Approaches to Mechanising Behavioural Types

António Ravara
with the contributions in the spreadsheet

NOVA-LINCS and Dep of Informatics
School of Science and Technology, NOVA University of Lisboa, PT
Univ of Malta, Malta

June 4, 2020
Representations of Binders

Five approaches

▶ de Bruijn indices
▶ polymorphic HOAS
▶ proof-assistant binders / separation logic
▶ nominal sets
▶ syntactic
de Bruijn indices

Common cons: not necessarily “human-readable”
(should we care? it’s to be checked by machines...)

- type level (Uma & Ornela)
 well-scoped by construction, easily mechanised

- tree-shaped (James & Robert)
 metatheory just like ST\texttt{\lambda}C (well-known)

- co-indices (Robert)
 simple in the linear case, readily translated to BCI combinators

- Agda-binders in types (Luca2)
 + just Agda functions - heavy notation, limited inference

- proof of context membership in types (Edwin)
 + well-scoped by construction, type-driven implementation of context manipulation - sometimes costly at compile-time
Other Representations of Binders

▶ polymorphic HOAS (Uma & Ornela – why another approach?)
 + transparent to the user
 - cannot reason about in host language
▶ proof-assistant binders (Jonas et al.)
 + Binders like HOAS, no meta theory needed (“apart” from SL)
 - semantic approach
▶ nominal sets (Kirstin)
 + binders treated just like in paper proofs
 - requires equivariance proofs, not “easily” portable
▶ syntactic (Petros / Antonio et al.)
 + quick & easy, no libraries required
 - nightmare to reason about
Dealing with linearity - I

(almost) as many approaches as entries in the sheet...

- leftover typing on partial commutative monoids (Uma & Ornela)
 + no extrinsic context splits
 - needs to be cancelative

- predicate on processes with polymorphic channels (Uma & Ornela)
 + trivial to define
 - user loses access to channel type info

- semiring usage annotations (James & Robert / Lucas)
 + standard linear algebra
 - no clear general approach, users have to supply proofs

- linear co-de Bruijn indices (Robert)
 + no algebra
 - (no algebra) only syntactic linearity, user supplies permutations
Dealing with linearity - II

(almost) as many approaches as entries in the sheet...

- separation logic (Iris) (Jonas et al.)
 + resource reasoning encapsulated
 - unclear how to do other properties than safety

- quantitative type theory (Edwin)
 + session types definable directly
 - "read only"operations are syntactically noisy

- linear logic (Petros)
 + correct-by-construction
 - allowed patterns severely limited

- addition relation + proof of well-formedness (Antonio et al.)
 + operations on types are partial functions, natural to implement
 - operations on type environments require proofs; non-determinism in the type system complicates soundness proofs
Questions / Challenges

Are each of the approaches scalable?

▶ from linear types to binary session types
▶ from binary to multiparty session types
▶ from protocol to functional correctness
▶ from safety to liveness properties
▶ ...

How to relate these approaches?

▶ Encodings?
▶ Sharing definitions and results
▶ Characterisations to find the right setting to the problem of interest
▶ ...

António Ravara with the contributions in Approaches to Mechanising Behavioural