
Multimodal Grammar Library

Peter Ljunglöf Gabriel Amores Robin Cooper
David Hjelm Oliver Lemon Pilar Manchón

Guillermo Pérez Aarne Ranta

Distribution: Public

TALK
Talk and Look: Tools for Ambient Linguistic Knowledge

IST-507802 Deliverable 1.2b

07/02/06

Project funded by the European Community
under the Sixth Framework Programme for
Research and Technological Development

The deliverable identification sheet is to be found on the reverse of this page.

Project ref. no. IST-507802
Project acronym TALK
Project full title Talk and Look: Tools for Ambient Linguistic Knowledge
Instrument STREP
Thematic Priority Information Society Technologies
Start date / duration 01 January 2004 / 36 Months

Security Public
Contractual date of delivery Dec 05
Actual date of delivery 07/02/06
Deliverable number 1.2b
Deliverable title Multimodal Grammar Library
Type Report
Status & version Public Final
Number of pages 73 (excluding front matter)
Contributing WP 1
WP/Task responsible UGOT
Other contributors UEDIN, USE
Author(s) Peter Ljunglöf, Gabriel Amores, Robin Cooper, David

Hjelm, Oliver Lemon, Pilar Manchón, Guillermo Pérez and
Aarne Ranta

EC Project Officer Evangelia Markidou
Keywords grammar, multilingual, multimodal, multimodal fusion, dia-

logue systems, Grammatical Framework, TrindiKit, GoDiS,
DelfosNCL

The partners in TALK are: Saarland University USAAR

University of Edinburgh HCRC UEDIN

University of Gothenburg UGOT

University of Cambridge UCAM

University of Seville USE

Deutches Forschungszentrum fur Künstliche Intelligenz DFKI

Linguamatics LING

BMW Forschung und Technik GmbH BMW

Robert Bosch GmbH BOSCH

For copies of reports, updates on project activities and other TALK-related information, contact:

TheTALK Project Co-ordinator
Prof. Manfred Pinkal
Computerlinguistik
Fachrichtung 4.7 Allgemeine Linguistik
Postfach 15 11 50
66041 Saarbrücken, Germany
pinkal@coli.uni-sb.de
Phone +49 (681) 302-4343 - Fax +49 (681) 302-4351

Copies of reports and other material can also be accessed viathe project’s administration homepage,
http://www.talk-project.org

c©2006, The Individual Authors.

No part of this document may be reproduced or transmitted in any form, or by any means, electronic
or mechanical, including photocopy, recording, or any information storage and retrieval system, without
permission from the copyright owner.

Contents

Summary .. . 1

1 Introduction 2
1.1 Multimodal Interfaces 3

1.1.1 Parallel multimodality 3

1.1.2 Integrated multimodality 4

1.2 Grammatical Framework 5

1.2.1 Multimodal dialogue system grammars 5

1.2.2 Resource modules – reusing common information 6

1.2.3 Hierarchical grammar modules 9

1.3 DelfosNCL 10

1.4 Summary .. . 11

2 Multimodal grammars and multimodal fusion 12
2.1 Demonstrative Expressions and Multimodal Grammars 12

2.1.1 Adding multimodality to a unimodal grammar 13

2.1.2 Multimodal resource grammars 17

2.2 Two strategies of multimodal fusion in DelfosNCL 21

2.2.1 From speech-only to multimodal interaction 22

2.2.2 Multimodal Fusion: Two Strategies 22

2.2.3 Comparison of Strategies 27

2.3 Summary .. . 28

3 Description of the Multimodal Grammar Library 29
3.1 The GF/GoDiS grammar library 29

3.1.1 The module hierarchy of the GF/GoDiS grammar library 29

3.1.2 Translating between user languages and GoDiS dialogue moves 31

3.1.3 Resources used in the grammar library 31

3.2 Grammars for describing ontologies 32

3.2.1 Databases .. . 32

3.2.2 Linguistic ontologies 33

3.3 The GF/GoDiS dialogue move grammar 33

i

IST-507802 TALK D:1.2b 07/02/06 Page ii/73

3.3.1 The type hierarchy in GoDiS 33

3.3.2 Representing GoDiS types in GF abstract syntax 37

3.4 Concrete syntaxes for the central GF/GoDiS grammar 41

3.4.1 Prolog syntax for connecting to GoDiS – Semantics 41

3.4.2 Natural language utterances – English and Swedish 42

3.4.3 Parallel multimodality – Thinlet GUI XML-format 48

3.4.4 Integrated multimodality – utterances with click modality 52

3.4.5 Strategies for improving speech recognition 53

3.5 Domain dependent grammars 56

3.5.1 What is needed to describe a new domain? 56

3.5.2 DJ GoDIS .60

3.5.3 Agenda-Talk .. . 61

3.6 The Edinburgh Town Info grammar 63

3.6.1 The unimodal grammar 63

3.6.2 Adding integrated multimodality 64

3.6.3 Coverage .. 65

3.7 Summary .. . 65

4 Summary and Conclusions 67

A The Multimodal Grammar Library 71
A.1 Downloading the grammar library 71

A.2 Installation instructions 71

A.3 Testing the grammars 72

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 1/73

Summary

The ISU approach uses abstract representations for dialogue states and update rules which allow the
generic characterisation of flexible dialogue strategies.This enables the same code for dialogue man-
agement techniques to be used for different natural languages and for different domains.

In this deliverable, we show that by using an abstract representation for grammars, we can further enable
rapid porting of dialogue systems between languages, domains and modalities. The main tool in defining
such grammars is Grammatical Framework (GF), which is used in collaboration by UGOT, UEDIN and
UCAM for making ISU-based dialogue systems.

We describe two approaches to adding multimodality to unimodal dialogue systems and grammars. The
first approach is to implement multimodality at the grammar level. We give a language- and domain-
independent method for how to add multimodal information toa unimodal GF grammar, thus simplifying
the transition from a speech-only dialogue system to a multimodal one. The second approach is to im-
plement multimodality at the level of the dialogue manager,which is tried out in the ISU-based dialogue
system DelfosNCL, developed by USEV.

The main part of the deliverable is a detailed description ofthe multimodal and multilingual GF/GoDiS
grammar library, written in Grammatical Framework. The grammar library connects user and system
utterances specified in GF with a dialogue system using the ISU-based GoDiS dialogue manager. The
library is designed for making it easy to add new dialogue domains, source languages, and input and
output modalities. Currently the library consists of two dialogue domains, each with two source languages
and three different modalities. The two domains are the calendar applicationAgendaTalk, and the MP3
playerDJ GoDiS.

Furthermore, two additional multimodal GF grammars are described, which have been created using the
method for adding multimodality. They are not part of the GF/GoDiS grammar library since they are not
part of a GoDiS dialogue system, but can be seen as proofs-of-concept of the generality of the method.
TheTram Demogrammar, used by the UGOT Tram Information System (GOTTIS),is used as a pedagog-
ical example when introducing the method. The UEDINTown Infogrammar, used with the ISU-based
DIPPER dialogue manager, is used to test the method.

By using the diversity of the GF module system, such as resource modules, incomplete modules, inter-
faces and instances, we have maximized sharing of common information between languages, modalities,
ontologies and domains. This is done to make adding a new language, modality, ontology or domain as
simple as possible.

Version: Final (Public) Distribution: Public

Chapter 1

Introduction

This deliverable concerns the development of technology incorporating multimodality into dialogue sys-
tems using grammars. We discuss two alternative strategies: multimodality can either be handled as part
of dialogue management or we can construct multimodal grammars. We define a general way of creating
multimodal grammars from unimodal grammars and describe the multimodal grammar library that has
been built using these techniques.

In making the Multimodal Grammar Library we exploit the advantages of the ISU approach. The ISU
approach utilizes structured Information States to keep track of dialogue context information. These
Information States can be read and updated by several different modules which access precisely the infor-
mation that they need. This enables a modular architecture which allows generic solutions for dialogue
technology. For example,

• different language modules can interact with essentially similar Information States, enabling rapid
porting of dialogue systems from one language to another andthe creation of multilingual dialogue
systems;

• coding of dialogue behaviour is supported independently oflanguage and domain, thus allowing
for the rapid porting of dialogue systems to different domains;

• the use of structured Information States allows straightforward implementation of flexible dialogue
systems which can access and modify information in the Information State in different sequences
and by varying means.

In this deliverable, as well as in the earlier deliverables D1.1 and D1.2a [Ljunglöf et al., 2005, Bringert
et al., 2005], we show that by using an abstract representation for grammars, we can further enable rapid
porting of dialogue systems between languages, domains andmodalities. The main tool in defining such
grammars is Grammatical Framework (GF), which is used in collaboration by UGOT, UEDIN and UCAM
for making ISU-based dialogue systems.

Layout of the deliverable

We begin by giving a general description of multimodal interfaces and make a distinction betweenparallel
andintegrated multimodality(the latter is also known asmultimodal fusion). We then give an introduction
to the two grammar systems we have been working with – Grammatical Framework (GF) and DelfosNCL.

2

IST-507802 TALK D:1.2b 07/02/06 Page 3/73

In chapter 2 we present techniques for incorporating multimodality into using these two grammar sys-
tems. We describe how multimodality can be specified in a GF grammar, and give a method for adding
multimodality to a unimodal grammar. As a pedagogical example we describe a multimodal version of
the UGOTTram Demogrammar. Furthermore, we describe and compare two strategies for multimodal
fusion in DelfosNCL.

In chapter 3 we describe the contents of the multimodal grammar library, which is implemented in GF as
a front-end to the generic dialogue system GoDiS built within TrindiKit. The library also includes several
ontology databases and two example dialogue domains – a calendar application calledAgendaTalk, and an
MP3 player application calledDJ GoDiS. The library is designed for making is easy to add new dialogue
domains, source languages, and input and output modalities. As a test of the generality of the method
of adding multimodality to a grammar, the multimodal version of the UEDIN Town Infogrammar is
described.

1.1 Multimodal Interfaces

Multimodal interfaces allow for more flexible and natural interactions between human users and computer
systems. They benefit from a variety of communication channels such as speech, text, gesture, handwrit-
ing, etc. Multimodal systems have been largely studied since the appearance of the “Put-That-There” sys-
tem [Bolt, 1980]. The results of Oviatt et al. [1997] showed the potential benefits of multimodal systems
compared to unimodal ones in terms of user preferences and the possibility of mutual disambiguation.

The fusion of multimodal inputs has also evolved since Bolt’s proposal, which suffered from lack of
generality, defining rules that could only apply to speech-driven systems. Johnston [1998] proposed a
new approach using a unification based multidimensional parsing of typed feature structures that partially
overcame the limitations previously mentioned. Johnston and Bangalore [2000] found that this solution
could be improved both at parsing level, because of its inherent computational complexity, and at natural
language understanding level because it did not allow a tight-coupling of parsing and input recognition
(speech or gesture). They proposed an alternative approachusing finite-state multimodal grammars.

In this deliverable we explore two ways of implementing multimodal interfaces. In the first approach
we follow in Johnston’s footsteps and implement multimodality at the grammar-level, as multimodal GF
grammars. As we will show, GF is well suited for implementingmultimodality – different modalities
can be realised as discontinuous constituents, and the possibility of defining macros in GF can be used
to streamline the task of adding multimodality to a unimodalgrammar. Also, there are efficient pars-
ing algorithms for GF grammars with discontinuous constituents [Ljunglöf, 2004, Burden and Ljunglöf,
2005].

In the second approach we implement multimodal fusion not atgrammar level, but at the level of the
dialogue manager within an Information State Update (ISU) approach. This approach is tried out in
DelfosNCL.

1.1.1 Parallel multimodality

Parallel multimodalityis a straightforward instance of multilinguality. It meansthat the concrete syntaxes
associated with an abstract syntax are not just different natural languages, but different representation
modalities, encoded by language-like notations such as graphic representation formalisms. Examples of

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 4/73

parallel multimodality are:

• When a route is described, in parallel, by speech and by a linedrawn on a map.

• When a list of objects is presented, in parallel, by speech and as a list of the computer screen.

Both descriptions convey the full information alone, without support from the other. This raises the
dialogue management issue of whether all information should be presented in all modalities. For the
above given examples:

• All stops are indicated on the graphical presentation of a route, whereas in the natural language
presentation only stops where the user must change are presented.

• If the list of objects is large, it is unfeasible to present all of them in natural language. An alternative
is to say e.g. how many objects there are and just name the first. In the graphical representation
however, the full list of objects can be presented.

Because GF permits the suppression of information in concrete syntax, this issue can be treated on the
level of grammar instead of dialogue management.

1.1.2 Integrated multimodality

Demonstrative expressionsare an old idea, which provide an example ofintegrated multimodality, as
opposed to parallel multimodality. In parallel multimodality, speech and other modes of communication
are just alternative ways to convey the same information. Demonstrative expressions, however, get their
meaning from the context:

This train is faster thanthat airplane.

I want to go fromthis placeto this place.

I would like to listen tothis song.

In particular, as in these examples, the meaning can be obtained from accompanying pointing gestures.

Thus the meaning-bearing unit is neither the words nor the gestures alone, but the combination of the two
modalities. The problem of multimodal fusion described above is then how to combine the two modalities
into one multimodal utterance. How to define integrated multimodality with a grammar is less obvious
than parallel multimodality. The GF solution makes essential use of records, and not just strings, as
outcomes of linearization. In brief, different modality “channels” are stored in different fields of a record,
and it is the combination of the different fields that is sent to the dialogue system parser. The DelfosNCL
solution is to implement fusion at the dialogue level instead of at the grammar level.

Representing demonstratives in semantics and grammar

When formalizing the semantics of demonstratives, we can combine syntax with coordinates:

I want to go fromthis placeto this place.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 5/73

is interpreted as something like

want(I, go, this(place,(123,45)), this(place,(98,10)))

Now, the same semantic value can be given in many ways, by performing the clicks at different points of
time in relation to the speech:

I want to go fromthis placeCLICK(123,45) tothis placeCLICK(98,10)

I want to go fromthis placeto this placeCLICK(123,45)CLICK(98,10)

CLICK(123,45)CLICK(98,10) I want to go fromthis placeto this place

How do we build the value compositionally in parsing? Traditional parsing is sequential: its input is a
string of tokens. It works for demonstratives only if the pointing is adjacent to the spoken expression. In
the actual input, the demonstrative word can be separated from the accompanying click by other words.
The two can also be simultaneous.

1.2 Grammatical Framework

In this section we only describe some details of GrammaticalFramework (GF) which are crucial for this
deliverable. GF is described in more detail by Ranta [2004],in TALK deliverable D1.2a [Bringert et al.,
2005], and on the GF homepage:

http://www.cs.chalmers.se/~aarne/GF/

1.2.1 Multimodal dialogue system grammars

Asynchronous syntax in GF

The main idea of GF is the separation of abstract and concretesyntax. The abstract part of a grammar
defines a set of abstract syntactic structures, called abstract terms or trees; and the concrete part defines a
relation between abstract structures and concrete structures:

abstract syntax trees ⇐⇒ concrete syntax objects

When modelling context-free grammar in GF, the concrete syntax objects are just strings. But they can be
more structured objects as well – in general, they arerecordsof different kinds of objects. For example, a
demonstrative expression can be linearized into a record oftwo strings:

this placeCLICK(123,45) ⇐⇒ {s = "this place"; p = "(123,45)"}

The record

{s = "I want to go from this place to this place";
p = "(123,45) (98,10)"}

represents any combination of the sentence and the clicks, as long as the clicks appear in this order,
including the examples at the end of section 1.1.2.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 6/73

Integrated multimodality and discontinuous constituents

The GF representation of integrated multimodality is similar to the representation ofdiscontinous con-
stituents. For instance, assume“has arrived” is a verb phrase in English, which can be used both in
declarative sentences and questions,

shehas arrived

hasshearrived

In the question, the two words are separated from each other.If “has arrived” is a constituent of the
question, it is thus discontinuous. To represent such constituents in GF, records can be used: we split verb
phrases (VP) into a finite and infinitive part.

lincat VP = {fin, inf : Str};

lin Indic np vp = {s = np.s ++ vp.fin ++ vp.inf};
Quest np vp = {s = vp.fin ++ np.s ++ vp.inf};

From grammars to dialogue systems

The general recipe for using GF when building dialogue systems is to write a grammar with the following
components:

• The abstract syntax defines the semantics (the "ontology") of the domain of the system.

• The concrete syntaxes define alternative modes of input and output.

The engineering advantages of this approach have to do partly with the declarativity of the description,
partly with the tools provided by GF to derive different components of the system:

• The type checker guarantees that all the input and output modes match with the ontology.

• The grammar compiler generates parsers for each input grammar and generators for each output
grammar.

• Translators between GF’s abstract syntax and other ontology description languages enable commu-
nication with different kinds of dialogue managers and cover e.g. Prolog terms and XML objects.

• Translators from GF’s concrete syntax to speech recognition formats make it possible to generate
e.g. Nuance grammars and ATK language models.

1.2.2 Resource modules – reusing common information

Apart from abstract and concrete modules, there is a third kind of grammar module in GF calledresource
modules. There are two kinds of judgements possible in a resource module: parameter declarations, and
operator definitions.

The parameters and operators in a resource module are imported to a concrete grammar byopeningthe
resource module:

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 7/73

concrete Cnc of Abs = open Res in ...

Several resource modules can be opened in parallel:

concrete Cnc of Abs = open Res 1, ..., Res n in ...

If a parameterP or operationF is defined in several resource modules, there is a conflict andwe have to
use qualified referenceResi .P or Resi .F to disambiguate.

We can also introduce abbreviations for writingR.P or S.F instead ofRes1.P or Resn.F :

concrete Cnc of Abs = open (R=Res 1), ..., (S=Res n) in ...

Parameter declarations

Parameters are non-recursive datatypes which are used in concrete linearizations when describing inflec-
tion tables, and inherent feaures. Standard examples are the source-language specific parametersnumber,
gender, caseetc.:1

param Number = Sing | Plur;
Gender = Neutr | Utr Masc;
Masc = Masc | Nomasc;
Case = Nom | Gen;

Note that parameters can be hierarchic, as in the definition of Swedish gender. But they are not allowed to
be recursive, meaning that there are always a finite number ofparameters of a given parameter type.

Parameters are used in inflection tables and as inherent features, and are further described in TALK deliv-
erable D1.2a [Bringert et al., 2005], and by Ranta [2004].

Operation definitions

Operationsin GF are defined in a rich functional language, and are alwaystyped. Dependent types and
higher-order functions may be used. The main restriction isthat the operation definition must not be
recursive, which together with some further minor restrictions means that whenever they are used in a
concrete grammar module, they can be compiled away. Thus, the posibility of defining operations can be
seen as a very expressive macro facility.

An operation definition consists of a typing and a defining expression:

oper f : T1 -> ... -> Tn -> T
= \ x1,..., xn -> t;

The typing restriction says thatt must be an expression of typeT wheneverxi is of typeTi (1 ≤ i ≤ n).
Dependent types are allowed, as well as the top-level typeType , so we can write general operations that
works for any typeT:

1These are Swedish parameter definitions – other languages have other parameters, and other definitions.
E.g. German have three genders and four cases.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 8/73

oper AddStr : Type -> Type
= \t -> t ** {s : Str};

addStr : (t:Type) -> Str -> t -> AddStr t
= _,str,term = term ** {s = str};

The first operationAddStr creates a new linearization type by adding a record row{s:Str} ; and the
second operationaddStr adds a given string to a term of typet , returning an object of typeAddStr t .
Note the built-in record extension operator (**), which extends a record type or a record with new rows.

Using abstract and concrete grammars as resources

There is a built-in translation of an abstract with a corresponding concrete grammar module into a resource
module. Each abstract categoryC is translated to an operationC of typeType , with the linearization type
as its definition:2

cat C; =⇒ oper C : Type = T ;
lincat C = T ;

Each abstract functionf of categoryC with linearizationt is translated to an operationf of typeC with
definitiont:

fun f : C1 -> ... -> Cn -> C; =⇒ oper f : C1 -> ... -> Cn -> C
lin f x1 ... xn = t; = \ x1,..., xn -> t;

This translation means that we can open a concrete module as well as a resource module when defining a
new concrete grammar module:

concrete NewCnc of Abs = open OldCnc in ...

This will be used in the multimodal grammar library in chapter 3, to extend a unimodal grammar with
multimodal information. In that case both concrete grammars also share the same abstract syntax, meaning
that each functionf already has a definition inOldCnc , which we can extend with some extra information:

lin f x1 ... xn = OldCnc. f x1 ... xn ** (new information);

Interfaces, instances and incomplete grammars

Operation definitions can be split into the typing and the expression separately:

oper f : T1 -> ... -> Tn -> T ;
oper f x1 ... xn = t;

2This translation is a slight simplification since we do not mention the nullarylock fieldswhich are automatically
added to the translation for making type checking correct.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 9/73

Note that in this case, the lambda abstraction\ x1,..., xn can be moved to the left-hand side of the
definition.

This makes it possible to put all typings in a separate module, which is called an interface module:

interface ResI = {
oper hello : Str -> {s : Str};

}

This interface can now be instantiated in different source languages by instance modules:

instance ResEng of ResI = {
oper hello name = {s = "Hello" ++ name ++ "!"};

}
instance ResSwe of ResI = {

oper hello name = {s = "Hejsan" ++ name ++ "!"};
}

An instance module is equivalent to a resource module, and can be opened by a concrete grammar in
the same way. But an interface module can also be opened by a concrete grammar, which then becomes
incomplete:

incomplete concrete CncI of Abs = open ResI in {
lin greeting = hello "Dolly";

}

An incomplete module can be completed by instantiating all opened interfaces:

concrete CncEng of Abs = CncI with (ResI=ResEng);

These features are also used in the grammar library in chapter 3 for increasing sharing between grammars.

1.2.3 Hierarchical grammar modules

The GF/GoDiS grammar library described in chapter 3 consists of a quite large number of files. To make
the module structure more explicit we have used a hierarchical module structure, where the hierarchy is
reflected in the file structure. However, hierarchical modules is not implemented in GF version 2.4.3

Therefore we have chosen to name the modules as follows. A hierarchical GF module is namedA_B_C
and is physically located in the fileA_B_C.gf residing in the directoryA/B . This means that the module
hierarchy reflects the physical directory structure of the grammar files. With this solution, hierarchical
modules can be used in the current version of GF. The drawbackis thatA andB have to be repeated in both
the file name and the directory structure. When hierarchicalmodules is supported by GF, we can dropA
andB from the file name to getC.gf . We can also drop all search paths for impoerted modules, which
currently have to be included in the grammar files.

3GF 2.4 is the current public version as of 31st January 2006.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 10/73

1.3 DelfosNCL

DelfosNCL can be described as a collaborative dialogue manager linked to a Natural Language Under-
standing Module, which allows dialogues driven by the semantic information provided by the user and by
the dialogue expectations generated by the dialogue manager. The kernel of our system is then composed
by two main modules:

• A Natural Language Understanding (NLU) module which is in charge of the lexical and syntactic
analysis and produces the Information States, and

• A Dialogue Manager which manipulates Information States (or Dialogue Moves) through the ap-
plication of dialogue update rules

The Information States configured for this scenario are based on the DTAC protocol [Quesada et al., 2000],
A DTAC consists of a feature-value structure with four main features: DMOVE, TYPE, ARG and CONT.
The following figure illustrates the DTAC obtained for the command“Turn on the kitchen light” in our
scenario:

























DMOVE specifyCommand

TYPE switchOn

ARG Device

DEVICE








DMOVE specifyParameter

TYPE OnOffDevice

CONT kitchen

































Dialogue Update Rules take the following form in our system:

(RuleID: MAKECALL;
PriorityLevel: 15;
TriggeringCondition: (DMOVE:specifyCommand,TYPE:Make Call);
DeclareExpectations: {

Dest <= (DMOVE:specifyParameter,TYPE:Name|PhoneNumber); }
SetExpectations: {

Confirm <= (DMOVE:answerYN); }
ActionsExpectations:

{ [Dest] => {ExecuteDMFunction(MakeCallDest); }
[Confirm] => {ExecuteDMFunction(MakeCallDisam); }

PostActions: { @if(@is-MAKECALL.Confirm.TYPE == "YES") {
ExecuteDMFunction(MakeCallDest);
}

}
}

)

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 11/73

The itemTriggeringCondition describes the Dialogue Move (DMove) that must arrive for therule to be
activated.DeclareExpectations defines additional information needed for the rule to be fulfilled. This
information could have been provided previously in the dialogue history, or during the same interaction.

TheSetExpectations section defines additional Dialogue Moves (DMoves) needed to successfully exe-
cute the rule, such as an explicit confirmation before executing a command.

As its name indicates,ActionExpectations defines the actions to be carried out when either theDeclare-
Expectations have not been fulfilled by the current input nor within the Dialogue History, or when some
SetExpectations have been defined.

Finally, thePostActions section describes what should be done once the rule is activeand all the expec-
tations have been fulfilled.

1.4 Summary

In this chapter we have introduced the different kinds of multimodal interfaces and the different systems
we are focussing on.

Multimodal interfaces can be split into parallel multimodality and integrated multimodality. Parallel mul-
timodality is when the same information is displayed simultaneously in several modalities. Integrated
multimodality is when different modalities convey different parts of the information, and the problem of
multimodal fusion is then how to combine the information from the different modalities into one single
utterance.

The systems we are focussing on are Grammatical Framework (GF) and DelfosNCL. GF is a grammar
formalism and an implementation, well suited for describing multilinguality and multimodality, as already
shown in TALK deliverables 1.1 and 1.2a [Ljunglöf et al., 2005, Bringert et al., 2005]. In this deliverable
we show the multimodal capabilities in more detail by givinga multimodal and multilingual grammar
library for several dialogue applications. DelfosNCL is a ISU-based multimodal dialogue system com-
posed of a natural language understanding module which analyses the input and produces information
states, and a dialogue manager which manipulates the information states.

Version: Final (Public) Distribution: Public

Chapter 2

Multimodal grammars and multimodal
fusion

This chapter is divided into two parts. Section 2.1 describes how multimodality can be specified in Gram-
matical Framework, and gives a method for how to add multimodality to a unimodal grammar. As a
pedagogical example we describe a multimodal version of theUGOT Tram Demogrammar. Section 2.2
describes two strategies for multimodal fusion in DelfosNCL, and compares the advantages and disadvan-
tages.

2.1 Demonstrative Expressions and Multimodal Grammars

This section shows a method to write GF grammars in which spoken utterances are accompanied by
pointing gestures. The method is introduced via a concrete example how multimodal grammars can be
written in GF and how they can be used in dialogue systems. Theexplanation is given in three stages:

1. How to write a multimodal grammar by hand.

2. How to add multimodality to a unimodal grammar.

3. How to use a multimodal resource grammar.

Example multimodal grammar: abstract syntax

A simple example of a multimodal GF grammar is the one called the Tram Demogrammar, which is
described in more detail in TALK deliverable D1.2a [Bringert et al., 2005]. The grammar is a part of a
dialogue system that deals with queries about tram timetables. The system interprets a speech input in
combination with mouse clicks on a digital map.

The abstract syntax of (a minimal fragment of) theTram Demogrammar is

cat Input, Dep, Dest, Click;
fun GoFromTo : Dep -> Dest -> Input; -- "I want to go from x to y"

DepHere : Click -> Dep; -- "from here" with click
DestHere : Click -> Dest; -- "to here" with click

12

IST-507802 TALK D:1.2b 07/02/06 Page 13/73

fun CCoord : Int -> Int -> Click; -- click coordinates

An English concrete syntax of the grammar is

lincat Input, Dep, Dest = {s : Str; p : Str};
Click = {p : Str};

lin GoFromTo x y = {s = ["I want to go"] ++ x.s ++ y.s; p = x.p ++ y.p };
DepHere c = {s = ["from here"] ; p = c.p};
DestHere c = {s = ["to here"] ; p = c.p};

lin CCoord x y = {p = "(" ++ x.s ++ "," ++ y.s ++ ")"};

When the grammar is used in the actual system, standard parsing methods are used for interpreting the
integrated speech and click input. Parsing appears on two levels: the speech input parsing performed by
the Nuance speech recognition program (without the clicks), and the semantics-yielding parser sending
input to the dialogue manager. The latter parser just attaches the clicks to the speech input. The order of
the clicks is preserved, and the parser can hence associate each of the clicks with proper demonstratives.
Here is the grammar used in the two parsing phases.

cat Query, -- whole content
Speech; -- speech only

fun QueryInput : Input -> Query; -- the whole content shown
SpeechInput : Input -> Speech; -- only the speech shown

lincat Query, Speech = {s : Str};
lin QueryInput i = {s = i.s ++ ";" ++ i.p};

SpeechInput i = {s = i.s};

2.1.1 Adding multimodality to a unimodal grammar

This section gives a recipe for making any unimodal grammar multimodal, by adding pointing gestures to
chosen expressions. The recipe guarantees that the resulting grammar remains semantically well-formed,
i.e. type correct.

The multimodal conversion

Themultimodal conversionof a grammar consists of seven steps, of which the first is always the same,
the second involves a decision, and the rest are derivative:

1. Add the categoryPoint with a standard linearization type.

cat Point;
lincat Point = {point : Str};

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 14/73

2. (Decision) Decide which constructors are demonstrative, i.e. take a pointing gesture as an argu-
ment. Add aPoint as their last argument. The new type signatures for such constructorsd have
the form

fun d : ... -> Point -> D;

3. (Derivative) Add apoint field to the linearization typeL of any demonstrative categoryD, i.e. a
category that has at least one demonstrative constructor:

lincat D = L ** {point : Str};

4. (Derivative) If some other categoryC has a constructord that takes demonstratives as arguments,
make it demonstrative by adding apoint field to its linearization type.

5. (Derivative) Store thepoint field in the linearizationt of any constructord that has been made
demonstrative:

lin d x1 ... xn p = t x1 ... xn ** {point = p.point};

6. (Derivative) For each constructorf that takes demonstrativesD1, . . . , Dn as arguments, collect the
point fields of the arguments in thepoint field of the value:

lin f x1 ... xm =
t x1 ... xm ** {point = x d1.point ++ ... ++ x dn.point};

Make sure that the pointingsxd1.point ... x dn.point are concatenated in the same order
as the arguments appear in thelinearization t, which is not necessarily the same as the abstract
argument order.

7. (Derivative) To preserve type correctness, add an emptypoint field to the linearizationt of any
constructorc of a demonstrative category:

lin c x1 ... xn = t x1 ... xn ** {point = []};

An example of the conversion

Start with aTram Demogrammar with no demonstratives, but just tram stop names andthe indexicalhere
(interpreted as e.g. the user’s standing place).

cat Input, Dep, Dest, Name;
fun GoFromTo : Dep -> Dest -> Input;

DepHere : Dep;
DestHere : Dest;
DepName : Name -> Dep;
DestName : Name -> Dest;
Almedal : Name;

A unimodal English concrete syntax of the grammar is

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 15/73

lincat Input, Dep, Dest, Name = {s : Str};
lin GoFromTo x y = {s = ["I want to go"] ++ x.s ++ y.s};

DepHere = {s = ["from here"]};
DestHere = {s = ["to here"]};
DepName n = {s = ["from"] ++ n.s};
DestName n = {s = ["to"] ++ n.s};
Almedal = {s = "Almedal"};

Let us follow the steps of the recipe.

1. We add the categoryPoint and its linearization type.

2. We decide thatDepHere andDestHere involve a pointing gesture.

3. We addpoint to the linearization types ofDep andDest .

4. Therefore, also addpoint to Input . (But Nameremains unimodal.)

5. Addp.point to the linearizations ofDepHere andDestHere .

6. Concatenate the points of the arguments ofGoFromTo.

7. Add an emptypoint to DepNameandDestName.

In the resulting grammar, one category is added and two functions are changed in the abstract syntax
(annotated by the step numbers):

cat Point; -- 1
fun DepHere : Point -> Dep; -- 2

DestHere : Point -> Dest; -- 2

The concrete syntax in its entirety looks as follows

lincat Dep, Dest = {s : Str; point : Str}; -- 3
Input = {s : Str; point : Str}; -- 4
Name = {s : Str};
Point = {point : Str}; -- 1

lin GoFromTo x y = {s = ["I want to go"] ++ x.s ++ y.s; -- 6
point = x.point ++ y.point};

DepHere p = {s = ["from here"]; -- 5
point = p.point};

DestHere p = {s = ["to here"]; -- 5
point = p.point};

DepName n = {s = ["from"] ++ n.s; -- 7
point = []};

DestName n = {s = ["to"] ++ n.s; -- 7
point = []};

Almedal = {s = "Almedal"};

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 16/73

What we need in addition, to use the grammar in applications,are

1. Constructors forPoint , e.g. coordinate pairs.

2. Top-level categories, likeQuery andSpeech in the original.

But their proper place is probably in another grammar module, so that the coreTram Demogrammar can
be used in different systems e.g. encoding clicks in different ways.

Multimodal conversion combinators

GF is a functional programming language, and we exploit thisby providing a set of combinators that
makes the multimodal conversion easier and clearer. We start with the type of sequences of pointing
gestures.

oper Point : Type = {point : Str};

To make a record type multimodal is to extend it withPoint . The record extension operator** is needed
here.

oper Dem : Type -> Type = \t -> t ** Point;

To construct, use, and concatenate pointings:

oper mkPoint : Str -> Point = \s -> {point = s};
noPoint : Point = mkPoint [];
point : Point -> Str = \p -> p.point;
concatPoint : Point -> Point -> Point = \x,y ->

mkPoint (point x ++ point y);

Finally, to add pointing to a record, with the limiting case of no demonstrative needed.

oper mkDem : (t : Type) -> t -> Point -> Dem t = _,x,s -> x ** s;
nonDem : (t : Type) -> t -> Dem t = \t,x -> mkDem t x noPoint;

Let us rewrite theTram Demogrammar by using these combinators:

oper SS : Type = {s : Str};

lincat Input, Dep, Dest = Dem SS;
Name = SS;

lin GoFromTo x y = {s = ["I want to go"] ++ x.s ++ y.s} **
concatPoint x y;

DepHere = mkDem SS {s = ["from here"]};
DestHere = mkDem SS {s = ["to here"]};
DepName n = nonDem SS {s = ["from"] ++ n.s};
DestName n = nonDem SS {s = ["to"] ++ n.s};
Almedal = {s = "Almedal"};

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 17/73

The type synonymSS is introduced to make the combinator applications concise.Notice the use of partial
application inDepHere andDestHere ; an equivalent way to write is

lin DepHere p = mkDem SS {s = ["from here"]} p;

2.1.2 Multimodal resource grammars

The main advantage of using GF when building dialogue systems is that various components of the system
can be automatically generated from GF grammars. Writing these grammars, however, can still be a
considerable task. A case in point are multilingual systems: how to localize e.g. a system built in a car to
the languages of all those customers to whom the car is sold? This problem has been the main focus of
GF for some years, and the solution on which most work has beendone is the development ofresource
grammar libraries. These libraries work in the same way as program libraries insoftware engineering,
enabling a division of labour between linguists and domain experts.

One of the goals in the resource grammars of different languages has been to provide alanguage-independent
API, which makes the same resource grammar functions availablefor different languages. For instance,
the categoriesS, NP, andVP are available in all of the 10 languages currently supported, and so is the
function

PredVP : NP -> VP -> S

which corresponds to the ruleS→ NP VP in phrase structure grammar. However, there are several levels
of abstraction between the functionPredVP and the phrase structure rule, because the rule is implemented
in so different ways in different languages. In particular,discontinuous constituents are needed in various
degrees to make the rule work in different languages.

Now, dealing with discontinuous constituents is one of the demanding aspects of multilingual grammar
writing that the resource grammar API is designed to hide. But the proposed treatment of integrated
multimodality is heavily dependent on similar things. Whatcan we do to make multimodal grammars
easier to write (for different languages)? There are two orthogonal answers:

1. Use resource grammars to write a unimodal dialogue grammar and then apply the multimodal
conversion to manually chosen parts.

2. Usemultimodal resource grammarsto derive multimodal dialogue system grammars directly.

The multimodal resource grammar library has been obtained from the unimodal one by applying the
multimodal conversion manually. In addition, the API has been simplified by leaving out structures needed
in written technical documents (the original application area of GF) but not in spoken dialogue.

In the following subsections, we will show a part of the multimodal resource grammar API, limited to a
fragment that is needed to get the main ideas and to reimplement theTram Demogrammar. The reim-
plementation shows one more advantage of the resource grammar approach: dialogue systems can be
automatically instantiated to different languages.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 18/73

Resource grammar API

The resource grammar API has three main kinds of entries:

1. Language-independent linguistic structures (“linguistic ontology”), e.g.

PredVP : NP -> VP -> S; -- “Mary helps him”

2. Language-specific syntax extensions, e.g. Swedish and German fronting topicalization

TopicObj : NP -> VP -> S; -- "honom hjälper Mary"

3. Language-specific lexical constructors, e.g. GermanicAblautpatterns

irregV : (sing,sang,sung : Str) -> V;

The first two kinds of entries arecat and fun definitions in an abstract syntax. The multimodal, re-
stricted API has e.g. the following categories. Their namesare obtained from the corresponding unimodal
categories by prefixingM.

cat MS; -- multimodal sentence or question
MQS; -- multimodal wh question
MImp; -- multimodal imperative
MVP; -- multimodal verb phrase
MNP; -- multimodal (demonstrative) noun phrase
MAdv; -- multimodal (demonstrative) adverbial

cat Point; -- pointing gesture

Multimodal API: functions for building demonstratives

Demonstrative pronouns can be used both as noun phrases and as determiners.

fun this_MNP : Point -> MNP; -- this
thisDet_MNP : CN -> Point -> MNP; -- this car

There are also demonstrative adverbs, and prepositions give a productive way to build more adverbs.

fun here_MAdv : Point -> MAdv; -- here
here7from_MAdv : Point -> MAdv; -- from here
MPrepNP : Prep -> MNP -> MAdv; -- in this car

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 19/73

Multimodal API: functions for building sentences and phrases

A handful of predication rules construct sentences, questions, and imperatives.

fun MPredVP : MNP -> MVP -> MS; -- this plane flies here
MQPredVP : MNP -> MVP -> MQS; -- does this plane fly here
MQuestVP : IP -> MVP -> MQS; -- who flies here
MImpVP : MVP -> MImp; -- fly here!

Verb phrases are constructed from verbs (inherited as such from the unimodal API) by providing their
complements.

fun MUseV : V -> MVP; -- flies
MComplV2 : V2 -> MNP -> MVP; -- takes this
MComplVV : VV -> MVP -> MVP; -- wants to take this

A multimodal adverb can be attached to a verb phrase.

fun MAdvVP : MVP -> MAdv -> MVP; -- flies here

Language-independent implementation: examples

The implementation makes heavy use of the multimodal conversion combinators. It adds apoint field to
whatever the implementation of the unimodal category is in any language. Thus, for example

lincat MVP = Dem VP;
MNP = Dem NP;
MAdv = Dem Adv;

lin this_MNP = mkDem NP this_NP;
MComplV2 verb obj = mkDem VP (ComplV2 verb obj) obj;
MAdvVP vp adv = mkDem VP (AdvVP vp adv) (concatPoint vp adv);

Note thatmkDemmakes the definition ofthis_MPN equivalent to

lin this_MNP p = this_NP ** {point = p.point};

Multimodal API: interface to unimodal expressions

Using nondemonstrative expressions as demonstratives:

fun DemNP : NP -> MNP;
DemAdv : Adv -> MAdv;

Building top-level phrases:

fun PhrMS : Pol -> MS -> Phr;
PhrMS : Pol -> MS -> Phr;
PhrMQS : Pol -> MQS -> Phr;
PhrMImp : Pol -> MImp -> Phr;

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 20/73

Instantiating multimodality to different languages

The implementation above has only used the resource grammarAPI, not the concrete implementations.
The library Demonstrative is a parametrized module, also called afunctor, which has the following
structure

incomplete concrete DemonstrativeI of Demonstrative =
Cat, TenseX ** open Test, Structural in ...

It can beinstantiatedto different languages as follows.

concrete DemonstrativeEng of Demonstrative =
CatEng, TenseX ** DemonstrativeI with

(Test = TestEng),
(Structural = StructuralEng);

concrete DemonstrativeSwe of Demonstrative =
CatSwe, TenseX ** DemonstrativeI with

(Test = TestSwe),
(Structural = StructuralSwe);

Language-independent reimplementation of Tram Demo

Again using the functor idea, we reimplementTramDemoas follows:

incomplete concrete TramI of Tram = open Multimodal in {

lincat Query = Phr; Input = MS;
Dep, Dest = MAdv; Click = Point;

lin QInput = PhrMS PPos;
GoFromTo x y =

MPredVP (DemNP (UsePron i_Pron))
(MAdvVP (MAdvVP (MComplVV want_VV (MUseV go_V)) x) y);

DepHere = here7from_MAdv;
DestHere = here7to_MAdv;
DepName s = MPrepNP from_Prep (DemNP (UsePN (SymbPN (MkSymb s))));
DestName s = MPrepNP to_Prep (DemNP (UsePN (SymbPN (MkSymb s))));

}

Then we can instantiate this to all languages for which theMultimodal API has been implemented:

concrete TramEng of Tram = TramI with
(Multimodal = MultimodalEng);

concrete TramSwe of Tram = TramI with
(Multimodal = MultimodalSwe);

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 21/73

The order problem

It was pointed out in the section on the multimodal conversion that the concrete word order may be
different from the abstract one, and vary between differentlanguages. For instance, Swedish topicalization

Det här tåget vill den här kunden inte ta.
(“this train, this customer doesn’t want to take”)

may well have an abstract syntax of a form in which the customer appears before the train.

This is a problem for the implementor of the resource grammar. It means that some parts of the resource
must be written manually and not as a functor. However, theuserof the resource can safely ignore the
word order problem, if it is correctly dealt with in the resource.

A recipe for using the resource library

When starting to develop resource grammars, we believed they would be all that an application grammar-
ian needs to write a concrete syntax. However, experience has shown that it can be tough to start grammar
development in this way: selecting functions from a resource API requires more abstract thinking than
just writing strings, and its take longer to reach testable results. The most light-weight format is maybe
to start with context-free grammars (which notation is alsosupported by GF). Context-free grammars that
give acceptable even though over-generating results for languages like English are quick to produce.

The experience has led to the following steps for grammar development. While giving the work a quick
start, this recipe increases abstraction at a later level, when it is time to to localize the grammar to different
languages. If context-free notation is used, steps 1 and 2 can be merged.

1. Encode domain ontology in and abstract syntax,Domain .

2. Write a rough concrete syntax in English,DomainRough . This can be oversimplified and overgen-
erating.

3. Reimplement by using the resource library, and build a functor DomainI . This can be helped by
example-based grammar writing, where the examples are generated fromDomainRough .

4. Instantiate the functorDomainI to different languages, and test the results by generating lineariza-
tions.

5. If some rule doesn’t satisfy in some language, use the resource in a different way for that case
(compile-time transfer).

2.2 Two strategies of multimodal fusion in DelfosNCL

This section compares two strategies of multimodal fusion of input modalities coming from different
channels, and their implementation in the in-home domain dialogue system developed by the University
of Seville.

Two strategies have been implemented for comparison purposes: the first solution is largely based on
Johnston’s work [Johnston et al., 1997, Johnston, 1998], and involves modifying our parser to cope with

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 22/73

simultaneous multimodal inputs, and to include temporal constraints at unification level. The second
implementation proposes an original solution to the problem, and involves combining inputs coming from
different multimodal channels at dialogue level. This solution is based on an implementation of the ISU
approach [Traum et al., 1999].

These two strategies have been implemented in DelfosNCL, anISU based system, combining both speech
and graphical inputs within a multimodal in-home scenario where the user interacts with the system using
a microphone and a touch-screen.

2.2.1 From speech-only to multimodal interaction

Before any further considerations, some preliminary stepshad to be taken in order to make the system
work multimodally. The first step involved moving from a synchronous, system-driven, turn taking ap-
proach to an asynchrounous, mixed-initiative model. We faced this evolution by means of an intermediate
(input pool) layer whose role is to store all inputs coming from the user at any time and make them avail-
able to the system when requested. The input pool was implemented as an independent OAA agent. The
second step involved modifying the GUI interface [Quesada et al., 2000], which was originally just a floor
plan representation of the house designed to configure the distribution of devices and functionalities. The
new extended version of the GUI allows the user to refer to parts of the house by clicking on them with
the pen. The third step was to make the speech-only input poola multimodal input pool. This goal was
achieved by allowing different kinds of inputs and storing them in a simple FIFO queue (see Figure 2.1).
Namely, the multimodal input pool accepts two kinds of inputs:

• SPEECH, including the following fields:
init_time , end_time , sentence_score , list[word , word_score] .

• CLICKs , including the icon and time fields.

For multimodal information rendering we have implemented at this stage a basic heuristic-based presen-
tation layer which is out of the scope of this document. A global view of how the system interacts with
the user is illustrated in Figure 2.2.

2.2.2 Multimodal Fusion: Two Strategies

Strategy 1

The first strategy implemented follows Johnston’s proposal[Johnston et al., 1997, Johnston, 1998], by
using a unification-based parser and including modality andtemporal constraints at unification level. This
implementation differs from Johnston’s in that a higher level of flexibility is added.

The main motivation behind this strategy is that multimodality is conceived of as a single communicative
act between two participants, and as such should be treated by a single grammar which is capable of ac-
cepting input coming from different modalities. As expected, this system permits that the communicative
act may range from speech-only to clicks-only or hybrid inputs, and all are considered equal as far as the
grammar is concerned. Obviously, as described below, this is an advantage as long as only single-task in-
teractions and not multiple task interactions are considered. The pragmatic ambiguity which may occur in
multimodal multi-tasking cannot be resolved by a single grammar. Graphically, this strategy fuses inputs
at our NLU module, as illustrated in Figure 2.3.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 23/73

Figure 2.1: Multimodal Input Pool

Figure 2.2: Modules overview

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 24/73

Figure 2.3: Strategy 1

In this strategy, when the parser receives an input sentence(either speech-only, click-only or mixed),
it calls the lexical analyzer adding three newad-hoc feature-value pairs:MODALITY, TIME_INIT and
TIME_END. These features are then used in conjunction with a set of logical operators to define com-
plex expressions in order to enforce modality and temporal constraints. Let’s imagine a grammar rule for
an input as “switch on the light”, where light can be either specified by voice or clicked. Let’s imagine
as well that when using the mixed modality input (that is to say: when clicking on thelight icon, the
user actually clicks before uttering “switch on”. In this case, a rule for the voice only inputs (therefore
with natural command + parameter order) could be specified, and another one that only applies to mixed
inputs where the inverse order is accepted (parameter + command). The unification rule will look like the
following one:

(Rule 1 : Command -> CommandOn DeviceSpecifier)
{ @up = @self-1; }

(Rule 2 : Command -> DeviceSpecifier CommandOn)
{ @up.DeviceSpecifier =a @self-1;

@if((@self-1.MODALITY == CLICK) && (@self-2.MODALITY == V OICE))
@then { @if ((@self-1.TIME_INIT - @self-2.TIME_INIT <= 5) & &

(@self-1.TIME_INIT - @self-2.TIME_INIT <= -5))
@then { @break();}
@else { @up.MODALITY =a [VOICE,CLICK];

@if ((@self-1.TIME_INIT <= @self-2.TIME_INIT))
@then { @up.TIME_INIT =a @self-1.TIME_INIT;}
@else { @up.TIME_INIT =a @self-2.TIME_INIT;}
@if ((@self-1.TIME_END >= @self-2.TIME_END))
@then { @up.TIME_END =a @self-1.TIME_END;}
@else { @up.TIME_END =a @self-2.TIME_END;} } }

@else { @break(); } }

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 25/73

Figure 2.4: Strategy 2

Note that, in addition to the modality constraint, an overlap timeframe (5 time units) within which the
inputs have to occur, has been defined. These timeframes could be configured independently (rule by
rule) if the data was accurate enough. These rules describe under what conditions the right-hand symbols
can unify and, if the conditions are met, how the unification has to be done.

Notice that we are not using only temporal data as subcategorization edges but actually letting the user
configure the constraints case by case. However it looks likethis flexibility is not always needed, so we
have implemented a set of macros to be used at unification level to cover a number of cases:

1. @assign_modality(@self-1,@self-2,@self-n)
Check if the modality of all the constituents is the same, otherwise, assignMODALITY:[MIXED] to
the mother node.

2. @assign_time_init(@self-1,@self-2,@self-n)
Get the lowest time init and assign it to the mother node

3. @assign_time_end(@self-1,@self-2,@self-n)
Get the highest time end and assign it to the mother node

Strategy 2

The second strategy combines simultaneous inputs coming from different channels (modalities) at Dia-
logue Level. The idea is to check the multimodal input pool before launching the actions expectations,
while holding during theinter-modality time. Obviously, this strategy takes for granted that each individ-
ual input can be considered as an independent Dialogue Move.

As illustrated in Figure 2.4, this strategy fuses the multimodal inputs at dialogue level. In this approach, the
multimodal input pool receives and stores all inputs including information such as time and modality. The
Dialogue Manager checks the input pool regularly to retrieve the corresponding input. If more than one

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 26/73

input is received during a certain timeframe, they are considered simultaneous or pseudo-simultaneous.
In this case, further analysis is needed in order to determine whether those independent multimodal inputs
are truly related or not. If the inputs timing with respect toeach other is deemed to be within the plausible
time range to consider them a potential multimodal combination, then additional information will be taken
into account to decide whether these independent DMoves arecomplementary or not:

• If one isTriggeringCondition of a Dialogue Rule, and the other one is part of the expectations

• If both are expectations of an already active Dialogue Rule

• If there is no other parallel dialogue history whose active Dialogue Rules may conflict with the
previously identified one

When everything indicates that the DMoves are related and complementary, they merge into a unique
Information State. Otherwise, different paths may be takendepending on the situation:

• One of them may complete an already active Dialogue Rule whereas the other may trigger a new
unrelatedTriggeringCondition and therefore a new parallel dialogue history.

• Each of them may complete already active Dialogue Rules in parallel dialogue histories unambigu-
ously.

• Rules in parallel dialogue histories in an ambiguous manner, in which case disambiguation subdia-
logues will be needed.

• They are unrelated and not compatible with any active Dialogue Rule, so two new tasks with their
respective dialogue histories will be initiated.

Our approach can be described by this high-level algorithm:

• Receive unimodal input A (DMove)

• Receive unimodal input B (DMove)

• IF A and B are: complementary,
contextually appropriate, and
within a predefined timeframe

THEN Create new IS from these DMoves + Dialogue History

• ELSE Store the DMove and disambiguate

This algorithm takes into account:

1. Dialogue Moves generated

2. Modality

3. Inter-input timing

4. Dialogue Move order

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 27/73

5. Existing Dialogue Moves

6. Existing Dialogue Histories

7. Scenario and contextual factors

Dialogue Rules may also be configured with the same logical operators mentioned within Strategy 1, since
the Dialogue Manager actually uses the unification module ofthe parser. Similar rules to the one detailed
for Strategy 1 could be configured within the Dialogue Manager. The difference iswherethese rules are
applied: for Strategy 1 the scope of application is the list the symbols (terminals and not terminals) within
the grammar rules, whereas the scope for Strategy 2 is the number of DTAC structures that describe the
DMoves.

Although taking into account a considerable number of factors may not appear as a very appealing solu-
tion, this innovative approach enables the system to cope with “Multimodal Multitasking”, which would
not be possible within the implementation of Strategy 1. By Multimodal multitasking we imply the pos-
sibility of accomplishing independent unrelated tasks simultaneously, sparing continuous system disam-
biguation. Humans have often proven to be able and even prefer to accomplish several tasks at once, as
long as they are familiar with the tools and/or environment and none of the tasks imply too heavy a cog-
nitive load. With this approach, multimodal systems have taken a step forward towards more intelligent,
flexible and collaborative systems.

2.2.3 Comparison of Strategies

Computational efficiency: The first strategy is much heavier from a computational pointof view since
tasks are added at unification level which represents 80% of the parsing time. On the other hand,
the additional computational complexity added by the second strategy is of no consequence.

Dependency on time measures:The first strategy is highly dependent on the precision of thetime data.
The overlapping times fixed at unification rules assume that the init_time andend_time features
are accurate, which is not always the case. The second strategy however allows for a certain degree
of flexibility.

Background data: In order to define the appropriate time ranges for multimodalcomplementary in-
puts, real user data is required. The more precise this time ranges need to be, the more important
it becomes to collect large amounts of data, especially considering the possibility of tuning the
thresholds rule by rule.

Multimodal multitasking: The multimodal multitasking is the ability to carry independent tasks at the
same time by means of different multimodal channels. The notion of task only exists at dialogue
level, therefore strategy one cannot be applied if dealing with multimodal multitasking.

Inter-modality disambiguation: When dealing with more complex modalities (i.e. voice and gesture
recognition) we may expect not only pairs of item-time, but full lattices coming from both channels.
The mutual disambiguation could be more easily dealt with bythe first strategy. The second strategy
would become considerably more complex

Dialogue Act: At a theoretical level, a potential problem of the second strategy could arise from the
assumption that any unimodal input generates always a Dialogue Move. Although we have been

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 28/73

unable to find any example or situation where this assumptionis false, it could possibly be the case
with more sophisticated not speech-driven systems.

Number of modalities: We believe that as the number of modalities increases, the best choice would
be the second strategy, since the first strategy implies a high computational overload which would
become unbearable with a higher number of modalities.

2.3 Summary

In this chapter we have described two approaches to adding integrated multimodality and multimodal
fusion to unimodal dialogue systems.

The first approach is to specify multimodal input directly inGF grammars, where the modalities are
realised as discontinuous constituents in the grammar. We have given a language- and domain-independent
method for how to add multimodal information to a unimodal grammar, thus making the transition from
a speech-only dialogue system to a multimodal one in many ways trivial. As a pedagogical example we
described a multimodal version of the UGOTTram Demogrammar.

The second approach for evolving from a speech-only system to a multimodal one, is by implementing an
intermediate layer in DelfosNCL called a “multimodal inputpool” whose role is to allow for asynchronous
behaviour. The general steps taken to cope with both speech and clicking inputs have been described and
two strategies to fuse multimodal entries have been explained and compared. The first strategy is to
combine the multimodal inputs in the unification-based parser, and the second strategy is to combine the
multimodal inputs at the dialogue level. For efficiency reasons we conclude that the second strategy suits
better the needs of the DelfosNCL voice-and-click application within the in-home domain scenario.

Version: Final (Public) Distribution: Public

Chapter 3

Description of the Multimodal Grammar
Library

This chapter consists of a description of the unified GF/GoDiS grammar library, written in Grammatical
Framework. The grammars in the library have been made multimodal by using the method described in
section 2.1.1.

The grammar library connects user and system utterances specified in GF with a dialogue system using the
GoDiS dialogue manager. The library is designed for making is easy to add new dialogue domains, source
languages, and input and output modalities. Currently the library consists of two dialogue domains, each
with two source languages and three different modalities. The two domains are the calendar application
AgendaTalk, and the MP3 playerDJ GoDiS.

An additional GF grammar is described in section 3.6, which has been made multimodal using the given
method. The EdinburghTown Infogrammar is not part of the GF/GoDiS grammar library, but can be
seen as a proof-of-concept of the generality of the method. Another additional grammar, theTram Demo
grammar, is used as a pedagogical example when introducing the method in section 2.1.1 and is therefore
not described in this chapter.

3.1 The GF/GoDiS grammar library

3.1.1 The module hierarchy of the GF/GoDiS grammar library

The modules of the GF/GoDiS grammar library are divided intofour main parts – ontologies, the core
GoDiS grammar, the different domain grammars, and general resource modules.

Ontologies

In this grammar library we mean by the term ontology, a self-contained grammar capturing a domain
which can be used in several different dialogue systems. An ontologyO consists of at least three grammar
modules – one abstract and the English and Swedish concrete modules. Apart from these there can be
resource modules for simplifying grammar writing.

All ontologies are located in the directoryOntology in the grammar library, meaning that ontologyO

29

IST-507802 TALK D:1.2b 07/02/06 Page 30/73

Godis_Abstract

Godis_Semantics

Godis_Thinlet_Incomplete

Godis_Speech_Incomplete

Godis_Click_Incomplete

Godis_Phrases_Interface

Godis_Phrases_English Godis_Phrases_Swedish

Godis_Thinlet_English Godis_Thinlet_Swedish

Godis_Speech_English Godis_Speech_Swedish

Godis_Click_English Godis_Click_Swedish

Figure 3.1: The module structure of the core GoDiS grammar

will be namedOntology_ O. Note that this is not an existing GF module, but instead theyare named
Ontology_ O_M, whereM ∈ {Abstract ,Semantics ,English ,Swedish }. TheSemantics module con-
sist of the GoDiS Prolog terms corresponding to the terms in the ontology.

If some ontologies can be naturally grouped together into a unified ontology, they are defined as sub-
ontologies. An example isOntology_Music , which consists ofOntology_Music_Albums , Ontology_
_Music_Artists andOntology_Music_Songs .

The core GoDiS grammar modules

The grammar for the core of the GoDiS-based dialogue systemsis located in the directoryGodis , with the
module structure shown in figure 3.1. The abstract syntax module isGodis_Abstract , and the concrete
syntax for communicating with the GoDiS dialogue manager iscalledGodis_Semantics .

The concrete system and user grammars exist as a unimodal variant (Speech), a parallel multimodal
variant for communicating via the Thinlet GUI (Thinlet), and an integrated multimodal variant (Click).
For each of these there is an incomplete concrete module which is instantiated by the languages English
or Swedish. Finally there are resource modules (calledPhrases) implementing a small library of canned
phrases, as an interface which is instantiated with Englishand Swedish. These resources are used in the
concrete grammarsSpeech , Thinlet andClick – dependencies which are not shown in the figure.

This means that the core GoDiS grammar modules are the following ones:

• Godis_Abstract

• Godis_Semantics

• Godis_ Src_Lng, whereSrc∈ {Speech ,Thinlet ,Click }
andLng∈ {Incomplete ,English ,Swedish }

• Godis_Phrases_ Lng whereLng∈ {Interface ,English ,Swedish }

The domain grammars

All domain grammars reside in the directoryDomain , which means that the current two domains are
Domain_Agenda and Domain_MP3. In other respects they have almost the same structure as thecore

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 31/73

grammar. What is missing are the incomplete grammar modules, and what is added is an abstract module
for the integrated modality moduleDomain_ Dom_Click .

The grammar modules are thus the following, whereDom∈ {Agenda ,MP3}:

• Domain_ Dom_Abstract

• Domain_ Dom_Semantics

• Domain_ Dom_Click_Abstract

• Domain_ Dom_Src_Lng, whereSrc∈ {Speech ,Thinlet ,Click }
andLng∈ {English ,Swedish }

• Domain_ Dom_Phrases_ Lng whereLng∈ {Interface ,English ,Swedish }

General resource modules

Some resource modules are very general, and do not fit in any ofthe three previous categories, instead
they are placed in the directoryResource . These resources contain operations for simplifying grammar
writing in formal languages, such as Prolog, XML and ThinletGUI. The corresponding modules are
namedResource_Prolog , Resource_XML andResource_Thinlet .

3.1.2 Translating between user languages and GoDiS dialogue moves

The GoDiS dialogue manager does not operate on utterances orparse trees or some other kind of syntactic
representation. Instead the basic input and output items are dialogue moves, which can be seen as semantic
representations of the minimal informative units in a conversation [Larsson, 2002]. An utterance by the
user or the system is represented as a sequence of dialogue moves.

The role of GF in this context is as a translator between dialogue moves and linguistic utterances, or even
representations in other modalities. The dialogue grammars in our library all share the same structure,
as explained in section 3.1.1. There is one single abstract syntax capturing all information that can be
shared between the dialogue participants. For each different kind of uni-/multi-modality and each different
language, there is a concrete syntax module.

Finally there is one single concrete module describing the GoDiS dialogue moves. As will be seen later in
section 3.3, the structure of the abstract syntax is similarto the hierarchical structure of the GoDiS dialogue
moves, which means that the definition of the GoDiS concrete syntax module is quite straightforward.

In the dialogue system the translation takes place as follows. A user utterance is parsed to an abstract
syntax term which is then linearized to a sequence of GoDiS dialogue moves. The dialogue moves are
interpreted by the dialogue application which generates new dialogue moves. These are in turn parsed and
linearized by the GF interpreter to system utterances.

3.1.3 Resources used in the grammar library

We have used two kinds of resource modules in the GF/GoDiS grammar library – linguistic and non-
linguistic resources.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 32/73

Linguistic resources

The linguistic resource modules consist of language-specific parameters, and definitions of common
phrases and utterances. The common phrases and utterances are defined as interface modules, and instan-
tiated for each surface language. This is used in the core GoDiS dialogue system grammars, where each
different modality consists of one incomplete concrete syntax which only makes use of language-specific
phrases and utterances from an interface module. The different surface level languages then consist of
simple instantiations of interface modules.

This structure makes it simple to add a new language. The onlything we have to do is to create a new
instance module for the common phrases – the core GoDiS grammar does not have to be changed at all.

Non-linguistic resources

The non-linguistic resources consist of macros for simplifying grammar writing in formal languages, such
as Prolog and XML.

The Prolog resource module makes it simple to translate GF trees into compound terms in Prolog syntax.
This is used in the semantics modules of the core GoDiS grammar, the ontologies and the domain specific
grammars.

The XML resource module contains macros for linearizing GF trees as XML expressions. This in turn
is used in the Thinlet resource module with which we can create GUI objects described in Thinlet XML
syntax.

There is also a resource module which defines the linearization types that are used in the GF/GoDiS gram-
mars, and operations for simple creation of terms of these linearization types. The different participants of
the dialogue system are defined as parameters, together withhelpful operations. Some of these parameters,
operations and linearization types are described later in section 3.4.

3.2 Grammars for describing ontologies

In this grammar library we mean by the term ontology, a self-contained grammar capturing a domain
which can be used in several different dialogue systems. We divide the ontology grammars intodatabases
and linguistic ontologies. A database mainly consists of a listing of elements of one ora few categories,
such as a listing of all known artists or possible event typesthat can be stored in an agenda. A linguistic
ontology on the other hand consists of a more elaborate grammar, describing a linguistic concept such as
numbers or time descriptions.

3.2.1 Databases

Music – Artists, Albums, Songs

The music ontology is divided into three sub-ontologies: artists, albums and songs. Each ontology gram-
mar defines a GF category (Artist , Album andSong, respectively) together with its entities.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 33/73

Radio and TV stations

These ontologies contain names of radio and TV stations.

Events and locations

These ontologies contain possible kinds of events that can be stored in an agenda, and possible locations
where the events can take place.

3.2.2 Linguistic ontologies

Numbers

This ontology defines the numbers from 0 to 99, in both cardinal and ordinal notation.

Time descriptions

This ontology defines hours and minutes, and how to combine these into a linguistically correct time
expressions.

Date descriptions

Finally, the ontology of date descriptions defines weekdaysand relative date expressions (e.g. today, to-
morrow).

3.3 The GF/GoDiS dialogue move grammar

In this section we present the type hierarchy of GoDiS and explain how this has influenced the abstract
syntax of the GF grammar. The version of GoDiS that we describe isaction-oriented-dialogue[Larsson,
2002, chapter 5].

3.3.1 The type hierarchy in GoDiS

In this section we give an overview of the hierarchy of types in GoDiS. For a more thorough description,
see Larsson [2002].

Domain-dependent types

A domain consists of a number ofindividuals, which are grouped intosorts:

• n1, . . . ,nN : Ind

• s1, . . . ,sM : Sort

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 34/73

For forming propositions and questions, there are a number of basicpredicates, which can be either atomic
(Pred0) or take one argument (Pred1):1

• p1, . . . , pN : Pred0 or Pred1

To form requests for actions, there is a number of basicactions:

• a1, . . . ,aN : Action

The domain also consists of thedialogue participants, which in our case only are theuserand thesystem:

• user, system : Participant

Finally, there are somereasons, which are used when reporting success or failure:

• r1, . . . , rN : Reason

The rest of the types and objects are domain-independent, and are described in the rest of this section.

Dialogue moves

A dialogue moveis the basic entity that the update rules in a GoDiS dialogue system works on. We can
distinguish between six different kinds of dialogue moves.Single dialogue movesconsist of greeting and
quitting, in the beginning and the end of a conversation:

• greet, quit : SingleMove

An action can berequested, and a question can beasked:

• request(a) : Request [a : Action]

• ask(q) : Ask [q : Question]

There are two kinds ofanswers, propositions and short answers, which are semantically underspecified
propositions:

• answer(p) : Answer [p : Proposition orp : ShortAnswer]

The report dialogue move handles reporting of success and failure of actions, sometimes giving a reason
for why the action failed:

• report(a, failed(r)) : Report [a : Action, r : Reason]

• report(a, done), confirm(a) : Report [a : Action]

Interactive Communications Management(ICM), is used as a general term for coordination of the com-
mon ground. The different kinds of ICM dialogue moves are described later in the end of this section.

1We don’t need higher arity than 1, since GoDiS uses a reduced semantic representation, where complex predi-
cates are replaced by (a number of) 1-place predicates.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 35/73

Propositions

GoDiS uses a reduced semantic representation, where complex propositions with conjunctions andn-ary
predicates are represented as sets of 1-ary predicates applied to constant individuals:

• p : Proposition [p : Pred0]

• p(n) : Proposition [p : Pred1,n : Ind]

GoDiS uses a rudimentary system of domain-dependent semantic sortal categories, for distinguishing
meaningful propositions from meaningless ones. What this amounts to is the restriction thatp(n) is a
meaningful proposition only ifp andn are associated with the same sorts. In the GF grammar library we
encode the association to a sort as a type dependency, i.e. Pred1(s) and Ind(s) are GF categories only ifs :
Sort.

Disjunction is not present, and conjunction is not needed, so the only logical connective we need is nega-
tion:

• not(p) : Proposition [p : Proposition]

Finally, there are a number of ways of talking about questions, actions and propositions on a meta-level:

• issue(q), fail(q), fail(q, r) : Proposition [q : Question,r : Reason]

• action(a), done(a) : Proposition [a : Action]

• und(d, p) : Proposition [d : Participant,p : Proposition]

Note that these propositions can be viewed as applications of predicates, but they need special consid-
eration, since the arguments are not individual constants.Furthermore, they are only used in special
circumstances – issue(q) and action(a) are only used in questions and ICM dialogue moves; und(d, p) is
only used in ICM dialogue moves; whereas fail(q), fail(q, r) and done(a) are only used as success reports.2

This means that they are not categorized as propositions in the GF grammar library, but as special cases
for wh-questions, ICM and reports.

Short answers

Short answers are semantically underspecified propositions, and consist of yes/no-answers, individual
constants, or negations of individual constants:

• yes, no : ShortAnswer

• not(s(n)), s(n) : ShortAnswer [s : Sort,n : Ind]

2Internally in the GoDiS information state they can functionas propositions, but to an external observer they are
only used in these circumstances.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 36/73

Questions

There are three kinds of questions – y/n-questions, alternative questions and wh-questions. They can be
seen as subtypes of the type for questions:

• q : Question [q : YNQ or q : AltQ or q : WhQ]

Y/n-questions are formed from a proposition:

• ?p : YNQ [p : Proposition]

Alternative questions are sets of y/n-questions:

• {q1, . . . ,qn} : AltQ [q1 : YNQ, . . . ,qn : YNQ]

Wh-questions are lambda-abstractions of propositions (written with a question mark instead of a lambda),
but since lambda-abstracting a negation is linguisticallydifficult we exclude negated propositions. This
leaves us with three forms of wh-questions:

• ?x.p(x) : WhQ [x : Var, p : Pred1]

• ?x.issue(x), ?x.action(x) : WhQ [x : Var]

Var is the type of variables;x, y, z, . . . : Var.

Interactive Communications Management (ICM)

Larsson [2002] uses Interactive Communication Management(ICM) as a general term for coordination
of the common ground. ICM dialogue moves are explicit signals enabling coordination of updates to the
common ground, such as keeping track of topics currently under discussion, subactivities, sequencing and
turn taking.

There are two kinds of ICM dialogue move patterns in GoDiS. The main pattern deals with feedback and
grounding:

• (icm : l * p), (icm : l * p : args) : ICM [l : Level, p : Polarity]

There are fiveaction levels– contact, perception, semantic understanding, pragmaticunderstanding, and
acceptance/reaction. These are abbreviated con, pre, sem,und and acc, respectively. There are three
polarities – positive, negative and interrogative. These are abbreviated pos, neg and int, respectively.
Some feedback moves also requirearguments, which depending on the action level and the polarity can
be either a question, a proposition, an action or a string. The String is yet another GoDiS type, consisting
of all possible surface-level strings.

The second pattern for ICM dialogue moves is used for ICM other than feedback:

• (icm : type), (icm : type: args) : ICM

The typecan be any of reraise, loadplan, accomodate and reaccomodate. Some of these can also take
optionalarguments.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 37/73

3.3.2 Representing GoDiS types in GF abstract syntax

In this section we describe how we have translated the GoDiS type hierarchy into GF. This central
GF/GoDiS grammar consists of the abstract moduleGodis_Abstract .

The obvious idea is to represent the GoDiS types as GF categories, and the GoDiS objects as GF constants
and functions. However, in some places we have divided a typeinto several categories. There are also
some other minor differences, due to some simplifying assumptions we have made on the grammar.

Domain-dependent categories

Sorts, individuals, 0- and 1-place predicates, actions andreasons are defined as basic categories in the
central GF/GoDiS grammar. However, all these categories are uninhabited since their elements will be
defined in the domain grammar.

cat Sort;
Ind Sort;
Pred0 Sort;
Pred1 Sort;
Action;
Reason;

Since individuals and predicates are associated with a certain sort, these categories depend on the category
of sorts. This is an example of dependent types, which we use to give restrictions for e.g. how to combine
a predicate with an individual.

Note that we have excluded dialogue participants, since they are already fixed in the systems we are
focussing on, and since they are anyway only used in a limitednumber of dialogue moves. The participants
are instead hard-coded in the grammars.

A central goal of the grammar library is that (almost) every sort, together with its associated individuals,
should be defined in an ontology. This means that defining the sorts and individuals of a dialogue domain
merely consists of enumerating the ontologies that are usedin the domain. This is done by inventing a
name for the sort, and giving a coercion function from the ontology category to an individual. E.g. the sort
of numbers can be defined by giving the following two functions:

fun NumberSort : Sort;
numberInd : Number -> Ind NumberSort;

Dialogue moves

We start by defining the basic category of dialogue moves:

cat Move;

The different kinds of dialogue moves are also basic GF categories, which are given together with coercion
functions to the category of moves:

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 38/73

cat SingleMove; fun singleMove : SingleMove -> Move;
YNAnswer; yesnoMove : YNAnswer -> Move;
Request; requestMove : Request -> Move;
Ask; askMove : Ask -> Move;
Answer Sort; answerMove : (s:Sort) -> Answer s -> Move;
Report; reportMove : Report -> Move;
ICM; icmMove : ICM -> Move;

Note that the answers are divided into two categories, sincey/n-answers cannot be associated with a sort.
This also means that y/n-answers are not considered as shortanswers in the GF grammars.

Thesingle movesgreet and quit are GF constants, as are they/n-answersyes and no:

fun greetMove, quitMove : SingleMove;
yesAnswer, noAnswer : YNAnswer;

An action can berequested, and a question can beasked:

fun requestAction : Action -> Request;
askQuestion : Question -> Ask;

An answercan be a short answer or a proposition. But since y/n-answersare already treated, the type of
short answers is not implemented as a GF category. Short answers are thus elliptic individuals, possibly
negated. Furthermore, as explained below, only positive propositions are considered, meaning that there
is a possibility of a negated propositional answer:

fun indAnswer : (s:Sort) -> Ind s -> Answer s;
notIndAnswer : (s:Sort) -> Ind s -> Answer s;
propAnswer : (s:Sort) -> Proposition s -> Answer s;
notPropAnswer : (s:Sort) -> Proposition s -> Answer s;

An action can bereportedas a success or a failure. However, we also consider failure of finding an answer
to a question as a report, instead of an answer. This is partlybecause we do not consider fail(q) or fail(q, r)
as propositions, but also because failures are often uttered in a different way than are traditional answers:

fun confirmActionReport : Action -> Report;
failedActionReport : Action -> Reason -> Report;
failedQuestionReasonReport : Question -> Reason -> Report ;
failedQuestionReport : Question -> Report;

Finally, ICM dialogue moves are treated later in this section.

Utterances

An utterance in GoDiS consist of a sequence of dialogue moves. Thus we define the category of utterances,
and lists of dialogue moves; together with a function for forming utterances from a list of moves:

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 39/73

cat Utterance; fun utterance : [Move] -> Utterance;
[Move]{1};

Note that in GF,[Move] is syntactic sugar for the categoryListMove ; and by declaring[Move]{1} , the
following two functions are silently defined:

fun BaseMove : Move -> [Move];
ConsMove : Move -> [Move] -> [Move];

Although many dialogue moves are independent of the dialogue participant, there are some dialogue
moves (such as reports) that can only be uttered by the system, and other moves (such as requests) that
can only be uttered by the user. This information is used in parsing, and is encoded in the concrete syntax.
For this purpose, we define the categories of user and system utterances, together with forming functions:

cat UserUtterance; fun userUtterance : Utterance -> UserUt terance;
SystemUtterance; systemUtterance : Utterance -> SystemUt terance;

Propositions

Since both predicates and individuals depend on sorts, propositions will also be associated with sorts:

cat Proposition Sort;

None of the meta-level propositions are seen as propositions in the grammar library. Furthermore, we
choose to also exclude negated propositions. Some reasons for this arei) that we want to minimize the
recursiveness in the grammar for efficiency reasons,ii) that negation can be difficult or complicated to
represent syntactically correct in its generality, andiii) that negated propositions are meaningless when
viewed as y/n-questions. Thus, propositions can only be formed by applications of 0- and 1-place predi-
cates:

fun pred0prop : (s:Sort) -> Pred0 s -> Proposition s;
pred1prop : (s:Sort) -> Pred1 s -> Ind s -> Proposition s;

Questions

The category of questions is subdivided into y/n-questions, alternative questions and wh-questions. These
are declared as categories, together with coercion functions:

cat Question;
YNQ; fun ynqQuestion : YNQ -> Question;
AltQ; altQuestion : AltQ -> Question;
WhQ; whqQuestion : WhQ -> Question;

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 40/73

Y/n-questions are formed from propositions, and from the meta-level propositions issue(q) and action(a):

fun propYNQ : (s:Sort) -> Proposition s -> YNQ;
issueYNQ : Question -> YNQ;
actionYNQ : Action -> YNQ;

Alternative questions are formed from sequences of y/n-questions, which has to be defined as a category
itself:3

cat [YNQ]{2};
fun altQ : [YNQ] -> AltQ;

Wh-questions can finally be formed from 1-place predicates:

fun predWhQ : (s:Sort) -> Pred1 s -> WhQ

There are also the two special wh-questions ?x.issue(x) and ?x.action(x):

fun issueWhQ, actionWhQ : WhQ

Interactive Communications Management (ICM)

The different ICM dialogue moves are defined by enumerating them in the GF grammar. The reason for
not having some more general functions dealing with ICM is partly because different action levels and
polarities can take different arguments, and partly because we want to have different surface forms for
different ICM’s.

There are two ICM’s for acceptance, negative and positive; but since the negative version can take an
optional question or proposition argument, we get in total four GF functions:

fun accNegICM : ICM;
accNegQueICM : Question -> ICM;
accNegPropICM : (s:Sort) -> Proposition s -> ICM;
accPosICM : ICM;

There is only one ICM for contact, and that is negative:

fun conNegICM : ICM;

There are three ICM’s for perception – negative, positive and interrogative; where the positive version
takes a string comprising the utterance as the system heard it:

fun perNegICM : ICM;
perPosStrICM : String -> ICM;
perIntICM : ICM;

3The argument{2} says that a list of y/n-questions has to have at least two elements. This is accomplished by
giving theBaseYNQfunction an arity of 2.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 41/73

There are in total seven ICM for understanding – mostly because the positive version can take both positive
and negative propositions, including issues:

fun undNegICM : ICM;
undPosPropICM : (s:Sort) -> Proposition s -> ICM;
undPosNotPropICM : (s:Sort) -> Proposition s -> ICM;
undPosQueICM : Question -> ICM;
undPosNotQueICM : Question -> ICM;
undIntPropICM : (s:Sort) -> Proposition s -> ICM;
undIntQueICM : Question -> ICM;

Finally there are eight non-feedback ICM functions, since reraising and accomodation can take questions
or actions as arguments:

fun reraiseICM : ICM;
reraiseQueICM : Question -> ICM;
reraiseActICM : Action -> ICM;
loadplanICM : ICM;
accomodateICM : ICM;
accomodateQueICM : Question -> ICM;
reaccomodateICM : ICM;
reaccomodateQueICM : Question -> ICM;

3.4 Concrete syntaxes for the central GF/GoDiS grammar

3.4.1 Prolog syntax for connecting to GoDiS – Semantics

The concrete grammar moduleGodis_Semantics transforms the abstract GF syntax terms into Prolog
readable terms suitable for input to GoDiS. The translationis quite straightforward, since the structure of
the abstract grammar reflects the GoDiS type hierarchy. There are resource modulesResource_Prolog
andGodis_Semantics_Resource for creating GoDiS terms in Prolog syntax, with operations for creating
simple and compound terms, lists, operator applications, and other special Prolog and GoDiS construc-
tions.

All categories have the same linearization type PStr, whichis defined in the Prolog resource module:

lincat Move, ... = PStr;

As an example, the linearizations for the four kinds of answers are defined like this:4

indAnswer sort ind = pp1 "answer" (pp1 sort.pl ind);
notIndAnswer sort ind = pp1 "answer" (pp1 "not" (pp1 sort.pl ind));
propAnswer _ prop = pp1 "answer" prop;
notPropAnswer _ prop = pp1 "answer" (pp1 "not" prop);

4The first argument ofpropAnswer and notPropAnswer is the sorts, which is used in the dependent type
Proposition s, but is not used in the surface form, hence the underscore.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 42/73

The operationspp0 andpp1 (andpp2 andpp3 . . .) are defined in the Prolog resource module and create
Prolog terms taking zero or one (or two or three. . .) arguments:

oper pp0 : Str -> PStr = \f -> {pl = f};
pp1 : Str -> PStr -> PStr = f,x -> {pl = f ++ "(" ++ x.pl ++ ")"};

The PStr linearization type consists of only one string, under the labelpl :

oper PStr : Type = {pl : Str};

Provided suitable linearization definitions for numbers, the following is the result of linearization in GF:5

> l (notIndAnswer NumberSort (numberInd n3)
answer (not (number (3)))

3.4.2 Natural language utterances – English and Swedish

We have chosen to have a very flat structure in the grammars forEnglish and Swedish. By this we mean
that there is no intricate grammatical structure inherent in the linearizations – instead they consist of
canned phrases. The main reason for this is that the GoDiS dialogue system is based on sequences of
dialogue moves, which are often mapped to single short phrases in an utterance. Thus, a GoDiS dialogue
system has itself a flat linguistic structure to its semantics.

The only differences between the English and Swedish grammars are the canned phrases – they have
the same linearization types, and the phrases have the same structure. Because of this the grammars are
implemented as a singleincomplete concretegrammar module:6

incomplete concrete Godis_Speech_Incomplete of Godis_Ab stract =
PredefCnc ** open Godis_Phrases_Interface in ...

The interfacemoduleGodis_Phrases_Interface consists of declarations of the canned phrases. For all
languages, the declarations in the interface are instantiated in theinstancemodulesGodis_Phrases_English
andGodis_Phrases_Swedish .

To give the final English concrete GF/GoDiS grammar, the incomplete moduleGodis_Incomplete is
completed by the respective instance modules:

concrete Godis_Speech_English of Godis_Abstract = Godis_ Speech_Incomplete
with (Godis_Phrases_Interface = Godis_Phrases_English) ;

The Swedish concrete grammar is created analogously.

5Recall that in Prolog there must not be any whitespace between a functor and its opening parenthesis, but this
is handled in the tokenization phase.

6The predefined GF modulePredefCnc defines the category ofstrings, which is used in the ICM move for
positive perception.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 43/73

Common phrases

Phrases and substrings that might occur in different placesin a grammar are preferrably put in a resource
module. We go one step further and use the same phrases for both English and Swedish.7 The canned
phrases can then be defined in aninterfacemodule:

interface Godis_Phrases_Interface = {
oper yesS : Str;

noS : Str;
no_waitS : Str;
i_want_toS : Str;
i_wonderS : Str;
...

The interface can now be instantiated by a specific language in aninstancemodule:

instance Godis_Phrases_English of Godis_Phrases_Interf ace = {
oper yesS = variants{"yes"; "yup"; ["that’s correct"]};

noS = variants{"no"; "nope"};
no_waitS = optStr noS ++ "wait";
i_want_toS = "I" ++ variants{["want"]; ["would like"]} ++ " to";
i_wonderS = variants{["I wonder"];

i_want_toS ++ variants{"ask";"know"}}
++ optStr (variants{"if";"whether"});

...

Note that we can reuse phrases when defining new phrases. The operationoptStr makes its string argu-
ment optional:

oper optStr : Str -> Str = \s -> variants{[]; s};

Dialogue participants

In the dialogue systems we are considering, some dialogue moves are system specific and some are user
specific, and there are also dialogue moves that can be uttered by any dialogue participant. For this purpose
we define dialogue participant as a GF parameter:

param Participant = System | User | Both;

Now, most of the categories in the GF/GoDiS grammar will havelinearization types with an inherited
argument saying which participant is allowed to use a given term. This is accomplished by extending the
linearization types with the recordWho, and a helper function for creatingWhorecords:

oper Who : Type = {who : Participant};
who : Participant -> Who = \p -> {who = p};

7Note that this approach might be more difficult if the languages are not similar.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 44/73

Dialogue moves

First we define the basic linearization type of string records, together with a function for forming string
records:

oper SS : Type = {s : Str};
ss : Str -> SS = \str -> {s = str};

The linearization type for a dialogue move consists of a string record extended with a dialogue participant:

oper SMove : Type = SS ** Who;
lincat Move, SingleMove, Request, Ask,

YNAnswer, Answer, Report, ICM = SMove;

We also define some helper operations for creating dialogue moves. The main operation takes a participant
and a string as arguments, and the other ones fixes the participant:

oper sMove : Who -> Str -> SMove = \w,s -> w ** ss s;
sBoth : Str -> SMove = sMove (who Both);
sUser : Str -> SMove = sMove (who User);
sSystem : Str -> SMove = sMove (who System);

Now we can say that action requests can only be uttered by the user, and that reports are system-specific:

lin requestAction act = sUser (optStr i_want_toS ++ act.s ++ pleaseS);
confirmActionReport act = sSystem (act.sDecl);

Note the two constituents of an action – one for the user’s request (“play some music”), and another for
the system’s confirmation (“Okay, playing some music”).

Ambiguity and system utterances

Both user and system utterances are described in the same concrete grammar module, which yields a small
conflict when there are several alternative surface forms for the same utterance – which of the possibilities
is the preferred one for system utterances. An example is theICM move for negative perception, which
could e.g. be uttered as “I’m sorry, I didn’t get that”, “whatdid you say” or simply “what”. This can be
encoded in GF with thevariants{...} construction:

lin perNegICM = sBoth (variants{ ["I’m sorry, I didn’t get th at"];
["what did you say"]; ["what"] });

We choose to take the first of the possible variants as the default system utterance, meaning that whereas
the user can say any of the three variants for the same dialogue move, the system will always say “I’m
sorry, I didn’t get that”. This means that the system and the user speak the same language – i.e. that the
system can recognize its own utterances. This is good since the user tends to speak in the same way as the
system does (see, for example, Pickering and Garrod, 2004).

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 45/73

Utterances as sequences of dialogue moves

An utterance is made from a sequence of moves, which in turn iscreated by linearizing the functions
BaseMove andConsMove:

lincat [Move], Utterance = SMove;
lin BaseMove m = m;

ConsMove m ms = combineWho m ms ** ss (m.s ++ ms.s);
utterance ms = ms;

When combining two moves we check that both moves are associated with the same participant:8

oper combineWho : Who -> Who -> Who = \w1,w2 ->
who (case <w1.who,w2.who> of
{ <p,Both> => p;

<Both,p> => p;
<System,System> => System;
<User,User> => User;
_ => variants{} });

User and system utterances are those utterances which can beuttered by the user and the system respec-
tively. Then we do not need to include a participant in their linearization types:

lincat UserUtterance, SystemUtterance = SS;
lin systemUtterance utt = checkSystem utt;

userUtterance utt = checkUser utt;

In these linearizations we make use of operations for ensuring that a dialogue move can be uttered by a
given participant:

oper checkSystem : SMove -> SS = \m -> case m.who of
{ System | Both => m; _ => variants{} };

checkUser : SMove -> SS = \m -> case m.who of
{ User | Both => m; _ => variants{} };

Propositions

The surface form of propositions consists of a string and a dialogue participant:

lincat Proposition = SMove;

Propositions are formed from predicates, where a 0-place predicate is a proposition of its own, and a
1-place predicate is applied to an individual:

lin pred0prop _ pred = pred;
pred1prop _ pred ind = apply pred ind;

The linearization operationapply is defined below when we describe 1-place predicates.

8Note that due to record subtyping, thecombineWho operation can be applied to any linearization type which is
an extension ofWho, such asSMove as in the definition ofConsMove.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 46/73

Questions

A question can be used in two different contexts – either directly as a question (“Which artist do you
mean?”), or indirectly by talking about a question (“We’re talking about which artist you mean”). Also,
in a specific dialogue domain, different questions can be asked by the system (“What song do you want
to listen to?”) and the user (“Which song is playing now?”). This suggests that the linearization type for
questions consists of two strings and the dialogue participant:

oper SQuestion = SQue ** Who;
SQue = {sQue : Str; sInd : Str};

lincat Question, YNQ, [YNQ], AltQ, WhQ : SQuestion;

Y/n-questionsare formed from propositions. The dialogue participant is the opposite of the participant
of the proposition – if one participant can propose a proposition, then the other participant can ask if the
proposition is true:

lin propYNQ _ prop = switchWho prop **
prefixQue ["is it true that"] (prop.s);

Switching participants is defined as an operation:

oper switchWho : Who -> Who = \w -> who (case w.who of
{ System => User; User => System; Both => Both });

The operationprefixQue prefixes an indirect question to form a direct question:

oper prefixQue : Str -> Str -> SQue = \prefix,indir ->
{sQue = prefix ++ indir; sInd = indir};

Y/n-questions can also be formed from questions and actions, and they can only be asked by the system:

lin issueYNQ que = {who = System} **
prefixQue you_wantS (["ask about"] ++ que.sInd);

actionYNQ act = {who = System} **
prefixQue you_wantS (act.s);

oper you_wantS = ["do you want to"];

Alternative questionsare formed from lists of questions:

lin altQ ynqs = ynqs;

All questions occuring in a list of y/n-questions have to incorporate the same participant, which is done
by thecombineWho operation:

lin BaseYNQ ynq ynq’ = combineWho ynq ynq’ **
prefixQue you_wantS (ynq.sInd ++ ["or"] ++ ynq’.sInd);

ConsYNQ ynq ynqs = combineWho ynq ynqs **
prefixQue you_wantS (ynq.sInd ++ [","] ++ ynqs.sInd);

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 47/73

Since all alternative questions that occur in our dialogue system consist of issue/action-questions, we can
useprefixQue you_wantS to get aggregation; i.e. so that the system can ask “do you want to A, B or C”
instead of asking “do you want to A, do you want to B or do you want to C”.9

Wh-questionsare formed from 1-place predicates, with switched participants. This means that if it is the
user who asks a question about e.g. the current song, then it is the system who will give the answer:

predWhQ _ pred = switchWho pred ** pred;

There are also the two special system-only wh-questions about actions and issues:

actionWhQ = {who = System;
sQue = ["what can I do for you"];
sInd = ["how I can help you"]};

issueWhQ = {who = System;
sQue = ["do you need some information"];
sInd = ["what kind of information you need"]};

ICM

Most ICM moves can only be uttered by the system, except negative and positive acceptance and negative
perception which can be uttered by both participants:

lin accNegICM = sBoth i_dont_knowS;
accPosICM = sBoth okayS;
perNegICM = sBoth whatS;

Some other examples of ICM moves are:

lin accNegQueICM q = sSystem (["I can’t answer questions abo ut"] ++ q.sInd);
undIntPropICM _ p = sSystem (p.s ++ [", is that correct ?"]);
reraiseActICM a = sSystem (["Returning to"] ++ a.s);

Domain-specific categories

Sorts, individuals and reasons are simply strings:

lincat Sort, Ind, Reason = SS;

Actions are used either in user requests (“play some music”)or in system confirmations (“Okay, playing
some music”):

oper SAction : Type = SS ** {sDecl : Str};
lincat Action = SAction;

9A better way of solving aggregation is to use GF transfer rules, but this is an experimental feature still under
development, so we have decided not to incorporate this in the current version of the grammar library.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 48/73

0-place predicates are only used as propositions, meaning that they have the same linearization type:

lincat Pred0 = SMove;

1-place predicates are the most complicated – they can be used as answers and questions. Furthermore,
when they are used as answers they are applied to an individual, which depending on the predicate can
occur in different places in the phrase. E.g. “it isMadonnawho has made the song”, or “you’re listening
to Madonna”. Therefore we use a string with a hole as the answer linearization:

oper SPred : Type = Who ** SHole ** SQue;
lincat Pred1 = SPred;

A string with a hole is in reality implemented as two discontinuous strings:

oper SHole : Type = {s1 : Str; s2 : Str};

Now, a string with a hole can be applied to an ordinary string to form a string, which is used when forming
a predicate proposition from a predicate and an individual:

oper apply : Who ** SHole -> SS -> SMove
= \p,n -> sMove p (p.s1 ++ n.s ++ p.s2);

3.4.3 Parallel multimodality – Thinlet GUI XML-format

System output can be not only speech, but also presentationsin a graphical user interface. We have chosen
to use the Thinlet GUI toolkit10 for alternative representations. Thinlet GUI components,widgets, are
described in XML format and are rendered as java AWT components. Most standard AWT components,
e.g. buttons, lists and text fields, are supported. For eventhandling, any public Java method accessible for
the Thinlet component can be called. The widgets can be referenced by using thename attribute.

Graphical representation of dialogue moves

We represent a list of dialogue moves as a panel widget, wherewidgets representing the individual moves
are added in a top-down fashion; i.e. the first move is at the top of the panel, and the last move is at the
bottom:

<panel name="godis-output" columns="1">
Move1-Widget
...
Moven-Widget

</panel>

10The Thinlet GUI toolkit is described at and can be downloadedfrom http://www.thinlet.com/ .

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 49/73

For dialogue management purposes, it is important to distinguish between interactive and non-interactive
widgets. Non-interactive widgets are represented as labelwidgets, where the text on the label is the natural
language representation of the dialogue move. Interactivewidgets are represented as panels containing
clickable buttons which are associated to a specific input dialogue move. When clicking a button, the
dialogue move is written to the dialogue manager.

Currently only questions (except for wh-questions) are represented as interactive widgets, while other
kinds of moves are non-interactive. A simple non-interactive move is the quit move:

<panel columns="1">
<label text="Goodbye."/>

</panel>

An answer is represented as a panel containing the move’s natural language representation as labels. For
instance, the dialogue move “answer(songs_by_artist(like_a_prayer))” with the English representation
“Like a prayer” is translated to the following widget:

<panel columns="1">
<label text="Like a prayer"/>

</panel>

A yes/no-question is represented as a panel containing a label and two buttons. The text on the label is the
natural language representation of the yes/no-question, the buttons correspond to the yes and no answer,
respectively:

<panel columns="1">
<label text="Do you want to pause?"/>
<button name="answer(yes)" text="Yes" action="input(th is.name)"/>
<button name="answer(no)" text="No" action="input(this .name)"/>

</panel>

Also the ICM move “icm:und*int:usr*artist(madonna)” withthe English representation “Madonna, is that
correct?” is translated to:

<panel columns="1">
<label text="Madonna, is that correct?"/>
<button name="answer(yes)" text="Yes" action="input(th is.name)"/>
<button name="answer(no)" text="No" action="input(this .name)"/>

</panel>

Alternative questions are represented as a panel containing one button for each alternative plus a cancel
button, used to reject the whole alternative question. The dialogue move

ask({?action(handle_player), ?action(handle_playlist), ?action(handle_stations)})

with the English representation "Do you want to control the player, manage playlists or listen to radio?"
is represented as:

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 50/73

<panel>
<button name="answer(action(handle_player))"

text="Control the player" action="input(this.name)"/>
<button name="answer(action(handle_playlist))"

text="Manage playlists" action="input(this.name)"/>
<button name="answer(action(handle_stations))"

text="Listen to radio" action="input(this.name)"/>
<button name="answer(no)" text="Cancel" action="input(this.name)"/>

</panel>

Wh-questions differ from the other question types in that they are non-interactive widgets. Like the other
non-interactive move representations, they simply consist of a natural language representation of the move
on a label. So the move “?x.action(x)”, corresponding to the English utterance "What do you wantto do?"
is represented as:

<panel columns="1">
<label text="What do you want to do?"/>

</panel>

Linearization types for Thinlet output

We use both natural language phrases and GoDiS semantics when producing the Thinlet widgets, which
is reflected in the linearization types. To the original linearization records in the speech and semantics
grammars, we add a record row for XML output:

lincat Move, ... = SMove ** SSem ** XML;

The XML linearization type is defined in the XML resource module and consists of a string under the
labelxml :

oper XML : Type = {xml : Str};
xmlConcat : XML -> XML -> XML = \x1,x2 ->

{xml = x1.xml ++ x2.xml};
xmlBegin : Str -> Str -> XML = \elem,attrs ->

"<" ++ elem ++ attrs ++ ">";
xmlEnd : ...;
xmlEmpty : ...;

The XML resource module also defines operations for creatingXML elements and attributes, which are
then used by the Thinlet resource module in defining operations for creating widgets of different kinds:

oper panel : XML -> XML = \xmlContents ->
xmlConcat (xmlBegin "panel" (xmlAttr "columns" "1" ...))

(xmlConcat xmlContents (xmlEnd "panel"));
label : Str -> XML = \text ->

xmlEmpty "label" (xmlAttr "text" text ...);
button : Str -> Str -> XML = \name,text ->

xmlEmpty "button" (xmlAttr "name" name
(xmlAttr "text" text ...));

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 51/73

Reuse of existing grammars

Note that we need both an English and a Swedish version of the Thinlet grammar, since the GUI consists
of text as well as graphical objects. We do this in the same wayas before by writing an incomplete
concrete grammar in which the XML output is known, but the specific language is unknown. We reuse
the concrete syntaxes from the spoken language interface, and from the semantics, for creating the Thinlet
widgets:

incomplete concrete Godis_Thinlet_Incomplete of Godis_A bstract =
open (Text = Godis_Speech_Incomplete),

(Sem = Godis_Semantics),
Resource_Thinlet in ...

We do not have any participant in the dialogue moves, since this is a system output-only grammar. The
non-interactive moves are quite straightforward, such as the “quit” move:

lin quitMove = Text.quitMove ** Sem.quitMove **
panel (label (Text.quitMove.s));

Questions are slightly more complicated. Yes/no-questions consist of a label and two buttons:

lin ynqQuestion ynq = Text.ynqQuestion ynq ** Sem.ynqQuest ion ynq **
panel (xmlConcat (label (ynq.sQue))

(xmlConcat (button "answer(yes)" "Yes")
(button "answer(no)" "No")));

Alternative questions consist of a number of buttons, plus an extra “Cancel” button:

lin altQ qs = Text.altQ qs ** Sem.altQ qs **
panel (xmlConcat qs (button "answer(no)" "Cancel"));

Each alternative yes/no-question corresponds to a button:

lin ConsYNQ q qs = Text.ConsYNQ q qs ** Sem.ConsYNQ q qs **
xmlConcat (button ((pp1 "answer" q).sem) (q.sInd)) qs;

Abstracting the GUI description language

In the grammar library we have chosen Thinlet as the GUI description language of our choice. But
if we also want other similar description languages, we can rename and abstractify the resource module
Resource_Thinlet into theinterfacemoduleResource_GUI_Interface . ThenResource_GUI_Thinlet
would be aninstanceof the interface, and the GF/GoDiS concrete grammar moduleGodis_GUI_Incomplete
would depend on two incomplete modules.

No changes necessary to the domain grammars

Note that everything that is needed for Thinlet grammars is found in the central GF/GoDiS grammar. This
means that exactly the same domain-specific grammar can be used for GUI output or spoken output.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 52/73

3.4.4 Integrated multimodality – utterances with click modality

We do not have to change the abstract syntax since no new categories or functions are defined. Definitions
of the specific multimodal demonstrative expressions are left to the dialogue domain, since different do-
mains and different sorts might have different associated utterances. E.g. to specify a place of departure
one might have to say “from here” together with clicking on a map, but to specify a song to play, the
associated utterance might be “this song”.

The method for adding integrated multimodality in section 2.1.1 can be used on anincompleteconcrete
module as well as ordinary concrete modules. We use this factto define a new incomplete module for the
addition of a click modality to the concrete grammar.

incomplete concrete Godis_Click_Incomplete of Godis_Abs tract =
open (S = Godis_Speech_Incomplete),

Resource_MultimodalPoint in ...

Note that we open the unimodal GoDiS grammarGodis_Speech_Incomplete (as the shortcutS), since
the method tells us to preserve all unimodal information. Ingeneral, the definition of the functionf looks
like:

lin f x1 . . .xn = S. f x1 . . .xn ** (point/click information);

That is, we keep all information from the unimodal linearization, but add the click modality. This is only
done for thedemonstrativecategories, and the categories which depend on demonstratives.

Demonstrative categories

The category which we use as demonstratives is the categoryInd of individuals:

lincat Ind = Dem SS;

The categories which depend on indivuduals, i.e. having a function taking a demonstrative as argument,
are also demonstratives:

lincat Proposition, Answer, Ask, ICM, Move, [Move],
Utterance, SystemUtterance, UserUtterance = Dem SMove;
YNQ, [YNQ], AltQ, Question = Dem SQuestion;

Non-demonstrative categories

The rest of the categories have the same linearization typesas in the unimodal grammar. There lineariza-
tions are simply reflections of the unimodal linearizations:

lin f x1 . . .xn = S. f x1 . . .xn;
predWhQ = S.predWhQ;

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 53/73

Adding point/click information to demonstrative function s

A function taking only one demonstrative as argument, just propagates the click information.

lin pred1prop sort pred ind = S.pred1prop sort pred ind ** ind ;

Note that due to record subtyping we can writeind instead ofmkPoint (ind.point) . A demonstrative
function taking no demonstrative arguments can be written like this:

lin requestMove m = S.requestMove m ** noPoint;

Finally, a function taking several demonstrative arguments has to concat the clicks of the arguments:

lin ConsMove m ms = S.ConsMove m ms ** concatPoint m ms;

Completing the click module

Finally we can complete the Click module with a specific target language by instantiating the phrases:

concrete Godis_Click_English of Godis_Abstract = Godis_C lick_Incomplete
with (Godis_Phrases_Interface = Godis_Phrases_English) ;

3.4.5 Strategies for improving speech recognition

With the given definitions, any dialogue move can follow or precede any other move. Such a liberal
grammar is not good for the speech recognizer. What we need isa way of restricting the language model.

Now, in the dialogue system we are focussing on, the following regular expression over dialogue move
types captures the different possibilities of user utterances:

SingleMove |
Negative-ICM |
(YNAnswer | Positive-ICM)? (Request | Ask)? Answer*

By Negative-ICM we mean all ICM moves with negative action level, and byPositive-ICM we mean
all ICM moves with positive action level. This regular expression can be directly encoded into the GF
grammar with just a few minor changes:

• The category ICM has to be divided into two categories. Alternatively, ICM has to depend on
Polarity:

cat ICM Polarity;
cat Polarity;
fun Positive, Negative : Polarity;

• The function userUtterance has to be removed, and a number ofother UserUtterance functions
reflecting the regular expression have to be defined, among them something like the following:

fun userRequest : MaybeYesnoICM -> Request -> [Answer];

This will restrict the user grammar, which in turn restrictsthe corpus that is generated in TALK deliverable
D1.3 [Weilhammer et al., 2006].

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 54/73

Restricting the possible answers

The utterances can be restricted even further, by observingthat for a given dialogue system, each action
and question has a fixed number of follow-up questions – e.g. the action to play some music has two
follow-up questions: which artist and which song. This means that only an artist answer and a song
answer (in any order) should be allowed after a request to play some music. Also, even if the user does not
request an action or asks a question, but only gives some answers, not all answers should be allowed. In
some applications it might feel strange to give the same kindof answer several times in a row, regardless
of which question the user is answering.

Our problem is how to encode such restrictions in the grammar. We give two possible solutions and hint
at a third. But first we decide that the kind of answer is deduced from the sort – which is already done in
the abstract syntax in section 3.3.2.

Solution 1: Encoding the restrictions in dependent types

We can change the types of questions (i.e. 1-place predicates) and actions to depend on a list of sorts:

cat Question [Sort]; Pred1 [Sort]; Action [Sort];

The restriction that a list of answer sorts can only be taken from a given list, can be encoded as Horn
clauses:

AnswerList([])

∀x,xs AnswerList(xs) → AnswerList(x : xs)

∀xs,ys Select(xs,ys)∧AnswerList(ys) → AnswerList(xs)

The second clause handles the case when a sort is not answeredby the user. The last clause is when the
user answers one of the possible sorts, which is then selected from the list of restrictions:

∀x,xs Answer(x) → Select(x : xs,xs)

∀x,xs,ys Select(xs,ys) → Select(x : xs,x : ys)

These Horn clauses are straightforwardly translated into GF abstract syntax – the only things one have to
remember are that the Horn predicates Answers and Select areGF categories, that variables are typed, that
lists of sorts are constructed byBaseSort andConsSort , and that each Horn clause gives rise to a unique
GF function:

cat AnswerList [Sort]; Select [Sort] [Sort];

fun baseAnswers : AnswerList BaseSort;
skipAnswers : (x:Sort) -> (xs:[Sort]) ->

AnswerList xs -> AnswerList (ConsSort x xs)
consAnswers : (xs,ys:[Sort]) ->

Select xs ys -> AnswerList ys -> AnswerList xs

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 55/73

fun answerSelect : (x:Sort) -> (xs:[Sort]) ->
Answer x -> Select (ConsSort x xs) xs

recurseSelect : (x:Sort) -> (xs,ys:[Sort]) ->
Select xs ys -> Select (ConsSort x xs) (ConsSort x ys)

Now the functionuserRequest , defined above, can be redefined to include the sorts of the answers:

fun userRequest : (xs:[Sort]) ->
MaybeYesnoICM -> Request xs -> AnswerList xs;

This means that to each action and question we have to associate a list of sorts corresponding to the
feasible follow-up answers:

fun playMusic : Action (ConsSort SongSort (ConsSort Artist Sort BaseSort));

How can this dependently typed grammar help speech recognition? There are two ways – either we can
create a context-free speech recognition grammar obeying the restrictions, or we can use the grammar to
generate a corpus from which a statistical language model can be trained.

It is possible to transform away the type dependencies sincethere is only a finite number of sort lists in
the grammar – one for each action and predicate/wh-question. The simplest way is to instantiate the sorts
and sort lists and incorporate them with the categoriesAnswer , Select andAnswerList , thus giving a
large number of context-free categories;{Answer x} , {Select xs ys} and {AnswerList xs} for all
possibilities ofx, xs andys .

After having transformed away the type dependencies, the abstract syntax is a context-free grammar which
then can be used to create a context-free speech recognitiongrammar, or to generate a corpus of syntax
trees.

Solution 2: Restricting the generation of syntax trees

The second solution can be considered more of a hack than the first one. But on the other hand it is much
simpler, since dependent types are not involved.

The idea is based on the fact that the tree generation commands in GF (calledgt andgr) can be restricted
by an incomplete syntax tree, meaning that all generated trees will be on the given form. The original
domain grammar need not be altered, so the actionplayMusic for playing some music will just be an
Action , without any type dependencies. However, we know that each user utterance for playing music
will be on the form:

userRequest ? (requestAction playMusic) ? Answers

where the list of answers can be on one of the following forms:

BaseAnswer
(ConsAnswer SongSort BaseAnswer)
(ConsAnswer ArtistSort BaseAnswer)
(ConsAnswer SongSort (ConsAnswer ArtistSort BaseAnswer))
(ConsAnswer ArtistSort (ConsAnswer SongSort BaseAnswer))

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 56/73

This means that a corpus of all possible utterances for playing music can be generated by five GF com-
mands for generating trees. This can of course be repeated for all actions and predicates/wh-questions in
the domain. For a normal-sized domain there will be a huge number of GF tree generation commands that
have to be invoked, but these can be generated automaticallyfrom the information saying which answer
sorts each action and predicate/wh-question can take.

The solution will thus consist of some scripts that automatically generate a corpus of underspecified trees,
which then can be fed into GF to generate an instantiated corpus. To each dialogue domain we only have
to specify the kind of answers that are allowed to follow eachpredicate (in a wh-question) and action (in
a request).

A drawback of this solution is that it can only be used when generating a corpus, but since TALK de-
liverable D1.3 [Weilhammer et al., 2006] shows that training an SLM gives better results than creating a
speech recognition grammar, it is still a feasible solution.

Future solution 3: Transfer modules

The most general solution would probably be to usetransfer modulesto transform a non-restricted gram-
mar into a restricted grammar, and put all restrictions on the actions and predicates/wh-questions in the
transfer rules. However, this solution is still only theoretical since transfer modules are very experimental
in GF and still under development.

Not implemented in the grammar library

None of the restrictions suggested in this section are implemented in the current version of the Multimodal
Grammar Library, since there are different possible alternatives and we do not want to decide on one single
solution.

3.5 Domain dependent grammars

In this section we describe the specifics of a dialogue domain. First we explain what is needed to create
a new grammar for a given dialogue domain. Then we describe the specific details of our two example
dialogue systems – the MP3 player and the calendar application.

The grammar library is designed to make it as easy as possibleto create new dialogue grammars, which
we hope is shown by our examples. Note that both examples are existing dialogue systems for which we
have created new dialogue grammars, which can be seen as a kind of “stress test” for the core dialogue
grammar described previously.

3.5.1 What is needed to describe a new domain?

Suppose we want to write a grammar for the new domainDom. Then the following is a recipe of what
kinds of things that have to be added to the core GoDiS grammar. We assume that the dialogue system is
already specified, i.e. that the possible dialogue moves, sorts, individuals, etc. are known.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 57/73

Ontologies

We have to decide which ontology grammars we will make use of in the domain. The domain grammar
is extended by each of these grammars. Suppose that we are going to use the ontologiesO1, . . . ,On, then
the abstract and concrete grammars start like follows, whereLng∈ {English ,Swedish }:

abstract Domain_ Dom_Abstract =
Godis_Abstract,
Ontology_ O1_Abstract,
...
Ontology_ On_Abstract ** ...

concrete Domain_ Dom_Speech_ Lng =
Godis_Speech_ Lng,
Ontology_ O1_Lng,
...
Ontology_ On_Lng ** ...

Sorts and individuals

The sorts and individuals are preferrably derived from the ontologies – i.e. for each main categoryCat in
an ontologyO, we declare thatCatSort is a sort:

fun CatSort : Sort;

We also have to give a coercion function from the elements of categoryCat into the individuals of the sort
CatSort :

fun ind Cat : Cat -> Ind CatSort;

In some cases we want to add elements to an ontology, or even define a new sort which does not depend
on an ontology. In this case we simple enumerate the individuals:

fun i1, ..., im : Ind CatSort;

The sortCatSort only has to be given a linearization in the GoDiS semantics module, and this will be the
GoDiS predicate that corresponds to the sort:

lin CatSort = "the_category_as_recognized_by_godis";

In all languages, the individuals are linearized as in the ontology:

lin ind Cat x = x;

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 58/73

Predicates

For each 0-place predicatep in the domain, associated with the sorts, define the GF constantp:

fun p : Pred0 s;

The linearization for the GoDiS semantics is straightforward:11

lin p = pp0 " p";

When linearizing to a language, we must decide which dialogue participant is allowed to state thatp is
true. The linearization should be as a proposition, e.g.:

lin p = sUser (variants{"it is true that p"; " p is true"});

A 1-place predicatep is also associated with a sorts, and both its abstract definition and the semantics are
similar:

fun p : Pred1 s;
lin p = pp0 " p";

However, the linearization type for spoken utterances consists of three constituents as explained in section
3.3.2: p can be applied to an individual to form a proposition,p can be used as a wh-question, which
in turn can be direct or indirect. This is done by giving threephrases, of which the propositional phrase
consists of a “hole” where the individual will be put:

lin artists_songP = {who = System} **
sHole ["it is"] ["who has made the song"] **
sQue ("who" ++ hasmadeV ++ optStr songN)

["who made the song"];

Note that the recordsystem says that the system can give answers (“it is ABBA who has madethe song”),
and the opposite participant (i.e. the user) can ask questions (“who has made the song”). The indirect
question occurs when the system talks about the given question (“let’s return to the question about who
made the song”).

Questions, answers and reports

In some cases there might be questions which have no corresponding answer, or answers without corre-
sponding questions. We might prefer to add these as direct questions or answers:

fun listenToQ : Question;
lin listenToQ = pWhQ "listenTo";

11The operationspp0 , pp1 , andpp2 are defined in the Prolog resource module and create Prolog terms taking
zero, one or two arguments.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 59/73

In the natural language grammars we have to give both the direct and the indirect question, together with
the preferred participant:

lin listenToQ = {who = System} **
sQue ["do you want to listen to radio or music"]

["whether you want to listen to radio or music"];

Some kind of answers can be described syntactically as system reports, e.g. when the system fails to find
an answer to a question it can be described as a report of a failure instead of an answer. This is left as a
choice to the grammar writer.

Actions

Each actiona in the dialogue system is added as a GF function, with the trivial linearization in the seman-
tics:

fun a : Action;
lin a = pp0 " a";

There are two ways of uttering an action – either as a request from the user, or as a declarative when the
system reports that the action is done:

lin a = sAct ["do a"] ["I have done a"];

Phrases

To simplify things, common phrases can be put in resource modules, which might be calledDomain_ Dom_Phrases_ Lng,
as described previously.

Adding multimodality

Parallel GUI multimodality is handled automatically by thecore GoDiS grammar, but for the integrated
“click” multimodality, some things have to be added. To the abstract syntax we have to add functions from
points to individuals, for each of the multimodal “here-with-a-click” expressions. I.e. for each clickable
Cat in an ontology, we add the functionthis Cat:

abstract Domain_ Dom_Click_Abstract = Domain_ Dom_Abstract ** {
fun this Cat : Point -> Ind CatSort;
...

The concrete grammar module reuses the unimodal speech module:

concrete Domain_ Dom_Click_ Lng of Domain_ Dom_Click_Abstract =
Godis_Click_ Lng,
..., Ontology_ Oi _Lng, ... **
open (S = Domain_ Dom_Speech_ Lng) in {

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 60/73

Each multimodal individual thisCat is defined as a demonstrative:

lin this Cat p = ss ["this cat"] ** mkPoint p;

The other individuals are not demonstratives, i.e. they have no point associated with them:

lin ind Cat x = S.ind Cat x ** noPoint;
...
ci = S. ci ** noPoint;

Finally, predicates and actions are not changed at all:

lin acti = S. acti ;
predj = S. predj ;

3.5.2 DJ GoDIS

Ontologies

The ontologies used in this domain are the following:

• Music – Artists, Albums and Songs

• Radio stations

• Numbers

Sorts and individuals

The Sorts reflects the ontologies: ArtistSort, AlbumSort, SongSort and StationSort (for radio stations).
The PlaylistSort is currently so small and domain specific that it is not described in any ontology. The
ontology of numbers is used to define IndexSort, the sort of playlist indices.

The Individuals are just the elements of the respective ontologies. A playlist index can be any natural
number, or the special indices “next” and “previous”.

Predicates

The predicates that the user can ask for and the system find answers to arepath(to find the search path to
a song),artists_song(which artist has made a given song),artists_album(which artist has made a given
album),albums_by_artist(which albums has a given artist made),songs_by_artist(which songs has a
given artist made), andcurrent_song(which is the song currently playing).

The predicates that the system asks for arealbum, station, artist, song, playlist, itemAdd(which item
should be added to the playlist),itemRem(which item should be removed from the playlist),group-
ToAdd(which group should be added to the playlist),song_artist(which artist has made the song), and
what_to_play(which song in the playlist should be played).

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 61/73

Questions and answers

There is one general question: “do you want to listen to musicor the radio”, which is encoded as the
GoDiS predicatelistenTo.

There are three special answers, which are used when it is impossible to find a suitable answer to a question
– path_nomatch(there is no matching search path),artists_album_bestof(the album is a compilation of
many artists), andalbums_by_artist_nomatch(there are no albums by the artist in the database).

Actions

There are in total 23 possible actions that can be requested,which range from playing, stopping and
pausing, via fast forward and backward, and handling the volume control, to adding and removing items
from the playlist. There are also top-level actions for restarting the dialogue, and selecting the player, the
playlist or the radio.

Adding integrated multimodality

All sorts except numbers are clickable, meaning that we add the following functions:

fun thisArtist : Point -> Ind ArtistSort;
thisAlbum : Point -> Ind AlbumSort;
thisSong : Point -> Ind SongSort;
thisStation : Point -> Ind StationSort;

The different sorts can be referred to by different phrases,e.g. an artist can be referred to as “them”, “her”,
“him”, etc., while an album or a song are better referred to as“this” or “that”:

lin thisArtist p = ss (variants{"them";"her";"him";["thi s artist"]}) **
mkPoint p;

thisAlbum p = ss (variants{"this";"that"} ++ optStr "album ") **
mkPoint p;

3.5.3 Agenda-Talk

Ontologies

The ontologies used in this domain are the following:

• Time expressions

• Date expressions

• Event types

• Locations

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 62/73

Sorts and individuals

The Sorts reflects the ontologies: TimeSort, DateSort, EventSort and LocationSort. Furthermore, AMPM-
Sort is defined together with the time expressions. The Individuals are just the elements of the respective
ontologies.

There is also a meta-level Sort called InfoSort which is usedwhen we want to specify another sort (date,
time or location):

fun InfoSort : Sort;
dateInfo, timeInfo, locationInfo : Ind InfoSort;

lin dateInfo = ss ["date"];
timeInfo = ss ["time"];
locationInfo = ss (variants{["place"];["location"]});

Finally, there is a BookingSort, consisting of lists of events and times:

fun BookingSort : Sort;
emptyBookings : Ind BookingSort;
bookings : [EventTime] -> Ind BookingSort;

lin emptyBookings = ss ["no bookings"];
bookings books = ss (["the following bookings :"] ++ books.s);

A booked event can have a specified time, or be without time information:

fun eventTime : Event -> Time -> EventTime;
eventNotime : Event -> EventTime;

lin eventTime e t = ss (e.s ++ t.s);
eventNotime e = ss (e.s ++ ["unspecified time"]);

Predicates

The predicates that both dialogue participants can ask for are store_start_time, store_duration_time,
store_locationandstore_event. When the user asks these questions, the idea is to find the starting time,
duration time, location or event for an existing booking. The system however, can also ask questions about
when, how long, where and what for new bookings.

There are two predicates that only the user can ask for,todays_date(what is today’s date) andbookings
(what are the scheduled events a given date).

The predicates that the system asks for arenewtime(what time should the event be moved to),olddate
(what date is the event currently),newdate(what date should the event be moved to) andwhich_info
(which information is wrong).

There are also three system-only 0-place predicates:usage(giving information about the application),
take_down_event(saying that a new event will be recorded), andempty_event(saying that there is nothing
booked on the specified time).

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 63/73

Questions and answers

There is one general question: “do you want to add any more information”, which is encoded as the GoDiS
predicateadd_more_info.

Actions

The following are the possible actions:

• adding and removing bookings –add_event, delete_event, delete_current_event;

• adding more information to a booking –more_info;

• changing information, date or time of a booking –change_info, change_date, change_time;

• checking existing bookings –get_info.

There is also a top-level action for restarting the dialogue.

Adding integrated multimodality

The sorts that are clickable are dates, times and booked events. For each of these sorts we add a demon-
strative functionthisDate , thisTime andthisEvent .

The different sorts can be referrred to by different phrases, e.g. a date can be referred to as “then”, “this
date” or “that date”, while an event is referred to as “this”,“that” or “this/that event”.

3.6 The Edinburgh Town Info grammar

TheTown InfoGF grammar has been developed at UEDIN to cover the in-car information-seeking domain
of the SACTI data collections and the baseline system with reinforcement learning, see Lemon et al. [2006]
and TALK deliverable D4.2 [Lemon et al., 2005]. It has also been used to test the method presented in
2.1.1 for adding multimodality to an existing grammar.

There is currently not a GoDiS application for theTown Infogrammar, since it is used with the DIPPER
dialogue manager. Therefore it is not part of the GF/GoDiS grammar library, but the structure is very
similar to the previous examplesDJ GoDiSandAgendaTalkin section 3.5.

3.6.1 The unimodal grammar

Ontologies

The ontologies used in this domain are:

• Restaurants: cuisine type, price range, address, name

• Bars: bar type, price range, address, name

• Hotels: class, room type, address, name - Numbers

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 64/73

Sorts and Individuals

The sorts reflect the ontologies: RestaurantCuisineType, RestaurantPriceRange, RestaurantAddress, Restau-
rantName, BarType, BarPriceRange, BarAddress, BarName, HotelClass, HotelRoomType, HotelAddress,
HotelName, and ChoiceNumber.

The individuals are elements of these respective ontologies.

Predicates

The predicates that the user can ask for arechoice_number(to choose a particular entity and get its
description), and the different task types (town_info_hotels, town_info_bars, town_info_restaurants).

The predicates the system asks for are thecuisine_type, restaurant_price_range, bar_type(e.g. a jazz bar
or wine bar),bar_price_range, hotel_class, hotel_room_type, andoption_number(which of the presented
options should be described fully).

Actions

The user can request to change to a different task, ask the system to restart, repeat, or select a particular
option.

3.6.2 Adding integrated multimodality

A proof-of-concept multimodal version of this grammar was obtained by following the steps presented in
section 2.1.1.

A map location ("here") is now clickable, allowing the user to choose an option on the map by saying say
"here [click]" etc.

The abstract grammar consists of the following multimodal rules:

fun p1 : Point;
LocHere : Point -> Phrs;
UttRule : Phrs -> Sentence;
MMinput : Sentence -> MMsentence;

Using the multimodal conversion combinators, the linearization types become the following:

lincat Point = Point;
Phrs = Dem SS;
Sentence = Dem SS;
MMsentence = SS;

The linearizations also use the multimodal combinators:

lin p1 = mkPoint "p1";
LocHere p = ss ["here"] ** mkPoint p;
UttRule u = u;
MMinput i = ss (i.s ++ ";" ++ i.point);

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 65/73

This enables parsing of simple multimodal expressions as follows:

> p -cat=MMsentence "here ; p1"
MMinput (UttRule (LocHere p1))

3.6.3 Coverage

Here are some examples showing the coverage of the current grammar (the "Bpm" prefixes are present
because the base grammar is in fact compiled from a Business Process Model describing the domain):

> p "i need some indian food"
UttRule (UttRulePhrs23 I_need_some (Bpm_generalTypeRul e_13
(Bpm_town_info_restaurants_cuisine_indian_Type_Rule
Bpm_town_info_restaurants_cuisine_indian))
(Bpm_spotting_restaurants_1 spot_restaurants_food))

> p "i um want a chinese meal and uhhh a cheap hotel please in the town center"

UttRule (ConsPhrs (UttRulePhrs7 Want A (restaurants_ask_ food_type_1

(Bpm_restaurants_cuisine_chinese_Type_Rule Bpm_chine se))) (ConsPhrs (UttRulePhrs2

(Bpm_spotting_restaurants_1 spot_restaurants_meal)) (ConsPhrs (UttRulePhrs4 A

(hotels_ask_price_1 (Bpm_cheap_Type_Rule Bpm_cheap))) (ConsPhrs (UttRulePhrs2

(Bpm_spotting_hotels_1 spot_hotels_hotel)) (ConsPhrs (UttRulePhrs2

(hotels_ask_location_2 (Bpm_central_Type_Rule Bpm_tow n))) (ConsPhrs (UttRulePhrs2
(hotels_ask_location_2 (Bpm_central_Type_Rule Bpm_cen ter))) BasePhrs))))))

There is a development set of 207 user utterances which were collected for building the enhanced language
models for the baseline dialogue system of TALK deliverableD4.2 [Lemon et al., 2005].

The currentTown Infogrammar performs quite well on this test set at 91% (189 of 207test sentences).
This could be improved with further development time.

3.7 Summary

In this chapter we have described in detail the contents of the multimodal and multilingual GF/GoDiS
grammar library, written in Grammatical Framework. The grammars in the library have been made mul-
timodal by using the method described in chapter 2 in this deliverable.

The grammar library connects user and system utterances specified in GF with a dialogue system using the
GoDiS dialogue manager. The library is designed for making is easy to add new dialogue domains, source
languages, and input and output modalities. Currently the library consists of two dialogue domains, each
with two source languages and three different modalities. The two domains are the calendar application
AgendaTalk, and the MP3 playerDJ GoDiS.

An additional GF grammar has been described, which has been made multimodal using the given method.
The EdinburghTown Infogrammar is not part of the GF/GoDiS grammar library, but can be seen as a
proof-of-concept of the generality of the method. Another additional grammar, theTram Demogrammar,

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 66/73

was used as a pedagogical example when introducing the method in chapter 2 and has therefore not been
described in this chapter.

By using the diversity of the GF module system, such as resource modules, incomplete modules, inter-
faces and instances, we have maximized sharing of common information between languages, modalities,
ontologies and domains. This is done to make adding a new language, modality, ontology or domain as
simple as possible.

Version: Final (Public) Distribution: Public

Chapter 4

Summary and Conclusions

The ISU approach uses abstract representations for dialogue states and update rules which allow the
generic characterisation of flexible dialogue strategies.This enables the same code for dialogue man-
agement techniques to be used for different natural languages and for different domains.

In this deliverable, we have shown that by using an abstract representation for grammars, we can further
enable rapid porting of dialogue systems between languages, domains and modalities. The main tool
in defining such grammars is Grammatical Framework (GF), which is used in collaboration by UGOT,
UEDIN and UCAM for making ISU-based dialogue systems.

We have described two approaches to adding multimodality tounimodal dialogue systems and grammars.
The first approach is to implement multimodality at the grammar level. We have given a language- and
domain-independent method for how to add multimodal information to a unimodal GF grammar, thus
simplifying the transition from a speech-only dialogue system to a multimodal one. The second approach
is to implement multimodality at the level of the dialogue manager, which has been tried out in the ISU-
based dialogue system DelfosNCL, developed by USEV.

The main part of the deliverable has been a detailed description of the multimodal and multilingual
GF/GoDiS grammar library, written in Grammatical Framework. The grammar library connects user and
system utterances specified in GF with a dialogue system using the ISU-based GoDiS dialogue manager.
The library has been designed for making it easy to add new dialogue domains, source languages, and
input and output modalities. Currently the library consists of two dialogue domains, each with two source
languages and three different modalities. The two domains are the calendar applicationAgendaTalk, and
the MP3 playerDJ GoDiS.

Furthermore, two additional multimodal GF grammars have been described, which are created using the
method for adding multimodality. They are not part of the GF/GoDiS grammar library since they are not
part of a GoDiS dialogue system, but can be seen as proofs-of-concept of the generality of the method.
The Tram Demogrammar, used by the UGOT Tram Information System (GOTTIS),has been used as
a pedagogical example when introducing the method. The UEDIN Town Infogrammar, used with the
ISU-based DIPPER dialogue manager, has been used to test themethod.

By using the diversity of the GF module system, such as resource modules, incomplete modules, interfaces
and instances, we have maximized sharing of common information between languages, modalities, on-
tologies and domains. This has been done to make adding a new language, modality, ontology or domain
as simple as possible.

67

IST-507802 TALK D:1.2b 07/02/06 Page 68/73

Conclusions

We have presented techniques for incorporating multimodality into dialogue systems with grammars. We
have distinguished two kinds of multimodality: parallel and integrated multimodality (multimodal fusion)
and explored techniques for incorporating this both into grammars directly and by treating in terms of the
interaction between grammar and dialogue management. We have shown a general technique for creating
multimodal grammars from unimodal grammars.

While the kind of multimodality we handle is limited (selection by clicking and/or talking) we are pointing
to general techniques that will enable to the rapid development of new multimodal dialogue systems in a
way that will be generalizable to other kinds of multimodality as well.

Version: Final (Public) Distribution: Public

Bibliography

Richard A. Bolt. Put-that-there: Voice and gesture at the graphics interface.ACM SIGGRAPH Computer
Graphics, 14(3):262–270, July 1980.

Björn Bringert, Robin Cooper, Peter Ljunglöf, and Aarne Ranta. Development of multimodal and
multilingual grammars: viability and motivation. Deliverable D1.2a, TALK Project, 2005. URL
http://www.talk-project.org/ .

Håkan Burden and Peter Ljunglöf. Parsing linear context-free rewriting systems. InIWPT’05, 9th Inter-
national Workshop on Parsing Technologies, Vancouver, Canada, October 2005.

Michael Johnston. Unification-based multimodal parsing. In Coling-ACL, pages 624–630, 1998.

Michael Johnston and Srinivas Bangalore. Finite state multimodal parsing and understanding. InPro-
ceedings of the 18th conference on Computational linguistics, pages 369–375, 2000.

Michael Johnston, Philip R. Cohen, David McGee, Sharon L. Oviatt, James A. Pitman, and Ira A. Smith.
Unification-based multimodal integration. InACL, pages 281–288, 1997.

Staffan Larsson.Issue-based Dialogue Management. PhD thesis, Göteborg University, Göteborg, Sweden,
2002.

Oliver Lemon, Kallirroi Georgila, James Henderson, and Matthew Stuttle. An ISU dialogue system ex-
hibiting reinforcement learning of dialogue policies: generic slot-filling in the TALK in-car system. In
Proceedings of EACL, page to appear, 2006.

Oliver Lemon, Kallirroi Georgila, and Matthew Stuttle. Showcase exhibiting reinforcement learning for
dialogue strategies in the in-car domain. Deliverable D4.2, TALK Project, 2005. URLhttp://www.
talk-project.org/ .

Peter Ljunglöf. Expressivity and Complexity of the Grammatical Framework. PhD thesis, Göteborg
University and Chalmers University of Technology, Gothenburg, Sweden, November 2004.

Peter Ljunglöf, Björn Bringert, Robin Cooper, Ann-Charlotte Forslund, David Hjelm, Rebecca Jonsson,
Staffan Larsson, and Aarne Ranta. The TALK grammar library:an integration of GF with TrindiKit.
Deliverable D1.1, TALK Project, 2005. URLhttp://www.talk-project.org/ .

S.L̃. Oviatt, A. DeAngeli, and K. Kuhn. Integration and synchronization of input modes during multimodal
human-computer interaction. InProceedings of Conference on Human Factors in Computing Systems,
CHI ’97, New York, 1997. ACM Press.

69

IST-507802 TALK D:1.2b 07/02/06 Page 70/73

Marint Pickering and Simon Garrod. Toward a mechanistic psychology of dialogue.Behavioral and Brain
Sciences, 27(2):169–226, 2004.

José F. Quesada, Doroteo Torre, and Gabriel Amores. Design of a natural command language dialogue
system. Siridus Project Deliverable D3.2, 2000.

Aarne Ranta. Grammatical Framework, a type-theoretical grammar formalism.Journal of Functional
Programming, 14(2):145–189, 2004.

David Traum, Johan Bos, Robin Cooper, Staffan Larsson, Ian Lewin, Colin Matheson, and Massimo
Poesio. A model of dialogue moves and information state revision. Trindi Project Deliverable D2.1,
1999.

Karl Weilhammer, Rebecca Jonson, Aarne Ranta, and Steve Young. Generation of language models using
GF. Deliverable D1.3, TALK Project, 2006. URLhttp://www.talk-project.org/ .

Version: Final (Public) Distribution: Public

Appendix A

The Multimodal Grammar Library

A.1 Downloading the grammar library

The TALK Multimodal Grammar Library can be downloaded from

http://www.ling.gu.se/projekt/talk/software/

The distribution consists of a collection of GF grammar modules, distributed in the following directories:

Godis Core grammars for GoDiS-based dialogue systems

Ontology Grammars describing general ontologies

Domain The application domains MP3 (for theDJ GoDiSapplication) and Agenda (for theAgendaTalk
application

Resource General GF resource grammars

The directories and grammar modules are described in more detail in chapter 3.

A.2 Installation instructions

First download and install Grammatical Framework. Source code, binaries and installation instructions
can be found on the GF homepage:

http://www.cs.chalmers.se/~aarne/GF/

Set the search path to the GF library, and start GF from insidethe directory of the grammar files:

71

IST-507802 TALK D:1.2b 07/02/06 Page 72/73

• In csh, tcsh:

> setenv GF_LIB_PATH (path-to-GF)/lib
> (path-to-GF)/bin/gf
Welcome to Grammatical Framework, Version 2.4
...

• In bash:

$ export GF_LIB_PATH= (path-to-GF)/lib
$ (path-to-GF)/bin/gf
Welcome to Grammatical Framework, Version 2.4
...

If GF will be used on a regular basis, thegf binary should be added to the global search path and the
environment variableGF_LIB_PATH should be set globally.

A.3 Testing the grammars

The grammars can be tested separately by loading them into GF. The relevant concrete syntax modules
are:

Domain_ Dom_Src_Lng.gf , whereDom∈{MP3,Agenda }, Src∈{Speech,Thinlet,Click },
andLng∈ {English,Swedish }.

The following is an example of the capabilities of the GF program. For more information about how to
use GF, see the GF documentation. This example assumes we aretesting theDJ GoDiSspoken language
grammar, which of course can be replaced by any of the other grammars in the library.

1. Start GF in the directory where the grammars are located:

$ cd (path-to-grammar-library)/Domain/MP3/
$ gf

2. Load the source module(s) into GF:

> i -conversion=finite Domain_MP3_Semantics.gf
> i -conversion=finite Speech/Domain_MP3_Speech_Englis h.gf
> i -conversion=finite Speech/Domain_MP3_Speech_Swedis h.gf

The option-conversion=finite compiles away finite dependent types, which are used as de-
scribed in section 3.3.2. Without this option the parser returns too many parse trees, which have to
be filtered by the GF commandpt -transform=solve .

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 73/73

3. Select the English concrete grammar, and the starting category:

> sf -lang=Domain_MP3_Speech_English
> sf -cat=UserUtterance

4. Parse an English utterance:

> p -cfg "play like a virgin by madonna"
UserUtterance (ConsMove ...)

The option-cfg selects an improved context-free parsing algorithm. The default parsing algorithm
is overgenerating on grammars with dependent types, such asthis one, and the resulting parse trees
have to be filtered bypt -transform=solve .

5. Translate (i.e. parsing followed by linearization) fromEnglish to Swedish:

> p -cfg "play like a virgin by madonna" | l -all -lang=Domain_M P3_Speech_Swedish
spela like a virgin med madonna / ...

The option-all shows all possible variants of linearizing a syntax term.

6. Translate from English to GoDiS dialogue moves:

> p -cfg "play like a virgin by madonna" | l -lang=Domain_MP3_ Semantics
[request(play),answer(song(like_a_virgin)),answer(a rtist(madonna))]

7. Generate 5 random Swedish utterances:

> gr -number=5 | l -lang=Domain_MP3_Speech_Swedish
in the city med eagle eye cherry
rant radio
va
jag vill ändra balansen mitten tack
jag vill spela nummer tre tack

8. Quit GF:

> q

Version: Final (Public) Distribution: Public

