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“The limits of my language mean the limits of my world.”

—Ludwig Wittgenstein
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VWho Am |/

- | dd my PhD at McGill University, advised by Brigitte Pientka.
* | worked with Higher Order Abstract Syntax.

- Also on the meta=theory of programming languages.
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Mechanising the Meta- | heory
Session lypes

» Names are ubiguitous.

* [he binding structure I1s quite rich.

» Channels are handled linearly.

R NERes exIst besides binders. Names are a il
&5 notion.
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The First Step

» Do a case study:

» Language Primitives and Type Discipline for
Structured Communication-Based Programming

Revisited, by Yoshida and Vasconcelos.
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But, Really! Another Proof
Assistant!

» What If we relax the requirement for

{-conversion!

[t can be readily

» Work by Erne Fernandez, et al.

implemented in
and

* Defines a notion of X-compatible relations.

* Defines a notion of &X-structural induction.,
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But, Really! Another Proof
Assistant!

» What If we relax the requirement for

o-conversion?

It can be reac

Induction on
judgments Is still an "It
should be possible”
problem In this
approach.

* Defines a notion of X-structule

» Work by Erne

implement
and
* Defines a noTion O

1T



Time fo Consider Existing
Solutions

« Well established work on Locally Nameless:
« Use names for free variables.
e blce mdices for bound variables.

- Mediate between them with open & close
operations.
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bvarx |

(0 — x)t

SERLE

fvarp |

10/27

abs ¢

\xt

app tt

{0 < x}t
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Open and close should admit several lemmas:

Opening locally closed terms does not change the
term
Opening and substitution commute
The interaction of opening and substitutions of
variables

TYPING-APP
/5l
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A Tale of Three Systems

= out to represent the three systems desEfliEss
in the paper:

» [he Honda,Vasconcelos, Kubo system from ESOP'93
» [ts naive but ultimately unsound extension

» [ts revised system inspired by Gay and Hole in Acta

nformatica
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P ::=request a(k) in P

accept a(k) in P

kKlle]; P

k?(z) in P

[l 4
k{li: P - |ln: Pu}
throw k[k']; P

catch k(k') in P

if e then P else ()

The Send Recelve System

session request
session acceptance
data sending

data reception
label selection
label branching
channel sending
channel reception

conditional branch

P|Q parallel composition
inact Inaction
(vu)P name/channel hiding

def D in P recursion
X|[ek] process variables

el =—C constant
le+e | e—€e | exe | notle) | ... operators

D ::= X (&1k1) =P, and---and X, (Z,k,) = P, declaration for recursion

LYY



The Send Recelve System

P ::=request a(k) in P session request
accept a(k) in P sesslon acceptance
klle]; P | data sending
k?(z) in P data reception
e label selection
k>{ly: Pi|-- |l : Pp} label branching
throw k[k']; P channel sending
catch k(k') in P channel reception
if e then P else () conditional branch
P|Q parallel composition
inact Inaction
(vu) P name/channel hiding
def D in P recursion

C——
X |ek] process variables
el =—C constant
le+e | e—€e | exe | notle) | ... operators

D = X;(Z1k1) = P, and---and X, (&nkn) = P, declaration for recursion
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X-Conversion for Free

* [he original system depends crucially on names

(throw k[k']; P1) | (catch k(k') in P) — P | P
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X-Conversion for Free

* [he original system depends crucially on names

(throw k[k']; P1) | (catch k(k') in P) — P | P

This I1s a bound variable.

* It &X-conversion is bullt In, this rule collapses to:

(throw k[k']; P1) | (catch k(k") in Py) — P | Pk’ /K"]
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X-Conversion for Free

 [he original system depends cruc@lly on names

(throw k[k']; P1) | (catc

Locally Nameless makes it
Impossible to express the
original system’s name ks

. . handling!
¢ T Ol-conversion Is bul antine

(throw k[k']; P1) | (catch k(k") 4

7



Ihe lyping Judgement

The rule for parallel composition Is where the fun begins:

T



Ihe lyping Judgement

The rule for parallel composition Is where the fun begins:

O 10 = TEA-SAN O:TFQp A’
GBSO > A o A

(AS=TAG) [CoNC]

T



Ihe lyping Judgement

The rule for parallel composition Is where the fun begins:

O 10 = TEA-SAN GHE Q- /A s
B P 0raon  ozo) T

T



Ihe lyping Judgement

The rule for parallel composition Is where the fun begins:

O 10 = TEA-SAN GHE Q- /A s
oA o=2) e

T



Ihe lyping Judgement

The rule for parallel composition Is where the fun begins:

O 10 = TEA-SAN O:TFQp A’
EIBISRAEO > Ao A

(AS=TAG) [CONC]

Definition 2.4 (Type algebra) Typings Ag and Ay are compatible, written Ag <
A1, if Ao(k) = A1(k) for all k € dom(Ag) Ndom(Ay). When Ay < Ay, the com-
position of Ag and Ay, written Ago Ay, is given as a typing such that (Ago Aq)(k)
is (1) L, if k € dom(Ap) Ndom(Ay); (2) A;i(k), if k € dom(A;) \ dom(A;11 mod 2)
fori € {0,1}; and (3) undefined otherwise.
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1yping Environments

Definition tp_env := {finMap atom_ordType — tp}.

(x 1ift dual to option *)
Definition option_dual (d : option tp) : option tp :=
match d with
| None = None
| Some T = Some (dual T)
end.

(x compatible envs x)
Definition compatible (D1 D2 : tp_env) : bool :=
all (fun k = fnd k D1 = option_dual (fnd k D2))
(filter (fun k = k \in supp D1) (supp D2)).

(x composition of envs %)

Definition comp (D1 D2 : tp_env) : tp_env :=
let: (D1, D12, D2) := split D1 D2 in
fcat (fcat D1 (update_all_with bot D12)) D2.

k612
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= e —
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1yping Environments



1lyping Environments

» Store their assumptions in a unigue order
(easy to compare)

» Only store unique assumptions
(easy to split)

57



1lyping Environments

» Store their assumptions in a unigue order
(easy to compare)

B . J[. together requires
filiF &SRO ECEURICUC dSSUTMPTIONS implementing our

(easy to split) own LN infrastructure.
But it allows for names

and linearity.
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The Revisited System

» Now we distinguish between the endpoints of
channels.

* [t can be represented with LN-variables and
names.

L Y



Two Kinds of Atoms

(x variables that can be substituted
for channels and expressions *)
Inductive var :=
| Free of VA.atom (* a variable waiting to be instantiated x)
| Bound of nat (* a bound variable x)

(* The variables for channel names,
bound in restrictions (Never substituted) x)
Inductive nvar :=
| NFree of NA.atom
| NBound of nat

NI
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Channels and Expressions

(¥ Channels use both x)
Inductive channel :=

| Ch of (nvar * polarity) %type (* a channel with polarity *)
| var of var

(* Expressions use only variables x)
[nductive exp : Set :=
| tt] ffl...

| V of var
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Processes

(x processes bind variables and channels,
but they are in channels and expressionsx)
Inductive proc : Set :=
| par : proc — proc — proc
| send : channel — exp — proc — proc
| receive : channel — proc — proc

| throw : channel — channel — proc — proc
| catch : channel — proc — proc

| nu_nm : proc = proc (*x hides a name x)
| nu_ch : proc = proc (* hides a channel name x)

e ———— 4— L i

Binders are “invisible”
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Processes

(x processes bind variables and channels,

but they are in channels and expressionsx)
Inductive proc : Set :=
| par : proc = proc — proc
| send : channel — exp — proc — proc
| receive : channel — proc — proc

o=
| throw : channel — channel — proc — proc
| catch : channel — proc — proc
¥ a8

nu_nm : proc = proc (x hides a name *)
nu_ch : proc = proc (x hides a channel name %)

Binders are “invisible”
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But Mechanical Proofs Are..

» Well, very mechanical. VWe have to be very precise
with the theorems.

The typing jJudgements:

Inductive oft_exp (G : sort_env) : exp — sort — Prop :=

Inductive oft : sort_env — proc — tp_env — Prop :=

L —————— A S ——

N



One of the Substritution Lemmas

Lemma 3.1 (Channel Replacement) IfO;I' - P>A-z: «, then ©; - P|kP/z|>
A - kP a.

Proof. A straightforward induction on the derivation tree for P.
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One of the Substritution Lemmas

Lemma 3.1 (Channel Replacement) IfO;I' - P>A-z: «, then ©; - P|kP/z|>
A - kP a.

Proof. A straightforward induction on the derivation tree for P.

Becomes:

Coq also

Theorem ChannelReplacement G P x kp D
def (subst_env_ch x (ce kp) D) — } demanded to be

oft GPD — oft G (s[ x = (ch kp)lp P) (s convinced about
Proof.

(% ... %) substituting expressions
and various weakening

lemmas
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Subject Reduction

Theorem 3.3 (Subject Reduction) IfO:I' - P> A with A balanced and P —*
Q, then O:T'F Q> A’ and A’ balanced.

Dy



Subject Reduction

Theorem 3.3 (Subject Reduction) IfO:I' - P> A with A balanced and P —*
Q, then ©;T F Q> A’ and A’ balanced.

|s straightforward to represent:

Theorem SubjectReductionStep G P Q D:
oft G PD — balanced D > P — Q — exists D', balanced D' /\ oft G Q D'.
Proof.

Dy



And Lots of Fun To Prove

Lemma SubjectReductionStep' G P Q D D' ka:
oft GPD — balanced D 2 P —— ka ——->Q 2 D ~~~ ka ~~~>D' = oft GQD'.

(% ... *)

Lemma admissible_label P Q:
P — Q —» exists ka, P -— ka -——> Q.

(% ... *)

Lemma well_typed_step G P Q D ka:
oft GPD > P — ka ——> Q = exists D', D ~~~ ka ~~~> D',

(* ... *)

Lemma typ_step_preserves_balance D D' ka:
D ~~~ ka ~~~> D' — balanced D — balanced D'.

(x .. %)
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Finally:

Theorem SubjectReduction G P Q D:

oft G PD — balanced D > P — Q — exists D', balanced D' /\ oft G Q D'.
Proof.

move=Hp Hb Hs.

apply admissible_label in Hs.
destruct Hs.
have HH := well_typed_step Hp H.
destruct HH.
exists x@.
split.
apply: typ_step_preserves_balance ; [apply: H® | apply: Hb].
apply: SubjectReductionStep' ;
[apply: Hp | apply: Hb | apply: H | apply: H@].
Qed.
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VWhat We Have:

The definrtion two systems, the unsound proved with a

counter example, and the revised with a proof by induction.
There are still some lemmas to prove (=4.5 KLOC so far).
All using a locally nameless representation

Some use ssreflect and overloaded-lemmas to simply proofs.

* More automation using overloaded-lemmas In the future.
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