Towards Formalising Trace Equivalence
for Global and Local Types

David Castro-Perez Francisco Ferreira Lorenzo Gheri
Nobuko Yoshida

Imperial College London

Verification of Session Types Workshop - 4th June 2020
Certifying the Semantics of Communication

This work is part of a bigger project for certifying, and reasoning about, programs in distributed systems.

\[
\begin{align*}
\Red{G} \xrightarrow{\rho} \Red{G^c} \xrightarrow{\text{LTS}} \Red{\text{Traces}} \\
\Red{L} \xrightarrow{\rho_L} \Red{L^c} \xrightarrow{\text{LTS}} \Red{\text{Traces}}
\end{align*}
\]

- We formalize the meta-theory of multiparty session types\(^1\).
- We use the Coq\(^2\) Proof Assistant.

\(^2\) https://coq.inria.fr/
Global and Local Types

Inductively defined by the following syntaxes:

\[
G ::= \text{end} \quad \text{end type} \\
| X \quad \text{variable} \\
| \mu X.G \quad \text{recursion} \\
| p \to q : \{\ell_i(S_i).G_i\}_{i \in I} \quad \text{message}
\]

\[
L ::= \text{end} \quad \text{end type} \\
| X \quad \text{variable} \\
| \mu X.L \quad \text{recursion} \\
| ![q]; \{\ell_i(S_i).L_i\}_{i \in I} \quad \text{send type} \\
| ??[p]; \{\ell_i(S_i).L_i\}_{i \in I} \quad \text{receive type}
\]

Types are assumed *closed* (no free variables) and recursion variables are always assumed *guarded* in types (namely types like $\mu X.X$ are not allowed).
Projection Rules:

- \textbf{end}|r = \text{end}; [\text{PROJ-END}]
- X|r = X; [\text{PROJ-VAR}]
- (\mu X.G)|r = \mu X.(G|r) [\text{PROJ-REC}]
- r = p \text{ implies } p \rightarrow q : \{\ell_i(S_i).G_i\}_{i \in I}|r = !\{q\}; \{\ell_i(S_i).G_i|r\}_{i \in I}; [\text{PROJ-SEND}]
- r = q \text{ implies } p \rightarrow q : \{\ell_i(S_i).G_i\}_{i \in I}|r = ?\{p\}; \{\ell_i(S_i).G_i|r\}_{i \in I}; [\text{PROJ-RECV}]
- r \neq p, r \neq q \text{ and, for all } i, j \in I, G_i|r = G_j|r; \text{ implies } p \rightarrow q : \{\ell_i(S_i).G_i\}_{i \in I}|r = G_1|r; [\text{PROJ-CONT}]
- undefined otherwise.
Warm-Up!

A global type for a simple protocol:

\[G = p \rightarrow q : \ell(S).q \rightarrow r : \ell'(S').\text{end} \]

and its projection on participant q:

\[G|q = {?[p];\ell(S).!{r};\ell'(S')}\text{.end} \]

Do these global types have well defined projections?

\[p \rightarrow q : \{ \ell_1(\text{oranges}).\text{end} \}, \ell_2(\text{bananas}).\text{end} \]

\[\text{YES!} \]

\[p \rightarrow q : \{ \ell_1(\text{oranges}).\text{end} \}, \ell_2(\text{bananas}).q \rightarrow r : \ell_3(\text{pears}).\text{end} \]

\[\text{NO!} \]

\[p \rightarrow q : \{ \ell_1(\text{oranges}).p \rightarrow r : \ell_3(\text{pears}).\text{end} \}, \ell_2(\text{bananas}).q \rightarrow r : \ell_3(\text{pears}).\text{end} \]

\[\text{NO!} \]

\[p \rightarrow q : \{ \ell_1(\text{oranges}).q \rightarrow r : \ell_3(\text{pears}).\text{end} \}, \ell_2(\text{bananas}).q \rightarrow r : \ell_3(\text{pears}).\text{end} \]

\[\text{YES!} \]
A global type for a simple protocol:

\[G = p \to q : \ell(S).q \to r : \ell'(S').\text{end} \]

and its projection on participant q:

\[G|q = ?[p];\ell(S).![r];\ell'(S').\text{end} \]

Do these global types have well defined projections?

\[p \to q : \{ \ell_1(\text{oranges}).\text{end}, \]
\[\ell_2(\text{bananas}).q \to p : \ell_3(\text{pears}).\text{end} \} \]

\[p \to q : \{ \ell_1(\text{oranges}).\text{end}, \]
\[\ell_2(\text{bananas}).q \to r : \ell_3(\text{pears}).\text{end} \} \]

\[p \to q : \{ \ell_1(\text{oranges}).p \to r : \ell_3(\text{pears}).\text{end}, \]
\[\ell_2(\text{bananas}).q \to r : \ell_3(\text{pears}).\text{end} \} \]

\[p \to q : \{ \ell_1(\text{oranges}).q \to r : \ell_3(\text{pears}).\text{end}, \]
\[\ell_2(\text{bananas}).q \to r : \ell_3(\text{pears}).\text{end} \} \]
Warm-Up!

A global type for a simple protocol:

\[G = p \rightarrow q : \ell(S).q \rightarrow r : \ell'(S').\text{end} \]

and its projection on participant q:

\[G\upharpoonright q = ?[p];\ell(S).!r;\ell'(S').\text{end} \]

Do these global types have well defined projections?

- \[p \rightarrow q : \{ \ell_1(\text{oranges}).\text{end}, \ell_2(\text{bananas}).q \rightarrow p : \ell_3(\text{pears}).\text{end} \} \quad \text{YES!} \]
- \[p \rightarrow q : \{ \ell_1(\text{oranges}).\text{end}, \ell_2(\text{bananas}).q \rightarrow r : \ell_3(\text{pears}).\text{end} \} \quad \text{NO!} \]
- \[p \rightarrow q : \{ \ell_1(\text{oranges}).p \rightarrow r : \ell_3(\text{pears}).\text{end}, \ell_2(\text{bananas}).q \rightarrow r : \ell_3(\text{pears}).\text{end} \} \quad \text{NO!} \]
- \[p \rightarrow q : \{ \ell_1(\text{oranges}).q \rightarrow r : \ell_3(\text{pears}).\text{end}, \ell_2(\text{bananas}).q \rightarrow r : \ell_3(\text{pears}).\text{end} \} \quad \text{YES!} \]
Certifying the Semantics of Communication

G ↦ ρ ↦ G^c ↦ LTS ↦ Traces
L ↦ ρ_L ↦ L^c ↦ LTS ↦ Traces

- Multiparty Session Types ✓
- Coinductive Trees (equi-recursive point of view)
- Semantics by Traces
"We adopt the *equi-recursive viewpoint*, i.e., we identify $\mu X.G$ and $G\{\mu X.G/X\}$."

Example: $\mu X.p \rightarrow q : \ell(S).X$ is "the same as" $p \rightarrow q : \ell(S).p \rightarrow q : \ell(S).X$), which is "the same as" $p \rightarrow q : \ell(S).p \rightarrow q : \ell(S).p \rightarrow q : (\mu X.p \rightarrow q : \ell(S).X)$, ... with a coinductive unrolling process!"
An Equi-Recursive Viewpoint

“We adopt the *equi-recursive viewpoint*, i.e., we identify $\mu X.G$ and $G\{\mu X.G/X\}$.”

Example:
$\mu X.p \rightarrow q : \ell(S).X$ is “the same as” $p \rightarrow q : \ell(S). (\mu X.p \rightarrow q : \ell(S).X)$,
“We adopt the *equi-recursive viewpoint*, i.e., we identify $\mu X . G$ and $G\{\mu X . G/X\}$.”

Example:
$\mu X . p \rightarrow q : \ell(S).X$ is “the same as” $p \rightarrow q : \ell(S).(\mu X . p \rightarrow q : \ell(S).X)$, which is “the same as” $p \rightarrow q : \ell(S).p \rightarrow q : \ell(S).(\mu X . p \rightarrow q : \ell(S).X)$,
"We adopt the equi-recursive viewpoint, i.e., we identify $\mu X.G$ and $G{\mu X.G/X}$."

Example:
$\mu X.p \to q : \ell(S).X$ is “the same as” $p \to q : \ell(S). (\mu X.p \to q : \ell(S).X)$,
which is “the same as” $p \to q : \ell(S).p \to q : \ell(S). (\mu X.p \to q : \ell(S).X)$,
which is “the same as” $p \to q : \ell(S).p \to q : \ell(S).p \to q : \ell(S). (\mu X.p \to q : \ell(S).X)$,
An Equi-Recursive Viewpoint

“We adopt the equi-recursive viewpoint, i.e., we identify $\mu X . G$ and $G\{\mu X . G / X \}$.”

Example:
$\mu X . p \rightarrow q : \ell(S).X$ is “the same as” $p \rightarrow q : \ell(S).(\mu X . p \rightarrow q : \ell(S).X)$,
which is “the same as” $p \rightarrow q : \ell(S).p \rightarrow q : \ell(S).(\mu X . p \rightarrow q : \ell(S).X)$,
which is “the same as” $p \rightarrow q : \ell(S).p \rightarrow q : \ell(S).p \rightarrow q : \ell(S).(\mu X . p \rightarrow q : \ell(S).X)$,
which is “the same as” $p \rightarrow q : \ell(S).p \rightarrow q : \ell(S).p \rightarrow q : \ell(S).p \rightarrow q : (\mu X . p \rightarrow q : \ell(S).X)$.

David Castro-Perez, Francisco Ferreira, Lorenzo Gheri, Nobuko Yoshida Towards Formalising Trace Equivalence
An Equi-Recursive Viewpoint

“We adopt the *equi-recursive viewpoint*, i.e., we identify $\mu X . G$ and $G\{\mu X . G/X\}$.”

Example:
$\mu X . p \rightarrow q : \ell(S).X$ is “the same as” $p \rightarrow q : \ell(S).(\mu X . p \rightarrow q : \ell(S).X)$,
which is “the same as” $p \rightarrow q : \ell(S).p \rightarrow q : \ell(S).(\mu X . p \rightarrow q : \ell(S).X)$,
which is “the same as”
$p \rightarrow q : \ell(S).p \rightarrow q : \ell(S).p \rightarrow q : \ell(S).(\mu X . p \rightarrow q : \ell(S).X)$,
which is “the same as”
$p \rightarrow q : \ell(S).p \rightarrow q : \ell(S).p \rightarrow q : \ell(S).p \rightarrow q : (\mu X . p \rightarrow q : \ell(S).X)$,

... with a coinductive unrolling process!
Coinductive Asynchronous Trees

Global Trees:

\[G^c ::= \text{end}^c \quad \text{end type} \]

\[\mid p \xrightarrow{\ell_i} q : \{\ell_i(S_i).G^c_i\}_{i \in I} \quad \text{message send} \]

\[\mid p \xleftarrow{\ell_i} q : \{\ell_i(S_i).G^c_i\}_{i \in I} \quad \text{message receive} \]

Coinductive unrolling \(\rho \):

\[\begin{align*}
\text{end} \rho \text{end}^c & \quad \mu X.G \rho G^c \\
G\{\mu X.G/X\} & \quad G^c
\end{align*} \]

\[\forall i \in I. G_i \rho G^c_i \]

\[p \rightarrow q : \{\ell_i(S_i).G_i\}_{i \in I} \rho p \rightarrow q : \{\ell_i(S_i).G^c_i\}_{i \in I} \]
Coinductive Asynchronous Trees

Global Trees:

\[
\begin{align*}
G^c & ::= \text{end}^c & \text{end type} \\
& | \quad p \to q : \{ \ell_i(S_i).G^c_i \}_{i \in I} & \text{message send} \\
& | \quad p \xrightarrow{\ell_i} q : \{ \ell_i(S_i).G^c_i \}_{i \in I} & \text{message receive}
\end{align*}
\]

Local Trees:

\[
\begin{align*}
L^c & ::= \text{end}^c & \text{end type} \\
& | \quad !^c[p]; \{ \ell_i(S_i).L^c_i \}_{i \in I} & \text{send type} \\
& | \quad ?^c[q]; \{ \ell_i(S_i).L^c_i \}_{i \in I} & \text{receive type}
\end{align*}
\]
Certifying the Semantics of Communication

- Multiparty Session Types ✓
- Coinductive Trees (equi-recursive point of view) ✓
- Semantics by Traces
p sends a message to q with label \(\ell \):

\[p \rightarrow q : \ell(S).G^c \]

We keep track of this communication with a queue:

\[\epsilon \]
Asynchronous Semantics

p sends a message to q with label ℓ:

$$p \rightarrow q : \ell(S).G^c \xrightarrow{\text{step } \ell} p \leadsto q : \ell(S).G^c$$

We keep track of this communication with a queue:

$$\epsilon \xrightarrow{\text{enqueue}} [(\ell, S)]$$
p sends a message to q with label ℓ:

\[p \rightarrow q : \ell(S).G^c \quad \text{step } \ell \quad p \rightsquigarrow q : \ell(S).G^c \quad \text{step } \ell \quad G^c \]

We keep track of this communication with a queue:

\[\epsilon \xrightarrow{\text{enqueue}} [(\ell, S)] \xrightarrow{\text{dequeue}} \epsilon \]
Asynchronous Semantics

p sends a message to q with label \(\ell \):

\[
p \rightarrow q : \ell(S).G^c \xrightarrow{\text{step } \ell} p \leadsto q : \ell(S).G^c \xrightarrow{\text{step } \ell} G^c
\]

We keep track of this communication with a queue:

\[
\varepsilon \xrightarrow{\text{enqueue}} [(\ell, S)] \xrightarrow{\text{dequeue}} \varepsilon
\]

We have such a queue for each pair of participants.
p sends and q receive:

\[!^c[q];\ell(S).L^c \quad \xrightarrow{\text{step}} \quad L^c \]

\[Q(p, q) = \epsilon \quad \xrightarrow{\text{enqueue}} \quad Q(p, q) = [(\ell, S)] \quad \xrightarrow{\text{dequeue}} \quad Q(p, q) = \epsilon \]

\[?^c[p];\ell(S).L^{c'} \quad \xrightarrow{\text{step}} \quad L^{c'} \]

Queue Environments

A *queue environment* is a finitely supported function \(Q \) of type \(\text{role} \times \text{role} \to W \), where \(W \) is the set of finite words \(w \) (queues) on the alphabet \(\text{labels} \times \text{sorts} \).
Global and Local Steps

p sends:

\[p \rightarrow q : \ell(S).G^c \xrightarrow{\text{step}_1} p \sim q : \ell(S).G^c \xrightarrow{\text{step}_2} G^c \]

\[!^c[q]; \ell(S).L^c \xrightarrow{\text{step}_1} L^c \]
Global and Local Steps

p sends:

\[p \to q : \ell(S).G \]

\[\text{step}_1 \]

\[\vdash_p \]

\[!^c[q]; \ell(S).L \]

\[\text{step}_1 \]

q receives:

\[p \to q : \ell(S).G \]

\[\text{step}_2 \]

\[\vdash_q \]

\[?^c[p]; \ell(S).L' \]

\[\text{step}_2 \]
We want to consider altogether the different local types involved in the communication.

Environments for Local Types

An *environment for local types* is a finitely supported function E of type \(\text{role} \rightarrow \text{l_ty}^c \).
We want to consider altogether the different local types involved in the communication.

Environments for Local Types

An *environment for local types* is a finitely supported function E of type $\text{role} \rightarrow \text{l}_{\text{ty}}^c$.

Why?!
We want to consider altogether the different local types involved in the communication.

Environments for Local Types

An *environment for local types* is a finitely supported function E of type $\text{role} \rightarrow \text{l}_\text{ty}^c$.

Why?!

It will be $E(p) = L^c_p$, where $G^c \models_L^c L^c_p$.
We get the one-shot projection of a global type both on environments of local types and on queue environments.
Step Results

Theorem (Step Soundness)

If $G^c \parallel (E, Q)$ and $G^c \xrightarrow{\text{step}} G^c'$, then there exist E' and Q', such that $G^c' \parallel (E', Q')$ and $(E, Q) \xrightarrow{\text{step}} (E', Q')$.

Theorem (Step Completeness)

If $G^c \parallel (E, Q)$ and $(E, Q) \xrightarrow{\text{step}} (E', Q')$, then there exists G^c', such that $G^c' \parallel (E', Q')$ and $G^c \xrightarrow{\text{step}} G^c'$.
Labelled Transition System

Keeping track of messages...

Actions
An *action* a is an object of the shape:
- either $pq!(\ell, S)$ (send action),
- or $pq?\!(\ell, S)$ (receive action).

Traces
A *trace* t is a coinductive, possibly infinite, stream of actions:
- $a_1a_2a_3\ldots$ is a trace.
p sends and q receives:

\[p \rightarrow q : \ell(S).G^c \xrightarrow{\text{step}_1} p \sim \ell q : \ell(S).G^c \xrightarrow{\text{step}_2} G^c \]

Let \(t \) be a trace for \(G^c \),

\[pq!(\ell, S)pq?(\ell, S)t \xleftarrow{\text{step}_1} pq?!(\ell, S)t \xleftarrow{\text{step}_2} t \]
Non-Determinism

Let us consider two different executions:

\[p \rightarrow q : \{ \ell_i(S_i).G^c_i \}_{i \in I} \xrightarrow{\text{step } \ell_1} p \xrightarrow{\ell_1} q : \{ \ell_i(S_i).G^c_i \}_{i \in I} \xrightarrow{\text{step } \ell_1} G^c_1 \]

\[p \rightarrow q : \{ \ell_i(S_i).G^c_i \}_{i \in I} \xrightarrow{\text{step } \ell_2} p \xrightarrow{\ell_2} q : \{ \ell_i(S_i).G^c_i \}_{i \in I} \xrightarrow{\text{step } \ell_2} G^c_2 \]

If \(t_1 \) is a trace admissible for \(G^c_1 \) and \(t_2 \) is admissible for \(G^c_2 \), both

\[pq!(\ell_1, S_1)pq?(\ell_1, S_1)t_1 \]

and

\[pq!(\ell_2, S_2)pq?(\ell_2, S_2)t_2 \]

are admissible for \(p \rightarrow q : \{ \ell_i(S_i).G^c_i \}_{i \in I} \).
And finally...

Theorem (Trace Equivalence)

If \(G_c \upharpoonright c \in E \), then the set of traces admissible for \(G_c \) is equal to the set of traces admissible for \(E \).
And finally...

Theorem (Trace Equivalence)

If $G^c \models^c E$ then the set of traces admissible for G^c is equal to the set of traces admissible for E.
Certifying the Semantics of Communication

- Multiparty Session Types ✓
- Coinductive Trees (equi-recursive point of view) ✓
- Semantics by Traces ✓ (almost)
Things We Used

Formalisation in the Coq3 Proof Assistant, in particular we have used:

- the SSReflect4 proof language;
- the Mathematical Components5 libraries;
- the PaCo library for parametrized coinduction6.

3https://coq.inria.fr/
4https://coq.inria.fr/refman/proof-engine/ssreflect-proof-language.html
5https://math-comp.github.io/
6https://github.com/snu-sf/paco
Conclusion

Things we have got:
- a formalisation of the metatheory of multiparty session types in Coq
- two birds with a (coinductive) stone: equi-recursion and no bindings
- (non-deterministic) semantics through labelled transition systems
- types that are ready for typing!

From here what?
- a more comprehensive version of MPST (e.g., with merge operator)
- communicating finite state automata
- ... the future is unwritten!
Conclusion

Things we have got:
- a formalisation of the metatheory of multiparty session types in Coq
- two birds with a (coinductive) stone: equi-recursion and no bindings
- (non-deterministic) semantics through labelled transition systems
- types that are ready for typing! Please attend Francisco’s talk! :)

From here what?
- a more comprehensive version of MPST (e.g., with merge operator)
- communicating finite state automata
- ... the future is unwritten!

Thank You!

David Castro-Perez, Francisco Ferreira, Lorenzo Gheri, Nobuko Y
Towards Formalising Trace Equivalence