) and Type Safety (Theorem 3.4) hold
only in presence of balanced typings.

We rely on the Weakening, Strengthening, Channel and Substitution Lemmas of
Section 2.4, adapted to the syntax and typing system of this section. Since we now
replace channels in processes, we need a Channel Replacement Lemma, a result not
needed for the ESOP’98 system [13]. The proofs below are adapted from those in
references [12,23], except that our scope extrusion rule (in Figure 2) is more general
than that of [12].

Lemma 3.1 (Channel Replacement) If Θ;Γ ⊢ P◃∆·x : α, then Θ;Γ ⊢ P [κp/x]◃
∆ · κp : α.

Proof. A straightforward induction on the derivation tree for P .

Lemma 3.2 (Subject Congruence) If Θ;Γ ⊢ P ◃ ∆ and P ≡ Q, then Θ;Γ ⊢
Q ◃ ∆.
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crucial in controlling channel aliasing during reduction via the [Def] rule, now
that a substitution is performed. Suppose that we judge as valid a sequent of the
form X : SS ⊢ X[kk] ◃ k : S. Then, taking for D the process definition X(k′k′′) =
k′![1].k′′![2], process def D in X[kk] would be typable under typing k : !nat.end, but
reduces to process def D in k![1].k![2] which is not typable under the same typing.

3.3 Subject Reduction and Type Safety

The absence of typing compatibility (in rule [Conc]) is compensated by balanced
typings. We say that a typing ∆ is balanced if whenever κ+ : α,κ− : β ∈ ∆, then
α = β [12]. Subject-Reduction (Theorem 3.3) and Type Safety (Theorem 3.4) hold
only in presence of balanced typings.

We rely on the Weakening, Strengthening, Channel and Substitution Lemmas of
Section 2.4, adapted to the syntax and typing system of this section. Since we now
replace channels in processes, we need a Channel Replacement Lemma, a result not
needed for the ESOP’98 system [13]. The proofs below are adapted from those in
references [12,23], except that our scope extrusion rule (in Figure 2) is more general
than that of [12].

Lemma 3.1 (Channel Replacement) If Θ;Γ ⊢ P◃∆·x : α, then Θ;Γ ⊢ P [κp/x]◃
∆ · κp : α.

Proof. A straightforward induction on the derivation tree for P .

Lemma 3.2 (Subject Congruence) If Θ;Γ ⊢ P ◃ ∆ and P ≡ Q, then Θ;Γ ⊢
Q ◃ ∆.
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Θ;Γ ⊢ def X(x̃ỹ) = P in Q ◃ ∆
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Subject Reduction

Proof. The proof follows the pattern of that of Lemma 2.9, albeit slightly simplified
by the absence of the non-structural [Bot] rule. We detail the two most interesting
cases.

Case P | inact ≡ P . We show that if Θ;Γ ⊢ P | inact ◃ ∆, then Θ;Γ ⊢ P ◃ ∆.
Suppose that

Θ;Γ ⊢ P ◃ ∆1 and Θ;Γ ⊢ inact ◃ ∆2

with ∆1· ∆2= ∆. Note that ∆2 only contains end. Applying Weakening to P , we
have Θ;Γ ⊢ P ◃ ∆1· ∆2 as required.

For the other direction we start with derivation Θ;Γ ⊢ inact ◃ ∅, and then apply
rule [Conc].

Case (νu)(P | Q) ≡ (νu)P | Q if u ̸∈ fu(Q). The case when u is a name is standard.
Suppose u is channel k and assume Θ;Γ ⊢ (νκ)(P | Q)◃∆. We consider the [CRes]
case (the [CRes’] case is simpler):

Θ;Γ ⊢ P ◃ ∆1 Θ;Γ ⊢ Q ◃ ∆2

Θ;Γ ⊢ P | Q ◃ ∆ · κp : α · κp : α

First notice that κp and κp can be both in either ∆i or one in each. When they
are both in ∆1 we conclude the case by applying [CRes] and [Conc]. When they
are both in ∆2, by the Channel Lemma we know that the types for κp and κp in
∆2 are end. We conclude the case by applying Strengthening twice to Q before
applying [CRes’] and [Conc]. Finally, when κp is in ∆′

1 and κp in ∆′
2, we apply

Strengthening to Q and Weakening to P , before applying [CRes] and [Conc].

The other direction is simpler.

Theorem 3.3 (Subject Reduction) If Θ;Γ ⊢ P ◃ ∆ with ∆ balanced and P →∗

Q, then Θ;Γ ⊢ Q ◃ ∆′ and ∆′ balanced.

Proof. The proof is similar to that of Theorem 2.10. We concentrate on the four
new reduction rules, and reuse the remaining cases.

Case [Link] (accept a(x) in P1) | (request a(x) in P2) → (νκ)(P1[κ+/x] |
P2[κ− /x]). The assumption is derived from

Θ;Γ ⊢ P1◃ ∆ · x : α

Θ;Γ, a : ⟨α,α⟩ ⊢ accept a(x) in P1◃ ∆

from
Θ;Γ ⊢ P2◃ ∆ · x : α

Θ;Γ, a : ⟨α,α⟩ ⊢ request a(x) in P2◃ ∆

and from [Conc] with ∆1· ∆2 = ∆. Applying the Channel Replacement Lemma
to P1 and also to P2, we have Θ;Γ ⊢ P1[κ+/x] ◃ ∆ · κ+ : α, and Θ;Γ ⊢ P2[κ− /x] ◃
∆ · κ− : α. The case concludes with the application of rule [Conc] followed by rule
[CRes].

Case [Com] (κp![ẽ];P1) | (κp?(x̃) in P2) → P1 | P2[c̃/x̃]. The assumption is
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Finally:
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What We Have:
• The definition two systems, the unsound proved with a 

counter example, and the revised with a proof by induction.

• There are still some lemmas to prove (≈4.5 KLOC so far).

• All using a locally nameless representation

• Some use ssreflect and overloaded-lemmas to simply proofs.

• More automation using overloaded-lemmas in the future.
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Thanks for your 
attention.

Questions?
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