Duality of Session Types: The Final Cut

Simon J. Gay Peter Thiemann Vasco T. Vasconcelos

University of Glasgow University of Freiburg University of Lisbon

VEST
online, June 2020
Session Types — Types for Structured Communication

\[S \ ::= \ !T.S' \quad \text{send} \]
\[\ ?T.S' \quad \text{receive} \]
Session Types — Types for Structured Communication

\[S ::= !T.S' \quad \text{send} \]
\[?T.S' \quad \text{receive} \]
\[\oplus\{\ell_i : S_i\} \quad \text{select} \]
\[\&\{\ell_i : S_i\} \quad \text{choice} \]
Session Types — Types for Structured Communication

\[S ::= \begin{array}{lll}
! T . S' & \text{send} \\
? T . S' & \text{receive} \\
\oplus \{ l_i : S_i \} & \text{select} \\
\& \{ l_i : S_i \} & \text{choice} \\
\text{end}
\end{array} \]
The good old math server

Session type of the server

type Server = &{
 Neg: ?Int. !Int. end,
 Add: ?Int. ?Int. !Int. end}

Client type is the dual of server type
The good old math server

Session type of the server

```haskell
type Server = &{
  Neg: ?Int. !Int. end,
  Add: ?Int. ?Int. !Int. end}
```

Session type of the client

```haskell
type Client = ⊕{
  Neg: !Int. ?Int. end,
  Add: !Int. !Int. ?Int. end}
```
The good old math server

Session type of the server

type Server = &{
 Neg: ?Int. !Int. end,
 Add: ?Int. ?Int. !Int. end
}

Session type of the client

type Client = ⊕{
 Neg: !Int. ?Int. end,
 Add: !Int. !Int. ?Int. end
}

Client type is the dual of server type
Duality

Definition 1

\[
\begin{align*}
\bar{\text{end}} & = \text{end} & \bar{!T.S} & = ?T.S & \bar{\oplus\{\ell_i : S_i\}} & = \&\{\ell_i : \bar{S}_i\} \\
\bar{?T.S} & = !T.S & \bar{\&\{\ell_i : S_i\}} & = \oplus\{\ell_i : \bar{S}_i\}
\end{align*}
\]
Duality

Definition 1

\[
\overline{\text{end}} = \text{end} \quad \overline{! T. S} = ? T. \overline{S} \quad \overline{\oplus \{ \ell_i : S_i \}} = \& \{ \ell_i : \overline{S_i} \}
\]

\[
\overline{? T. S} = ! T. \overline{S} \quad \overline{\& \{ \ell_i : S_i \}} = \oplus \{ \ell_i : \overline{S_i} \}
\]

Undebatably correct!

- Kohei Honda, Vasco Thudichum Vasconcelos, Makoto Kubo (ESOP 1998): Language Primitives and Type Discipline for Structured Communication-Based Programming.
Adding Recursion

\[S ::= \ldots \]

\[\mu X. S \quad \text{recursive session} \]

\[X \quad \text{type variable} \]
Session type of the server

```
type Server = μ X. &{
    Neg: ?Int. !Int. X,
    Add: ?Int. ?Int. !Int. X,
    Quit: end
}
```
A more interesting math server

Session type of the server

type Server = µ X. &{
 Neg: ?Int. !Int. X,
 Add: ?Int. ?Int. !Int. X,
 Quit: end}

Session type of the client

type Client = µ X. ⊕{
 Neg: !Int. ?Int. X,
 Add: !Int. !Int. ?Int. X,
 Quit: end}
Naive Duality

Definition (extends Definition 1)

\[\bar{X} = X \quad \mu X. \bar{S} = \mu X. \bar{S} \]
Drawback: Naive Duality is not always correct

Consider

\[S = \mu X. !X.X \]

\[= !(\mu X. !X.X). (\mu X. !X.X) \]
Drawback: Naive Duality is not always correct

Consider

\[S = \mu X. !X.X = !(\mu X. !X.X)(\mu X. !X.X) = !S.S \]

Unfolding shows that this server wants to send a channel of type \(S \).
Drawback: Naive Duality is not always correct

Consider

\[S = \mu X. !X.X = !(\mu X. !X.X).(\mu X. !X.X) = !S.S \]

Unfolding shows that this server wants to send a channel of type \(S \). But its naive dual is

\[\overline{S} = \mu X. !X.X = \mu X. !X.X = \mu X. ?X.X = ?\overline{S}.\overline{S} \]

so the client wrongly expects to receive a channel of type \(\overline{S} \neq S! \)
Goal

Find a satisfactory definition of duality for recursive session types in μ notation.
Outline

A Coinductive Definition

Bernardi and Hennessy

Lindley and Morris

Mechanization
A recursive type is a potentially infinite tree, labeled by the type constructors. The sets Type of type trees and SType of session type trees are given by the greatest fixpoint of

\[F(S, T) = (\{\text{end}\} \cup \{? T.S, ! T.S \mid T \in T, S \in S\}) \times (\{\text{int}\} \cup S) \]

Duality is a binary relation on SType defined as the greatest fixpoint of

\[F(\mathcal{D}) = \{(\text{end}, \text{end})\} \]

\[\cup \{(? T.S_1, ! T.S_2) \mid T \in \text{Type}, (S_1, S_2) \in \mathcal{D}\} \]

\[\cup \{(! T.S_1, ? T.S_2) \mid T \in \text{Type}, (S_1, S_2) \in \mathcal{D}\} \]

This gets more involved with the \(\mu \) notation...
Example

\[\mu X. ? T . X \approx \mu X. ? T . \top . X \]
\[\mu X. ? T . X \perp \mu X. ! T . ! T . X \]
Definition (Syntactic Duality of Session Types)

If \mathcal{D} is a relation on SType then $F_\bot(\mathcal{D})$ is the relation on SType defined by:

$$F_\bot(\mathcal{D}) = \{\text{(end, end)}\}$$

$$\cup \{(? T_1.S_1, ! T_2.S_2) \mid T_1 \approx T_2 \text{ and } (S_1, S_2) \in \mathcal{D}\}$$

$$\cup \{(! T_1.S_1, ? T_2.S_2) \mid T_1 \approx T_2 \text{ and } (S_1, S_2) \in \mathcal{D}\}$$

$$\cup \{(S_1, \mu X. S_2) \mid (S_1, S_2[\mu X. S_2/X]) \in \mathcal{D}\}$$

$$\cup \{((\mu X. S_1, S_2) \mid (S_1[\mu X. S_1/X], S_2) \in \mathcal{D} \text{ and } S_2 \neq \mu Y. S_3\}$$

A relation \mathcal{D} on SType is a session duality if $\mathcal{D} \subseteq F_\bot(\mathcal{D})$.

Duality of session types, $\cdot \bot \cdot$, is the largest session duality.
Outline

A Coinductive Definition

Bernardi and Hennessy

Lindley and Morris

Mechanization
Given $S = \mu X. ?X.X$

But unrolling yields $S \approx \mu X. !S.X$.

Now $S \approx S'$ but $S \not\approx S'$!
Given $S = \mu X.\ ?X.X$

Then $\overline{S} = \mu X.\ !X.X$ is its naive dual (with $S \not\approx \overline{S}$)
Given $S = \mu X. ?X.X$

Then $\overline{S} = \mu X. !X.X$ is its naive dual (with $S \not\approx \overline{S}$)

But is this correct?
Bernardi and Hennessy’s Discovery (CONCUR 2014)

- Given $S = \mu X. ?X.X$
- Then $\overline{S} = \mu X. !X.X$ is its naive dual (with $S \not\equiv \overline{S}$)
- But is this correct?
- Let’s rewrite S by unrolling one occurrence of X
Given $S = \mu X. \chi X.X$

Then $\overline{S} = \mu X. \chi X.X$ is its naive dual (with $S \not\approx \overline{S}$)

But is this correct?

Let’s rewrite S by unrolling one occurrence of X

$S' = \mu X. \chi S.X = \mu X. \chi(\mu X. \chi X.X).X$
Bernardi and Hennessy’s Discovery (CONCUR 2014)

- Given $S = \mu X.\ ?X.X$
- Then $\overline{S} = \mu X.\ !X.X$ is its naive dual (with $S \not\approx \overline{S}$)
- But is this correct?
- Let’s rewrite S by unrolling one occurrence of X
- $S' = \mu X.\ ?S.X = \mu X.\ ?(\mu X.\ ?X.X).X$
- $\overline{S'} = \mu X.\ !S.X$
Given $S = \mu X. ?X.X$

Then $\overline{S} = \mu X. !X.X$ is its naive dual (with $S \not\approx \overline{S}$)

But is this correct?

Let's rewrite S by unrolling one occurrence of X

$S' = \mu X. ?S.X = \mu X.?(\mu X. ?X.X).X$

$\overline{S'} = \mu X. !S.X$

But unrolling yields $\overline{S} \approx \mu X. !\overline{S}.X$
Bernardi and Hennessy’s Discovery (CONCUR 2014)

- Given $S = \mu X. ?X.X$
- Then $\overline{S} = \mu X. !X.X$ is its naive dual (with $S \not\approx \overline{S}$)
- But is this correct?
- Let’s rewrite S by unrolling one occurrence of X
 $S' = \mu X. ?S.X = \mu X. ?(\mu X. ?X.X).X$
 $\overline{S'} = \mu X. !S.X$
- But unrolling yields $\overline{S} \approx \mu X. !\overline{S}.X$
- Now $S \approx S'$ but $\overline{S} \not\approx \overline{S'}$!
Bernardi and Hennessy’s Solution

BH Duality

- Compute the *message closure* of a session type.
- Apply naive duality to the result.
Bernardi and Hennessy’s Solution

BH Duality

- Compute the *message closure* of a session type.
- Apply naive duality to the result.

Definition

A session type is *message-closed* if all message types are closed.
Bernardi and Hennessy’s Solution

BH Duality

- Compute the *message closure* of a session type.
- Apply naive duality to the result.

Definition

A session type is *message-closed* if all message types are closed.

For example

- $S = \mu X. ?X.X$ is *not* message-closed
- $S' = \mu X. ?S.X$ is message-closed
Bernardi and Hennessy’s Results

- BH duality is sound wrt \bot.
- but the definition of message closure is quite involved and may increase the size of a type substantially

Definition (Message Closure [BH2014])
For any type T and substitution σ closing for T, the type $\text{mclo}(T, \sigma)$ is defined inductively by the following rules.

- $\text{mclo}(\text{end}, \sigma) = \text{end}$
- $\text{mclo}(\text{?}T.S, \sigma) = \text{?}(T\sigma).\text{mclo}(S, \sigma)$
- $\text{mclo}(\text{int}, \sigma) = \text{int}$
- $\text{mclo}(\text{!}T.S, \sigma) = !(T\sigma).\text{mclo}(S, \sigma)$
- $\text{mclo}(X, \sigma) = X$
- $\text{mclo}(\mu X.S, \sigma) = \mu X.\text{mclo}(S, [(\mu X.S)/X]; \sigma)$

Define $\text{mclo}(S)$ as $\text{mclo}(S, \varepsilon)$.
GTV's optimization

- BH duality can be simplified by symbolic composition of message closure and naive duality (and deforestation)

Definition (Duality with On-the-fly Message Closure)

For any session type S and substitution σ closing for S, the session type $\text{dualof}(S, \sigma)$ is defined inductively by the following rules.

$$
\begin{align*}
\text{dualof}(\text{end}, \sigma) &= \text{end} \\
\text{dualof}(\text{?} T.S, \sigma) &= ! (T \sigma). \text{dualof}(S, \sigma) \\
\text{dualof}(\text{!} T.S, \sigma) &= ? (T \sigma). \text{dualof}(S, \sigma) \\
\text{dualof}(X, \sigma) &= X \\
\text{dualof}(\mu X.S, \sigma) &= \mu X. \text{dualof}(S, [\mu X.S/X]; \sigma)
\end{align*}
$$

Define $\text{dualof}(S)$ as $\text{dualof}(S, \varepsilon)$.
Outline

A Coinductive Definition

Bernardi and Hennessy

Lindley and Morris

Mechanization
Lindley and Morris’s Approach

- Lindley and Morris [ICFP 2016] give another definition of duality
Lindley and Morris’s Approach

- Lindley and Morris [ICFP 2016] give another definition of duality
- It relies on a technical twist, negative type variables, . . .
Lindley and Morris’s Approach

- Lindley and Morris [ICFP 2016] give another definition of duality
- It relies on a technical twist, negative type variables, . . .
- Each type variable X comes with its companion negative type variable \overline{X}
Lindley and Morris’s Approach

- Lindley and Morris [ICFP 2016] give another definition of duality.
- It relies on a technical twist, negative type variables, . . .
- Each type variable X comes with its companion *negative type variable* \overline{X}.
- A negative variable \overline{X} behaves like a suspended application of duality, which gets triggered by substitution for X.
Lindley and Morris’s Solution

Definition (Lindley-Morris Duality, Original Version [ICFP2016])

\[\text{lmd}(\text{end}) = \text{end} \quad \text{lmd}(X) = \overline{X} \]
\[\text{lmd}(?T.S) = !T.\text{lmd}(S) \quad \text{lmd}(\overline{X}) = X \]
\[\text{lmd}(!T.S) = ?T.\text{lmd}(S) \quad \text{lmd}(\mu X.S) = \mu X.(\text{lmd}(S)\{\overline{X}/X\}) \]

Caveat

▶ The operation \(T\{X/X\} \) is not standard substitution.
▶ It rather swaps \(X \) and \(X \).

Example

\[\text{lmd} (\mu X.?X.X) = \mu X.(\text{lmd}(S)\{\overline{X}/X\}) \]
Lindley and Morris’s Solution

Definition (Lindley-Morris Duality, Original Version [ICFP2016])

\[
\begin{align*}
l\text{md}(\text{end}) &= \text{end} & l\text{md}(X) &= \overline{X} \\
l\text{md}(\text{?}T.S) &= !T.l\text{md}(S) & l\text{md}(\overline{X}) &= X \\
l\text{md}(!T.S) &= \text{?}T.l\text{md}(S) & l\text{md}(\mu X.S) &= \mu X.(l\text{md}(S)\{\overline{X}/X\})
\end{align*}
\]

Caveat

- The operation \(T\{\overline{X}/X\} \) is not standard substitution.
- It rather swaps \(X \) and \(\overline{X} \).

Example

\[
\begin{align*}
l\text{md}(\mu X.?X.X) &= \mu X.l\text{md}(?X.X)\{\overline{X}/X\} \\
&= \mu X.(!X.\overline{X})\{\overline{X}/X\} \\
&= \mu X.(!\overline{X}.X)
\end{align*}
\]
GTV’s Results on LM Duality

- Unfortunately, Lindley and Morris just state this definition without proof.
GTV’s Results on LM Duality

- Unfortunately, Lindley and Morris just state this definition without proof.
- We prove its soundness in several ways.
GTV’s Results on LM Duality

- Unfortunately, Lindley and Morris just state this definition without proof.
- We prove its soundness in several ways.
 - manually
GTV’s Results on LM Duality

- Unfortunately, Lindley and Morris just state this definition without proof.
- We prove its soundness in several ways.
 - manually
 - mechanized in Agda
 https://github.com/peterthiemann/dual-session
GTV’s Results on LM Duality

- Unfortunately, Lindley and Morris just state this definition without proof.
- We prove its soundness in several ways.
 - manually
 - mechanized in Agda
 - https://github.com/peterthiemann/dual-session
- We observe that it is size-preserving.
Outline

A Coinductive Definition

Bernardi and Hennessy

Lindley and Morris

Mechanization
Some Glimpses at the Agda Code

- Baseline: coinductive definitions of
 - session types with recursion
 - functional and relational duality
- inductive definition of session types with recursion
- definition of LM duality
- correspondence of LM duality with functional duality (new result)
- Not shown:
 - soundness of naive duality for tail recursive session types (new result)
 - definition of BH duality and its soundness
 - what if recursive types are not normalized? contractiveness . . .
- Details in paper at the PLACES 2020 workshop
Plan of proof: soundness of \(\text{Imd} \)

\[
\begin{align*}
\text{IND.SType} & \xrightarrow{\text{unravel}} \text{COI.SType} \\
\text{IND.\text{Imdual}} & \downarrow \\
\text{IND.SType} & \xrightarrow{\text{unravel}} \text{COI.SType} \\
\text{COI.SType} & \xrightarrow{\text{COI.dual}} \text{COI.SType} \\
\sim & \\
\end{align*}
\]
Plan of proof: soundness of naive dual for tail-recursive session types
Plan of proof: soundness of message closure
Plan of proof: soundness of message closure

\[
\begin{align*}
\text{IND.SType} & \xrightarrow{\text{unravel}} \text{COI.SType} \\
\text{mclo} & \downarrow \quad \downarrow \\
\text{IND.STail} & \xrightarrow{\text{unravel}} \text{COI.SType} \\
\text{IND.naive-dual} & \downarrow \quad \downarrow \\
\text{IND.STail} & \xrightarrow{\text{unravel}} \text{COI.SType} \\
& \xrightarrow{\sim} \\
& \text{COI.dual}
\end{align*}
\]
Thank you!