T
L

Multimodal Grammar Library

Peter Ljunglof Gabriel Amores Robin Cooper
David Hjelm Oliver Lemon Pilar Manchon
Guillermo Pérez Aarne Ranta

Distribution: Public

TALK

Talk and Look: Tools for Ambient Linguistic Knowledge
IST-507802 Deliverable 1.2b

07/02/06

Project funded by the European Community -B

L
—_— = under the Sixth Framework Programme for Inf ion Soci
s - Research and Technological Development nigrmaton Society

Technologics

The deliverable identification sheet is to be found on thenss of this page.

Project ref. no.
Project acronym
Project full title
Instrument
Thematic Priority
Start date / duration

IST-507802

TALK

Talk and Look: Tools for Ambient Linguistic Knowledge
STREP

Information Society Technologies

01 January 2004 / 36 Months

Security

Contractual date of delivery
Actual date of delivery
Deliverable number
Deliverable title

Type

Status & version
Number of pages
Contributing WP
WP/Task responsible
Other contributors
Author(s)

EC Project Officer
Keywords

Public

Dec 05

07/02/06

1.2b

Multimodal Grammar Library
Report

Public Final

73 (excluding front matter)

1

UGOT

UEDIN, USE

Peter Ljunglof, Gabriel Amores, Robin Cooper, Da

id

Hjelm, Oliver Lemon, Pilar Manchén, Guillermo Pérez and

Aarne Ranta

Evangelia Markidou

grammar, multilingual, multimodal, multimodal fusionadi
logue systems, Grammatical Framework, TrindiKit, GoD

DelfosNCL

The partners in TALK are:

Saarland University USAAR
University of Edinburgh HCRC UEDIN
University of Gothenburg uGoT
University of Cambridge UCAM
University of Seville USE
Deutches Forschungszentrum fur Kunstliche Intelligenz DFkI
Linguamatics LING
BMW Forschung und Technik GmbH BMW
Robert Bosch GmbH BOSCH

For copies of reports, updates on project activities androfLK-related information, contact:

TheTALK Project Co-ordinator
Prof. Manfred Pinkal
Computerlinguistik

Fachrichtung 4.7 Allgemeine Linguistik

Postfach 15 11 50
66041 Saarbriicken, Germany
pinkal@coli.uni-sb.de

Phone +49 (681) 302-4343 - Fax +49 (681) 302-4351

iS,

Copies of reports and other material can also be accessdtheviproject’'s administration homepage,
http://www.talk-project.org

(©2006, The Individual Authors.
No part of this document may be reproduced or transmittechinfarm, or by any means, electronic

or mechanical, including photocopy, recording, or any tinfation storage and retrieval system, without
permission from the copyright owner.

Contents

SUMMANY e e e e

Introduction

1.1 Multimodal Interfaces e e e
1.1.1 Parallel multimodality e
1.1.2 Integrated multimodality oo ...

1.2 Grammatical Framework e
1.2.1 Multimodal dialogue system grammars ciiier oL
1.2.2 Resource modules —reusing common information
1.2.3 Hierarchical grammarmodules i

1.3 DelfosNCL e

1.4 Summary e e e e e .

Multimodal grammars and multimodal fusion

2.1 Demonstrative Expressions and Multimodal Grammars
2.1.1 Adding multimodality to a unimodal grammar
2.1.2 Multimodal resource grammars e e

2.2 Two strategies of multimodal fusion in DelfosNCL
2.2.1 From speech-only to multimodal interaction
2.2.2 Multimodal Fusion: Two Strategies i muvo.
2.2.3 Comparisonof Strategies e

2.3 SUMMArY . . . L e

Description of the Multimodal Grammar Library

3.1 The GF/GoDiSgrammarlibrary e
3.1.1 The module hierarchy of the GF/GoDiS grammar library...
3.1.2 Translating between user languages and GoDiS dialogwves
3.1.3 Resources usedinthegrammarlibrary

3.2 Grammars for describing ontologies Lo o

3.2.1 Databases e e

3.2.2 Linguisticontologies e
3.3 The GF/GoDiS dialogue move grammar v v vt i e

12
12
13
17
21
22
22
27

28

29

29

IST-507802 TALK D:1.2b 07/02/06 Page ii/73

3.3.1 Thetype hierarchyinGoDIiS 33
3.3.2 Representing GoDiS types in GF abstract syntax 37

3.4 Concrete syntaxes for the central GF/GoDiS grammar 41
3.4.1 Prolog syntax for connecting to GoDiS —Semantics 41
3.4.2 Natural language utterances — English and Swedish 42
3.4.3 Parallel multimodality — Thinlet GUI XML-format 48
3.4.4 Integrated multimodality — utterances with click rality 52
3.4.5 Strategies for improving speech recognition b3

3.5 Domaindependentgrammars e e e a e 56
3.5.1 Whatis needed to describe anewdomain? 56
352 DJGODIS. e e 60
353 Agenda-Talk 61

3.6 The Edinburgh Town Infogrammar uu..o.... 63
3.6.1 Theunimodalgrammar. 63
3.6.2 Adding integrated multimodality 64
3.6.3 Coverage e e 65

3.7 SUMMANY e e e e e e e e 65
4 Summary and Conclusions 67
A The Multimodal Grammar Library 71
A.1 Downloading the grammarlibrary 71
A.2 Installation instructions L e 71
A.3 Testingthegrammars e e 72

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 1/73

Summary

The ISU approach uses abstract representations for delsges and update rules which allow the
generic characterisation of flexible dialogue strategi€kis enables the same code for dialogue man-
agement techniques to be used for different natural lareguagd for different domains.

In this deliverable, we show that by using an abstract rgmtesion for grammars, we can further enable
rapid porting of dialogue systems between languages, dmaaid modalities. The main tool in defining
such grammars is Grammatical Framework (GF), which is usesbliaboration by UGOT, UEDIN and
UCAM for making ISU-based dialogue systems.

We describe two approaches to adding multimodality to udahdialogue systems and grammars. The
first approach is to implement multimodality at the gramneael. We give a language- and domain-
independent method for how to add multimodal informatioa t;mimodal GF grammar, thus simplifying
the transition from a speech-only dialogue system to a moliial one. The second approach is to im-
plement multimodality at the level of the dialogue managérich is tried out in the ISU-based dialogue
system DelfosNCL, developed by USEV.

The main part of the deliverable is a detailed descriptiothefmultimodal and multilingual GF/GoDiS
grammar library, written in Grammatical Framework. Thergmaar library connects user and system
utterances specified in GF with a dialogue system using thebi&ed GoDiS dialogue manager. The
library is designed for making it easy to add new dialogue @ios) source languages, and input and
output modalities. Currently the library consists of twaldgue domains, each with two source languages
and three different modalities. The two domains are thenclaeapplicatiorAgendaTalkand the MP3
playerDJ GoDiS

Furthermore, two additional multimodal GF grammars areidiesd, which have been created using the
method for adding multimodality. They are not part of the G&DiS grammar library since they are not
part of a GoDiS dialogue system, but can be seen as proafsrafept of the generality of the method.
TheTram Demagrammar, used by the UGOT Tram Information System (GOTTi$S)sed as a pedagog-
ical example when introducing the method. The UEDIdwvNn Infogrammar, used with the ISU-based
DIPPER dialogue manager, is used to test the method.

By using the diversity of the GF module system, such as resoonodules, incomplete modules, inter-
faces and instances, we have maximized sharing of commomiation between languages, modalities,
ontologies and domains. This is done to make adding a newéygg modality, ontology or domain as
simple as possible.

Version: Final (Public) Distribution: Public

Chapter 1

Introduction

This deliverable concerns the development of technologgriporating multimodality into dialogue sys-

tems using grammars. We discuss two alternative strategiekimodality can either be handled as part
of dialogue management or we can construct multimodal grarenWe define a general way of creating
multimodal grammars from unimodal grammars and describarthltimodal grammar library that has

been built using these techniques.

In making the Multimodal Grammar Library we exploit the adtages of the ISU approach. The ISU
approach utilizes structured Information States to keepktiof dialogue context information. These
Information States can be read and updated by severalatiffanodules which access precisely the infor-
mation that they need. This enables a modular architecthiehvallows generic solutions for dialogue

technology. For example,

o different language modules can interact with essentiathjlar Information States, enabling rapid
porting of dialogue systems from one language to anothettendreation of multilingual dialogue
systems;

e coding of dialogue behaviour is supported independentliaguage and domain, thus allowing
for the rapid porting of dialogue systems to different damsai

e the use of structured Information States allows straighifod implementation of flexible dialogue
systems which can access and modify information in the inédion State in different sequences
and by varying means.

In this deliverable, as well as in the earlier deliverablds1Dand D1.2a [Ljunglof et al., 2005, Bringert
et al., 2005], we show that by using an abstract representédr grammars, we can further enable rapid
porting of dialogue systems between languages, domaingaddlities. The main tool in defining such
grammars is Grammatical Framework (GF), which is used ilabotation by UGOT, UEDIN and UCAM
for making ISU-based dialogue systems.

Layout of the deliverable

We begin by giving a general description of multimodal ifdees and make a distinction betweznallel
andintegrated multimodalitythe latter is also known anultimodal fusioh We then give an introduction
to the two grammar systems we have been working with — Gramoah&ramework (GF) and DelfosNCL.

2

IST-507802 TALK D:1.2b 07/02/06 Page 3/73

In chapter 2 we present techniques for incorporating moldatity into using these two grammar sys-
tems. We describe how multimodality can be specified in a Gingrar, and give a method for adding
multimodality to a unimodal grammar. As a pedagogical eXamnye describe a multimodal version of
the UGOTTram Demogrammar. Furthermore, we describe and compare two stestégi multimodal
fusion in DelfosNCL.

In chapter 3 we describe the contents of the multimodal grantitorary, which is implemented in GF as
a front-end to the generic dialogue system GoDiS built withiindiKit. The library also includes several
ontology databases and two example dialogue domains —radealapplication calledgendaTalkand an
MP3 player application calle@J GoDiS The library is designed for making is easy to add new diadogu
domains, source languages, and input and output modalifiesa test of the generality of the method
of adding multimodality to a grammar, the multimodal versiof the UEDIN Town Infogrammar is
described.

1.1 Multimodal Interfaces

Multimodal interfaces allow for more flexible and naturakiractions between human users and computer
systems. They benefit from a variety of communication chismsigch as speech, text, gesture, handwrit-
ing, etc. Multimodal systems have been largely studiedesihe appearance of the “Put-That-There” sys-
tem [Bolt, 1980]. The results of Oviatt et al. [1997] showhkd potential benefits of multimodal systems
compared to unimodal ones in terms of user preferences amb#sibility of mutual disambiguation.

The fusion of multimodal inputs has also evolved since Bagittoposal, which suffered from lack of
generality, defining rules that could only apply to speegheth systems. Johnston [1998] proposed a
new approach using a unification based multidimensionaipgiof typed feature structures that partially
overcame the limitations previously mentioned. Johnstuh Bangalore [2000] found that this solution
could be improved both at parsing level, because of its @rfitesomputational complexity, and at natural
language understanding level because it did not allow d-tighpling of parsing and input recognition
(speech or gesture). They proposed an alternative appusaud finite-state multimodal grammars.

In this deliverable we explore two ways of implementing rmatidal interfaces. In the first approach
we follow in Johnston’s footsteps and implement multimdglat the grammar-level, as multimodal GF
grammars. As we will show, GF is well suited for implementimgiltimodality — different modalities
can be realised as discontinuous constituents, and thépiosof defining macros in GF can be used
to streamline the task of adding multimodality to a unimogemmar. Also, there are efficient pars-
ing algorithms for GF grammars with discontinuous conetits [Ljungl6f, 2004, Burden and Ljunglof,
2005].

In the second approach we implement multimodal fusion naframmar level, but at the level of the
dialogue manager within an Information State Update (ISpreach. This approach is tried out in
DelfosNCL.

1.1.1 Parallel multimodality

Parallel multimodalityis a straightforward instance of multilinguality. It meahat the concrete syntaxes
associated with an abstract syntax are not just differeniralalanguages, but different representation
modalities, encoded by language-like notations such gsh@graepresentation formalisms. Examples of

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 4/73

parallel multimodality are:

e When a route is described, in parallel, by speech and by alte&n on a map.

e When a list of objects is presented, in parallel, by speecdhaara list of the computer screen.

Both descriptions convey the full information alone, withupport from the other. This raises the
dialogue management issue of whether all information shbel presented in all modalities. For the
above given examples:

e All stops are indicated on the graphical presentation ofuderowhereas in the natural language
presentation only stops where the user must change arenfrdse

¢ Ifthe list of objects is large, it is unfeasible to presehbéthem in natural language. An alternative
is to say e.g. how many objects there are and just name the lfirshe graphical representation
however, the full list of objects can be presented.

Because GF permits the suppression of information in cem@gntax, this issue can be treated on the
level of grammar instead of dialogue management.

1.1.2 Integrated multimodality

Demonstrative expressiorse an old idea, which provide an exampleimtegrated multimodalityas
opposed to parallel multimodality. In parallel multimoitigl speech and other modes of communication
are just alternative ways to convey the same informatiorm@uestrative expressions, however, get their
meaning from the context:

This trainis faster tharthat airplane
| want to go fromthis placeto this place
| would like to listen tothis song

In particular, as in these examples, the meaning can benelotfiom accompanying pointing gestures.
Thus the meaning-bearing unit is neither the words nor tseuges alone, but the combination of the two
modalities. The problem of multimodal fusion describedwahis then how to combine the two modalities
into one multimodal utterance. How to define integrated imaldality with a grammar is less obvious
than parallel multimodality. The GF solution makes essgnise of records, and not just strings, as
outcomes of linearization. In brief, different modalitynannels” are stored in different fields of a record,
and it is the combination of the different fields that is senthie dialogue system parser. The DelfosNCL
solution is to implement fusion at the dialogue level indte&at the grammar level.

Representing demonstratives in semantics and grammar

When formalizing the semantics of demonstratives, we camboze syntax with coordinates:
| want to go fromthis placeto this place

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 5/73

is interpreted as something like
want(l, go, this(place,(123,45)), this(place,(98,10)))

Now, the same semantic value can be given in many ways, bgrparfg the clicks at different points of
time in relation to the speech:

| want to go fromthis placecLick(123,45) tathis placecLick(98,10)
| want to go fromthis placeto this placecLick(123,45)cLIck(98,10)
CcLICK(123,45)cLIck(98,10) | want to go fronthis placeto this place

How do we build the value compositionally in parsing? Tradial parsing is sequential: its input is a

string of tokens. It works for demonstratives only if thenqioig is adjacent to the spoken expression. In
the actual input, the demonstrative word can be separabed thhe accompanying click by other words.

The two can also be simultaneous.

1.2 Grammatical Framework

In this section we only describe some details of Grammakcamework (GF) which are crucial for this
deliverable. GF is described in more detail by Ranta [20B4TALK deliverable D1.2a [Bringert et al.,
2005], and on the GF homepage:

http://www.cs.chalmers.se/~aarne/GF/

1.2.1 Multimodal dialogue system grammars
Asynchronous syntax in GF

The main idea of GF is the separation of abstract and consyeitax. The abstract part of a grammar
defines a set of abstract syntactic structures, calledaadvsérms or trees; and the concrete part defines a
relation between abstract structures and concrete stesctu

abstract syntax trees <= concrete syntax objects

When modelling context-free grammar in GF, the concretéasyobjects are just strings. But they can be
more structured objects as well — in general, theyrecerdsof different kinds of objects. For example, a
demonstrative expression can be linearized into a recondamétrings:

this placecLick(123,45) <= {s = "this place"; p = "(123,45)"}
The record

{s = "I want to go from this place to this place";
p = "(123,45) (98,10)"}

represents any combination of the sentence and the cliskkng as the clicks appear in this order,
including the examples at the end of section 1.1.2.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 6/73

Integrated multimodality and discontinuous constituents

The GF representation of integrated multimodality is simtb the representation discontinous con-
stituents For instance, assuntbas arrived” is a verb phrase in English, which can be used both in
declarative sentences and questions,

shehas arrived
hasshearrived

In the question, the two words are separated from each othéhas arrived” is a constituent of the
guestion, it is thus discontinuous. To represent such itoasts in GF, records can be used: we split verb
phrases\(P) into a finite and infinitive part.

lincat VP = {fin, inf : Str};

lin Indic np vp = {s = np.s ++ vp.fin ++ vp.inf};
Quest np vp = {s = vp.fin ++ np.s ++ vp.inf};
From grammars to dialogue systems

The general recipe for using GF when building dialogue sgstis to write a grammar with the following
components:

e The abstract syntax defines the semantics (the "ontolodyfecdomain of the system.

e The concrete syntaxes define alternative modes of input aipdio

The engineering advantages of this approach have to dqg peittli the declarativity of the description,
partly with the tools provided by GF to derive different casnpnts of the system:

e The type checker guarantees that all the input and outpuesnartch with the ontology.

e The grammar compiler generates parsers for each input gaarand generators for each output
grammar.

e Translators between GF’s abstract syntax and other ontaesgcription languages enable commu-
nication with different kinds of dialogue managers and c@&g. Prolog terms and XML objects.

e Translators from GF’s concrete syntax to speech recognitianats make it possible to generate
e.g. Nuance grammars and ATK language models.

1.2.2 Resource modules — reusing common information

Apart from abstract and concrete modules, there is a third & grammar module in GF calledsource
modules There are two kinds of judgements possible in a resourcaufapgarameter declarations, and
operator definitions.

The parameters and operators in a resource module are adgora concrete grammar lmpeningthe
resource module:

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 7/73

concrete Cnc of Abs = open Res in ...
Several resource modules can be opened in parallel:
concrete Cnc of Abs = open Res 41, .., Res ,in ..

If a parameteP or operationF is defined in several resource modules, there is a conflictivenidave to
use qualified referendees;.P or Res;.F to disambiguate.

We can also introduce abbreviations for writiRg® or S.F instead ofRes;.P or Resy.F:

concrete Cnc of Abs = open (R=Res i), .., (S=Res) in ..

Parameter declarations

Parameters are non-recursive datatypes which are useddrete linearizations when describing inflec-
tion tables, and inherent feaures. Standard examplesessthice-language specific parametemnber
gender caseetc.®

param Number = Sing | Plur;
Gender = Neutr | Utr Masc;
Masc = Masc | Nomasc;
Case = Nom | Gen;

Note that parameters can be hierarchic, as in the definifi@wedish gender. But they are not allowed to
be recursive, meaning that there are always a finite numhbearaimeters of a given parameter type.
Parameters are used in inflection tables and as inhereatdeatnd are further described in TALK deliv-
erable D1.2a [Bringert et al., 2005], and by Ranta [2004].

Operation definitions

Operationsin GF are defined in a rich functional language, and are alwgysd. Dependent types and
higher-order functions may be used. The main restrictiothas the operation definition must not be
recursive, which together with some further minor resitt means that whenever they are used in a
concrete grammar module, they can be compiled away. Theigpdsibility of defining operations can be
seen as a very expressive macro facility.

An operation definition consists of a typing and a definingreggpion:

oper f: Tp>..> T,>T
= \Xgpy Xn >

The typing restriction says thatmust be an expression of tydewheneverx; is of typeT, (L <i < n).
Dependent types are allowed, as well as the top-level Type, so we can write general operations that
works for any typer:

These are Swedish parameter definitions — other languages diber parameters, and other definitions.
E.g. German have three genders and four cases.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 8/73

oper AddStr : Type -> Type
=\t >t* {s: St}
addstr : (t:Type) -> Str -> t -> AddStr t
= _strterm = term ** {s = str};

The first operatiorAddStr creates a new linearization type by adding a record {08t} ; and the
second operatioaddStr adds a given string to a term of type returning an object of typAddStr t .
Note the built-in record extension operat®t), which extends a record type or a record with new rows.

Using abstract and concrete grammars as resources

There is a built-in translation of an abstract with a coroggfing concrete grammar module into a resource
module. Each abstract categ@ys translated to an operati@of type Type, with the linearization type
as its definitior?

cat C; == oper C : Type = T;
lincat C = T;

Each abstract functio of categoryC with linearizationt is translated to an operatidnof type C with
definitiont:

fun f: C > .. > C, > C; — oper f: CL > . -> C,> C
in f x4 ... Xn =1 =\ X1, Xy >

This translation means that we can open a concrete modulelbasia resource module when defining a
new concrete grammar module:

concrete NewCnc of Abs = open OldCnc in ...

This will be used in the multimodal grammar library in chapde to extend a unimodal grammar with
multimodal information. In that case both concrete gransnadso share the same abstract syntax, meaning
that each functiorf already has a definition i@ldCnc , which we can extend with some extra information:

in f X .. X; =0IldCnc. f X3 ... X5 ** (new information)
Interfaces, instances and incomplete grammars
Operation definitions can be split into the typing and theresgion separately:

oper f: Tp > ..-> Tp-> T,
oper f X3 .. Xp =1t

2This translation is a slight simplification since we do nottien the nullarylock fieldswhich are automatically
added to the translation for making type checking correct.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 9/73

Note that in this case, the lambda abstraction,..., X, can be moved to the left-hand side of the
definition.

This makes it possible to put all typings in a separate moauitéch is called an interface module:

interface Resl = {
oper hello : Str -> {s : Str};
}

This interface can now be instantiated in different souacgliages by instance modules:

instance ResEng of Resl = {

oper hello name = {s = "Hello" ++ name ++ "I'};
}
instance ResSwe of Resl = {

oper hello name = {s = "Hejsan" ++ name ++ "I}

}

An instance module is equivalent to a resource module, andeaopened by a concrete grammar in
the same way. But an interface module can also be opened hyceete grammar, which then becomes
incomplete

incomplete concrete Cncl of Abs = open Resl in {
lin greeting = hello "Dolly";
}

An incomplete module can be completed by instantiating @dined interfaces:
concrete CncEng of Abs = Cncl with (Resl=ResEng);

These features are also used in the grammar library in ah&jpoe increasing sharing between grammars.

1.2.3 Hierarchical grammar modules

The GF/GoDiS grammar library described in chapter 3 comsisa quite large number of files. To make
the module structure more explicit we have used a hieraathiodule structure, where the hierarchy is
reflected in the file structure. However, hierarchical medus$ not implemented in GF version 3.4.

Therefore we have chosen to name the modules as follows. rArbiécal GF module is named B_C
and is physically located in the filke B_C.gf residing in the directory/B. This means that the module
hierarchy reflects the physical directory structure of trengnar files. With this solution, hierarchical
modules can be used in the current version of GF. The drawibadlcktA andB have to be repeated in both
the file name and the directory structure. When hierarchigadules is supported by GF, we can dvop
andB from the file name to get.gf . We can also drop all search paths for impoerted modules;hwhi
currently have to be included in the grammar files.

3GF 2.4 is the current public version as of 31st January 2006.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 10/73

1.3 DelfosNCL

DelfosNCL can be described as a collaborative dialogue gerninked to a Natural Language Under-

standing Module, which allows dialogues driven by the sdina@mformation provided by the user and by

the dialogue expectations generated by the dialogue manggekernel of our system is then composed
by two main modules:

e A Natural Language Understanding (NLU) module which is iargje of the lexical and syntactic
analysis and produces the Information States, and

¢ A Dialogue Manager which manipulates Information StatedXialogue Moves) through the ap-
plication of dialogue update rules

The Information States configured for this scenario aredasghe DTAC protocol [Quesada et al., 2000],
A DTAC consists of a feature-value structure with four maatfires: DMOVE, TYPE, ARG and CONT.
The following figure illustrates the DTAC obtained for thenmmand“Turn on the kitchen light”in our
scenario:

'DMOVE specifyCommand

TYPE switchOn

ARG Device

DEevICE DMOVE specifyParameter
TYPE OnOffDevice
CONT kitchen

Dialogue Update Rules take the following form in our system:

(RulelD: MAKECALL;
PriorityLevel: 15;
TriggeringCondition: (DMOVE:specifyCommand,TYPE:Make Call);
DeclareExpectations: {
Dest <= (DMOVE:specifyParameter, TYPE:Name|PhoneNumber)}
SetExpectations: {
Confirm <= (DMOVE:answerYN); }
ActionsExpectations:
{ [Dest] => {ExecuteDMFunction(MakeCallDest); }
[Confirm] => {ExecuteDMFunction(MakeCallDisam); }
PostActions: { @if(@is-MAKECALL.Confirm.TYPE == "YES") {
ExecuteDMFunction(MakeCallDest);

}

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 11/73

The itemTriggeringCondition describes the Dialogue Move (DMove) that must arrive forrtile to be
activated. DeclareExpectations defines additional information needed for the rule to belfetfi This
information could have been provided previously in thealiake history, or during the same interaction.

The SetExpectations section defines additional Dialogue Moves (DMoves) needelitcessfully exe-
cute the rule, such as an explicit confirmation before exegw command.

As its name indicatedActionExpectations defines the actions to be carried out when eitheDidaetare-
Expectations have not been fulfilled by the current input nor within the IDgue History, or when some
SetExpectations have been defined.

Finally, thePostActions section describes what should be done once the rule is activall the expec-
tations have been fulfilled.

1.4 Summary

In this chapter we have introduced the different kinds oftimddal interfaces and the different systems
we are focussing on.

Multimodal interfaces can be split into parallel multiméyeand integrated multimodality. Parallel mul-
timodality is when the same information is displayed simgdtously in several modalities. Integrated
multimodality is when different modalities convey diffatgparts of the information, and the problem of
multimodal fusion is then how to combine the informationnfrthe different modalities into one single
utterance.

The systems we are focussing on are Grammatical Framewdtkd@ DelfosNCL. GF is a grammar
formalism and an implementation, well suited for descighimultilinguality and multimodality, as already
shown in TALK deliverables 1.1 and 1.2a [Ljunglof et al., 808ringert et al., 2005]. In this deliverable
we show the multimodal capabilities in more detail by givieagnultimodal and multilingual grammar
library for several dialogue applications. DelfosNCL isSUrbased multimodal dialogue system com-
posed of a natural language understanding module whiclysesathe input and produces information
states, and a dialogue manager which manipulates the iafammstates.

Version: Final (Public) Distribution: Public

Chapter 2

Multimodal grammars and multimodal
fusion

This chapter is divided into two parts. Section 2.1 desertio@v multimodality can be specified in Gram-
matical Framework, and gives a method for how to add multafidto a unimodal grammar. As a
pedagogical example we describe a multimodal version oUBOT Tram Demaogrammar. Section 2.2
describes two strategies for multimodal fusion in DelfodN@&nd compares the advantages and disadvan-
tages.

2.1 Demonstrative Expressions and Multimodal Grammars

This section shows a method to write GF grammars in which espaktterances are accompanied by
pointing gestures. The method is introduced via a concraaenple how multimodal grammars can be
written in GF and how they can be used in dialogue systemseXpkanation is given in three stages:

1. How to write a multimodal grammar by hand.
2. How to add multimodality to a unimodal grammar.

3. How to use a multimodal resource grammar.

Example multimodal grammar: abstract syntax

A simple example of a multimodal GF grammar is the one calledTram Demogrammar, which is
described in more detail in TALK deliverable D1.2a [Bringet al., 2005]. The grammar is a part of a
dialogue system that deals with queries about tram timesabl'he system interprets a speech input in
combination with mouse clicks on a digital map.

The abstract syntax of (a minimal fragment of) fram Demagrammar is

cat Input, Dep, Dest, Click;

fun GoFromTo : Dep -> Dest -> Input; -- "I want to go from x to y"
DepHere . Click -> Dep; -- "from here" with click
DestHere . Click -> Dest; -- "to here" with click

12

IST-507802 TALK D:1.2b 07/02/06 Page 13/73

fun CCoord o Int -> Int -> Click; -- click coordinates
An English concrete syntax of the grammar is

lincat Input, Dep, Dest = {s : Str; p : Str};

Click ={p : St}
lin GoFromTo x y = {s = ['l want to g0"] ++ x.s ++ y.S; p = X.p ++ y.p h
DepHere ¢ = {s = ['from here"] i p = c.pk
DestHere ¢ = {s = ["to here"] . p = c.ph
lin CCoord x vy ={p = "(" ++ xS ++ """ ++ ys ++)}

When the grammar is used in the actual system, standarchgarsthods are used for interpreting the
integrated speech and click input. Parsing appears on twetstethe speech input parsing performed by
the Nuance speech recognition program (without the clickisyl the semantics-yielding parser sending
input to the dialogue manager. The latter parser just attatie clicks to the speech input. The order of
the clicks is preserved, and the parser can hence assoa@t@tthe clicks with proper demonstratives.
Here is the grammar used in the two parsing phases.

cat Query, -- whole content
Speech; -- speech only

fun Querylnput : Input -> Query; - the whole content shown
Speechlnput : Input -> Speech; -- only the speech shown

lincat Query, Speech = {s : Str};
lin Querylnput i = {s = is ++ "" ++ i.p}
Speechinput i = {s = i.s}
2.1.1 Adding multimodality to a unimodal grammar
This section gives a recipe for making any unimodal grammaltimodal, by adding pointing gestures to

chosen expressions. The recipe guarantees that the mgsgiimmar remains semantically well-formed,
i.e. type correct.

The multimodal conversion

The multimodal conversiof a grammar consists of seven steps, of which the first isyawlze same,
the second involves a decision, and the rest are derivative:

1. Add the categorfoint with a standard linearization type.

cat Point;
lincat Point = {point : Str};

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 14/73

2. (Decision) Decide which constructors are demonstratiee take a pointing gesture as an argu-
ment. Add aPoint as their last argument. The new type signatures for suchrcmtersd have
the form

fun d : ... -> Point -> D;

3. (Derivative) Add apoint field to the linearization typé& of any demonstrative categoB, i.e. a
category that has at least one demonstrative constructor:

lincat D = L ** {point : Str};

4. (Derivative) If some other catego€yhas a constructad that takes demonstratives as arguments,
make it demonstrative by addingpaint field to its linearization type.

5. (Derivative) Store th@oint field in the linearizatiort of any constructod that has been made
demonstrative:

lin dxl ..xnp=tx1..xn* {point = p.point};

6. (Derivative) For each constructérthat takes demonstrative, . .., D, as arguments, collect the
pointfields of the arguments in th@oint field of the value:

lin f x1 ... xm =
t x1 ... xm ** {point = X di.point ++ ... ++ X dn.point};

Make sure that the pointingsd;.point ... X dn.point are concatenated in the same order
as the arguments appear in tlirearization t which is not necessarily the same as the abstract
argument order.

7. (Derivative) To preserve type correctness, add an epgity field to the linearizatiort of any
constructorc of a demonstrative category:

lin ¢ x1 ... xn =t x1 ... xn * {point = [J};

An example of the conversion

Start with aTram Demaggrammar with no demonstratives, but just tram stop namesranididexicalhere
(interpreted as e.g. the user’s standing place).

cat Input, Dep, Dest, Name;

fun GoFromTo . Dep -> Dest -> Input;
DepHere . Dep;
DestHere . Dest;
DepName : Name -> Dep;
DestName : Name -> Dest;
Almedal : Name;

A unimodal English concrete syntax of the grammar is

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 15/73

lincat Input, Dep, Dest, Name = {s : Str};

lin GoFromTo x y = {s = ['| want to go"] ++ x.s ++ y.s};
DepHere = {s = ['from here"]};
DestHere = {s = ['to here"]};
DepName n = {s = ['from"] ++ n.s};
DestName n = {s = ["to"] ++ n.s};
Almedal = {s = "Almedal},

Let us follow the steps of the recipe.

1. We add the categoBoint and its linearization type.
2. We decide thabepHere andDestHere involve a pointing gesture.
3. We addoint to the linearization types diep andDest .

. Therefore, also adwbint to Input . (But Nameremains unimodal.)

4
5. Addp.point to the linearizations dbepHere andDestHere .
6. Concatenate the points of the argumentSairomTo.

7

. Add an emptyoint to DepNameandDestName.

In the resulting grammar, one category is added and two iumstare changed in the abstract syntax
(annotated by the step numbers):

cat Point; -1
fun DepHere . Point -> Dep; - 2
DestHere : Point -> Dest; -- 2
The concrete syntax in its entirety looks as follows
lincat Dep, Dest = {s : Str; point : Str}; - 3
Input = {s : Str; point : Str}, - 4
Name = {s : Str;
Point = {point : Str}; -1
lin GoFromTo x y = {s = ['l want to go"] ++ Xx.s ++ y.s; - 6
point = x.point ++ y.point};
DepHere p = {s = ["from here"]; - 5
point = p.point};
DestHere p = {s = ['to here"; - 5
point = p.point};
DepName n = {s = ['from"] ++ ns; - 7
point = I}
DestName n = {s = ["t0"] ++ n.s; - 7
point = [}
Almedal = {s = "Almedal"};

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 16/73

What we need in addition, to use the grammar in applicatiares,

1. Constructors foPoint , e.g. coordinate pairs.

2. Top-level categories, likuery andSpeech in the original.
But their proper place is probably in another grammar mqdidehat the cordram Demagrammar can
be used in different systems e.g. encoding clicks in diffeveays.
Multimodal conversion combinators

GF is a functional programming language, and we exploit liyiproviding a set of combinators that
makes the multimodal conversion easier and clearer. We witir the type of sequences of pointing
gestures.

oper Point : Type = {point : Str};

To make a record type multimodal is to extend it weint . The record extension operatdr is needed
here.

oper Dem : Type -> Type =\t -> t ** Point;
To construct, use, and concatenate pointings:

oper mkPoint : Str -> Point = \s -> {point = s};
noPoint : Point = mkPoint [J;
point : Point -> Str = \p -> p.point;
concatPoint : Point -> Point -> Point = \x,y ->
mkPoint (point x ++ point y);
Finally, to add pointing to a record, with the limiting cadeno demonstrative needed.

oper mkDem : (t : Type) -> t -> Point -> Dem t = _xs -> X ** s;
nonDem : (t : Type) -> t -> Dem t = \tx -> mkDem t x noPoint;

Let us rewrite thelTram Demayrammar by using these combinators:
oper SS : Type = {s : Str};

lincat Input, Dep, Dest = Dem SS;

Name = SS;
lin GoFromTo x y = {s = ['| want to go"] ++ X.s ++ y.s} **
concatPoint x v;
DepHere = mkDem SS {s = ['from here"]};
DestHere = mkDem SS {s = ['to here"]};
DepName n = nonDem SS {s = ['from"] ++ n.s};
DestName n = nonDem SS {s = ['1t0"] ++ n.s};
Almedal = {s = "Almedal'};

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 17/73

The type synonyn$Sis introduced to make the combinator applications condiseice the use of partial
application inDepHere andDestHere ; an equivalent way to write is

lin DepHere p = mkDem SS {s = ['from here"]} p;

2.1.2 Multimodal resource grammars

The main advantage of using GF when building dialogue systeiihat various components of the system
can be automatically generated from GF grammars. Writimgdhgrammars, however, can still be a
considerable task. A case in point are multilingual systemosy to localize e.g. a system built in a car to
the languages of all those customers to whom the car is sdhi® pfoblem has been the main focus of
GF for some years, and the solution on which most work has teea is the development ofsource
grammar libraries These libraries work in the same way as program librariesoftware engineering,
enabling a division of labour between linguists and domajrees.

One of the goals in the resource grammars of different laggihas been to providdéamguage-independent
API, which makes the same resource grammar functions avaflabtéifferent languages. For instance,
the categories, NP, andVP are available in all of the 10 languages currently supporéed so is the
function

PredVP : NP -> VP -> S

which corresponds to the ru&— NP VP in phrase structure grammar. However, there are sevegdklev
of abstraction between the functi®redVP and the phrase structure rule, because the rule is implechent
in so different ways in different languages. In particutiscontinuous constituents are needed in various
degrees to make the rule work in different languages.

Now, dealing with discontinuous constituents is one of tamdnding aspects of multilingual grammar
writing that the resource grammar API is designed to hidet tBe proposed treatment of integrated
multimodality is heavily dependent on similar things. Whah we do to make multimodal grammars
easier to write (for different languages)? There are twbagbnal answers:

1. Use resource grammars to write a unimodal dialogue granamé then apply the multimodal
conversion to manually chosen parts.

2. Usemultimodal resource grammats derive multimodal dialogue system grammars directly.

The multimodal resource grammar library has been obtain@th the unimodal one by applying the
multimodal conversion manually. In addition, the API hasibeimplified by leaving out structures needed
in written technical documents (the original applicatioaaaof GF) but not in spoken dialogue.

In the following subsections, we will show a part of the nmaltidal resource grammar API, limited to a
fragment that is needed to get the main ideas and to reimpketheTram Demogrammar. The reim-
plementation shows one more advantage of the resource gmapproach: dialogue systems can be
automatically instantiated to different languages.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 18/73

Resource grammar API

The resource grammar API has three main kinds of entries:
1. Language-independent linguistic structures (“lindaisntology”), e.g.
PredVP : NP > VP > S; - “Mary helps him”
2. Language-specific syntax extensions, e.g. Swedish amddbdronting topicalization
TopicObj : NP > VP > S, -- "honom hjélper Mary"
3. Language-specific lexical constructors, e.g. GermAblaut patterns
irregV : (sing,sang,sung : Str) -> V;

The first two kinds of entries areat andfun definitions in an abstract syntax. The multimodal, re-
stricted API has e.g. the following categories. Their naaresobtained from the corresponding unimodal
categories by prefixiniyl

cat MS; - multimodal sentence or question
MQS; -- multimodal wh question
Mimp; -- multimodal imperative
MVP; - multimodal verb phrase
MNP; -- multimodal (demonstrative) noun phrase
MAdv; - multimodal (demonstrative) adverbial
cat Point; - pointing gesture

Multimodal API: functions for building demonstratives

Demonstrative pronouns can be used both as noun phrases dateeminers.

fun this_MNP . Point -> MNP; - this
thisDet MNP : CN -> Point -> MNP; - this car

There are also demonstrative adverbs, and prepositioesagivoductive way to build more adverbs.

fun here_MAdv : Point -> MAdv; -- here
here7from_MAdv : Point -> MAdyv; - from here
MPrepNP : Prep -> MNP -> MAdv; -- inthis car

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 19/73

Multimodal API: functions for building sentences and phrases

A handful of predication rules construct sentences, gomstiand imperatives.

fun MPredVP : MNP -> MVP -> MS; -- this plane flies here
MQPredVP : MNP -> MVP -> MQS; -- does this plane fly here
MQuestVP : IP -> MVP -> MQS; - who flies here
MimpVP : MVP -> Mimp; - fly here!

Verb phrases are constructed from verbs (inherited as soah the unimodal API) by providing their
complements.

fun MUseV V. > MVP; - flies
MComplV2 : V2 -> MNP -> MVP; - takes this
MComplVV : VW -> MVP -> MVP; - wants to take this

A multimodal adverb can be attached to a verb phrase.

fun MAdvVP : MVP -> MAdv -> MVP; -- flies here

Language-independent implementation: examples

The implementation makes heavy use of the multimodal ceimeicombinators. It addspaint field to
whatever the implementation of the unimodal category iswnlanguage. Thus, for example

lincat MVP = Dem VP;
MNP = Dem NP;
MAdv = Dem Adv;
lin this_ MNP = mkDem NP this_NP;
MComplV2 verb obj = mkDem VP (ComplV2 verb obj) obj;
MAdwWP vp adv = mkDem VP (AdvWP vp adv) (concatPoint vp adv);

Note thatmkDemmakes the definition ahis MPN equivalent to

lin this MNP p = this NP ** {point = p.point};

Multimodal API: interface to unimodal expressions
Using nondemonstrative expressions as demonstratives:

fun DemNP : NP -> MNP;
DemAdv : Adv -> MAdv;

Building top-level phrases:

fun PhrMS : Pol > MS -> Phr;
PhrMS : Pol -> MS -> Phr;
PhrMQS : Pol -> MQS -> Phr;
PhrMimp : Pol -> Mimp -> Phr;

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 20/73

Instantiating multimodality to different languages

The implementation above has only used the resource gramRlanot the concrete implementations.
The library Demonstrative is a parametrized modulealso called dunctor, which has the following
structure

incomplete concrete Demonstrativel of Demonstrative =
Cat, TenseX ** open Test, Structural in ...

It can beinstantiatedto different languages as follows.

concrete DemonstrativeEng of Demonstrative =
Cateng, TenseX ** Demonstrativel with
(Test = TestEng),
(Structural = StructuralEng);

concrete DemonstrativeSwe of Demonstrative =
CatSwe, TenseX ** Demonstrativel with
(Test = TestSwe),
(Structural = StructuralSwe);

Language-independent reimplementation of Tram Demo

Again using the functor idea, we reimplemé&mnamDemo as follows:

incomplete concrete Traml of Tram = open Multimodal in {

lincat Query = Phr; Input = MS;
Dep, Dest = MAdv; Click = Point;

lin QInput = PhrMS PPos;
GoFromTo x y =
MPredVP (DemNP (UsePron i_Pron))
(MAdvVP (MAdwWP (MComplVV want VV (MUseV go_V)) X) ¥);
DepHere = here7from_MAdv;
DestHere = here7to_MAdv;
DepName s = MPrepNP from_Prep (DemNP (UsePN (SymbPN (MkSymb s))));
DestName s = MPrepNP to Prep (DemNP (UsePN (SymbPN (MkSymb s))));

}

Then we can instantiate this to all languages for whichMbiémodal ~ API has been implemented:

concrete TramEng of Tram = Traml with
(Multimodal = MultimodalEng);

concrete TramSwe of Tram = Traml with
(Multimodal = MultimodalSwe);

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 21/73

The order problem

It was pointed out in the section on the multimodal converdioat the concrete word order may be
different from the abstract one, and vary between diffel@rmuages. For instance, Swedish topicalization

Det har taget vill den har kunden inte ta.
(“this train, this customer doesn’t want to take”)

may well have an abstract syntax of a form in which the custappears before the train.

This is a problem for the implementor of the resource grammbaneans that some parts of the resource
must be written manually and not as a functor. However,uger of the resource can safely ignore the
word order problem, if it is correctly dealt with in the resoe.

A recipe for using the resource library

When starting to develop resource grammars, we believgdibald be all that an application grammar-
ian needs to write a concrete syntax. However, experienesh@vn that it can be tough to start grammar
development in this way: selecting functions from a reseuk®l! requires more abstract thinking than
just writing strings, and its take longer to reach testablults. The most light-weight format is maybe
to start with context-free grammars (which notation is aligpported by GF). Context-free grammars that
give acceptable even though over-generating results figukages like English are quick to produce.

The experience has led to the following steps for grammagldpment. While giving the work a quick
start, this recipe increases abstraction at a later levednit is time to to localize the grammar to different
languages. If context-free notation is used, steps 1 and Beanerged.

1. Encode domain ontology in and abstract synbamain .

2. Write a rough concrete syntax in EngligfomainRough. This can be oversimplified and overgen-
erating.

3. Reimplement by using the resource library, and build &tiurDomainl . This can be helped by
example-based grammar writingghere the examples are generated fi@omainRough .

4. Instantiate the functddomainl to different languages, and test the results by generatiegriza-
tions.

5. If some rule doesn'’t satisfy in some language, use theuresdn a different way for that case
(compile-time transfer

2.2 Two strategies of multimodal fusion in DelfosNCL

This section compares two strategies of multimodal fusibimput modalities coming from different
channels, and their implementation in the in-home domaalodue system developed by the University
of Seville.

Two strategies have been implemented for comparison pespdbe first solution is largely based on
Johnston’s work [Johnston et al., 1997, Johnston, 1998]jramlves modifying our parser to cope with

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 22/73

simultaneous multimodal inputs, and to include temporalst@ints at unification level. The second
implementation proposes an original solution to the pnoblend involves combining inputs coming from
different multimodal channels at dialogue level. This fioluis based on an implementation of the ISU
approach [Traum et al., 1999].

These two strategies have been implemented in DelfosNCIS@mased system, combining both speech
and graphical inputs within a multimodal in-home scenariere the user interacts with the system using
a microphone and a touch-screen.

2.2.1 From speech-only to multimodal interaction

Before any further considerations, some preliminary stegabto be taken in order to make the system
work multimodally. The first step involved moving from a syangnous, system-driven, turn taking ap-
proach to an asynchrounous, mixed-initiative model. Wedabis evolution by means of an intermediate
(input pool) layer whose role is to store all inputs comingnirthe user at any time and make them avail-
able to the system when requested. The input pool was impleties an independent OAA agent. The
second step involved modifying the GUI interface [Quesddd. £2000], which was originally just a floor
plan representation of the house designed to configure $itrbdition of devices and functionalities. The
new extended version of the GUI allows the user to refer ttspafrthe house by clicking on them with
the pen. The third step was to make the speech-only inputgaalitimodal input pool. This goal was
achieved by allowing different kinds of inputs and storihgrn in a simple FIFO queue (see Figure 2.1).
Namely, the multimodal input pool accepts two kinds of irgut

e SPEECH, including the following fields:
init_time , end_time , sentence_score , listiword , word_score]

e CLICKs, including the icon and time fields.

For multimodal information rendering we have implementethi stage a basic heuristic-based presen-
tation layer which is out of the scope of this document. A glolkiew of how the system interacts with
the user is illustrated in Figure 2.2.

2.2.2 Multimodal Fusion: Two Strategies
Strategy 1

The first strategy implemented follows Johnston’s prop@daihnston et al., 1997, Johnston, 1998], by
using a unification-based parser and including modalitytamporal constraints at unification level. This
implementation differs from Johnston’s in that a higheelesf flexibility is added.

The main motivation behind this strategy is that multimdglas conceived of as a single communicative
act between two participants, and as such should be tregtadingle grammar which is capable of ac-
cepting input coming from different modalities. As expe&ktihis system permits that the communicative
act may range from speech-only to clicks-only or hybrid ispand all are considered equal as far as the
grammar is concerned. Obviously, as described below,glda advantage as long as only single-task in-
teractions and not multiple task interactions are consitlef he pragmatic ambiguity which may occur in
multimodal multi-tasking cannot be resolved by a singlamgraar. Graphically, this strategy fuses inputs
at our NLU module, as illustrated in Figure 2.3.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 23/73

Channel 1 Channel 2

» Multimodal Input Pool)
FIFC Quiese i

_Ijst:f;r;)uls with modakity and ternporal
information

ASYTICTTOUE

DIALOGUE MANAGER

Figure 2.1: Multimodal Input Pool

Speech
Speech Recognition
Cick User
User input i
ser Graphical infeface
Input
T Voice
Multimodal Input Poal Presentation Layer Text To Speech
System Oulput
System
Input
Lexical and
Grammatical
Analysis

Dialogue Manager NLU Module

Figure 2.2: Modules overview

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 24/73

Speech

Speech Recognition

‘ Click User
User Input —

Graphical Inteface
User
Input

] Voice I

Presentation Layer Text To Speech

System Output

Multimodal Input Pool

System
Input

— ~

Multimodal Fusion
Lexical and
Grammatical \

Analysis J/
|

NLU Module |

Dialogue Manager

Figure 2.3: Strategy 1

In this strategy, when the parser receives an input sent@itteer speech-only, click-only or mixed),
it calls the lexical analyzer adding three nad-hocfeature-value pairsMODALITY, TIME_INIT and
TIME_END These features are then used in conjunction with a set iddbgperators to define com-
plex expressions in order to enforce modality and tempamastraints. Let's imagine a grammar rule for
an input as Switch on the light, wherelight can be either specified by voice or clicked. Let’'s imagine
as well that when using the mixed modality input (that is tg: sahen clicking on theight icon, the
user actually clicks before utteringwitch ori. In this case, a rule for the voice only inputs (therefore
with natural command + parameter order) could be specifiedl aaother one that only applies to mixed
inputs where the inverse order is accepted (parameter + emishmThe unification rule will look like the
following one:

(Rule 1 : Command -> CommandOn DeviceSpecifier)
{ @up = @self-1; }
(Rule 2 : Command -> DeviceSpecifier CommandOn)
{ @up.DeviceSpecifier =a @self-1;
@if((@self-1.MODALITY == CLICK) && (@self-2.MODALITY == OICE))
@then { @if (@self-1.TIME_INIT - @self-2.TIME_INIT <= 5) & &
(@self-1.TIME_INIT - @self-2.TIME_INIT <= -5))
@then { @break();}
@else { @up.MODALITY =a [VOICE,CLICK];
@if (@self-1.TIME_INIT <= @self-2.TIME_INIT))
@then { @up.TIME_INIT =a @self-1.TIME_INIT}
@else { @up.TIME_INIT =a @self-2.TIME_INIT;}
@if (@self-1.TIME_END >= @self-2.TIME_END))
@then { @up.TIME_END =a @self-1.TIME_END;}
@else { @up.TIME_END =a @self-2.TIME_END;} } }
@else { @break(); } }

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 25/73

Speech

Speech Recognition

‘ Click User
User Input —

Graphical Inteface

User
Input

] Voice I

Presentation Layer Text To Speech

System Output

Multimodal Input Pool

System
Input B
—

//r

‘ Dialogue Manager| “i NLU Module

Lexical and
Grammatical
\ Analysis

|
\\ /,

\\Multimodal Fusion /
-

-

Figure 2.4: Strategy 2

Note that, in addition to the modality constraint, an overieneframe (5 time units) within which the
inputs have to occur, has been defined. These timeframed beutonfigured independently (rule by
rule) if the data was accurate enough. These rules desariter what conditions the right-hand symbols
can unify and, if the conditions are met, how the unificatias to be done.

Notice that we are not using only temporal data as subcategion edges but actually letting the user
configure the constraints case by case. However it lookshiiseflexibility is not always needed, so we
have implemented a set of macros to be used at unificatiohtegever a number of cases:

1. @assign_modality(@self-1,@self-2,@self-n)
Check if the modality of all the constituents is the sameentlise, assig?MODALITY:[MIXED] to
the mother node.

2. @assign_time_init(@self-1,@self-2,@self-n)
Get the lowest time init and assign it to the mother node

3. @assign_time_end(@self-1,@self-2,@self-n)
Get the highest time end and assign it to the mother node

Strategy 2

The second strategy combines simultaneous inputs comaing different channels (modalities) at Dia-
logue Level. The idea is to check the multimodal input podble launching the actions expectations,
while holding during thénter-modality time Obviously, this strategy takes for granted that each ideiv
ual input can be considered as an independent Dialogue Move.

As illustrated in Figure 2.4, this strategy fuses the mudtilal inputs at dialogue level. In this approach, the
multimodal input pool receives and stores all inputs intlgdnformation such as time and modality. The
Dialogue Manager checks the input pool regularly to re&rithe corresponding input. If more than one

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 26/73

input is received during a certain timeframe, they are a®rsid simultaneous or pseudo-simultaneous.
In this case, further analysis is needed in order to determimether those independent multimodal inputs
are truly related or not. If the inputs timing with respectsch other is deemed to be within the plausible
time range to consider them a potential multimodal commnathen additional information will be taken
into account to decide whether these independent DMovesoanplementary or not:

¢ If one isTriggeringCondition of a Dialogue Rule, and the other one is part of the expecisitio
¢ If both are expectations of an already active Dialogue Rule

e If there is no other parallel dialogue history whose activial@ue Rules may conflict with the
previously identified one

When everything indicates that the DMoves are related amtb@mentary, they merge into a unique
Information State. Otherwise, different paths may be talegending on the situation:

¢ One of them may complete an already active Dialogue Rule edsethe other may trigger a new
unrelatedTriggeringCondition and therefore a new parallel dialogue history.

e Each of them may complete already active Dialogue Rulesrallphdialogue histories unambigu-
ously.

¢ Rules in parallel dialogue histories in an ambiguous mannevhich case disambiguation subdia-
logues will be needed.

e They are unrelated and not compatible with any active Diadogule, so two new tasks with their
respective dialogue histories will be initiated.

Our approach can be described by this high-level algorithm:

e Receive unimodal input A (DMove)
e Receive unimodal input B (DMove)

e |IF A and B are: complementary,
contextually appropriate, and
within a predefined timeframe
THEN Create new IS from these DMoves + Dialogue History

e ELSE Store the DMove and disambiguate
This algorithm takes into account:

1. Dialogue Moves generated
2. Modality
3. Inter-input timing

4. Dialogue Move order

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 27/73

5. Existing Dialogue Moves
6. Existing Dialogue Histories

7. Scenario and contextual factors

Dialogue Rules may also be configured with the same logicadatprs mentioned within Strategy 1, since
the Dialogue Manager actually uses the unification moduteeparser. Similar rules to the one detailed
for Strategy 1 could be configured within the Dialogue Mamagde difference isvherethese rules are
applied: for Strategy 1 the scope of application is the tistdymbols (terminals and not terminals) within
the grammar rules, whereas the scope for Strategy 2 is théemofl DTAC structures that describe the
DMoves.

Although taking into account a considerable number of f@cioay not appear as a very appealing solu-
tion, this innovative approach enables the system to cofle“WMultimodal Multitasking”, which would
not be possible within the implementation of Strategy 1. Byltvhodal multitasking we imply the pos-
sibility of accomplishing independent unrelated tasksusiameously, sparing continuous system disam-
biguation. Humans have often proven to be able and evenrpgmeecomplish several tasks at once, as
long as they are familiar with the tools and/or environment aone of the tasks imply too heavy a cog-
nitive load. With this approach, multimodal systems haketaa step forward towards more intelligent,
flexible and collaborative systems.

2.2.3 Comparison of Strategies

Computational efficiency: The first strategy is much heavier from a computational pointiew since
tasks are added at unification level which represents 80%eoparsing time. On the other hand,
the additional computational complexity added by the sdatrategy is of no consequence.

Dependency on time measuresThe first strategy is highly dependent on the precision ofithe data.
The overlapping times fixed at unification rules assume ttegihit_time andend_time features
are accurate, which is not always the case. The secondgstitadevever allows for a certain degree
of flexibility.

Background data: In order to define the appropriate time ranges for multimatahplementary in-
puts, real user data is required. The more precise this timges need to be, the more important
it becomes to collect large amounts of data, especiallyidering the possibility of tuning the
thresholds rule by rule.

Multimodal multitasking: The multimodal multitasking is the ability to carry indeplemt tasks at the
same time by means of different multimodal channels. Th®naif task only exists at dialogue
level, therefore strategy one cannot be applied if dealiitly multimodal multitasking.

Inter-modality disambiguation: When dealing with more complex modalities (i.e. voice andtge
recognition) we may expect not only pairs of item-time, hutlattices coming from both channels.
The mutual disambiguation could be more easily dealt witthiyfirst strategy. The second strategy
would become considerably more complex

Dialogue Act: At a theoretical level, a potential problem of the secondtegy could arise from the
assumption that any unimodal input generates always a @iael®dlove. Although we have been

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 28/73

unable to find any example or situation where this assumjgiaise, it could possibly be the case
with more sophisticated not speech-driven systems.

Number of modalities: We believe that as the number of modalities increases, thedice would
be the second strategy, since the first strategy impliesraddgputational overload which would
become unbearable with a higher number of modalities.

2.3 Summary

In this chapter we have described two approaches to addiagrated multimodality and multimodal
fusion to unimodal dialogue systems.

The first approach is to specify multimodal input directly@¥F grammars, where the modalities are
realised as discontinuous constituents in the grammar.akediven a language- and domain-independent
method for how to add multimodal information to a unimodargmar, thus making the transition from
a speech-only dialogue system to a multimodal one in mangwaxal. As a pedagogical example we
described a multimodal version of the UGOiam Demagrammar.

The second approach for evolving from a speech-only systeamiultimodal one, is by implementing an
intermediate layer in DelfosNCL called a “multimodal inatol” whose role is to allow for asynchronous
behaviour. The general steps taken to cope with both speethligking inputs have been described and
two strategies to fuse multimodal entries have been exgdiaand compared. The first strategy is to
combine the multimodal inputs in the unification-based @am@nd the second strategy is to combine the
multimodal inputs at the dialogue level. For efficiency mra@swe conclude that the second strategy suits
better the needs of the DelfosNCL voice-and-click appiicatvithin the in-home domain scenario.

Version: Final (Public) Distribution: Public

Chapter 3

Description of the Multimodal Grammar
Library

This chapter consists of a description of the unified GF/Goframmar library, written in Grammatical
Framework. The grammars in the library have been made madi@nby using the method described in
section 2.1.1.

The grammar library connects user and system utterancesisgén GF with a dialogue system using the
GoDiS dialogue manager. The library is designed for malgrepisy to add new dialogue domains, source
languages, and input and output modalities. Currentlyibivarly consists of two dialogue domains, each
with two source languages and three different modalitidse fivo domains are the calendar application
AgendaTalkand the MP3 playebJ GoDiS

An additional GF grammar is described in section 3.6, whiah lheen made multimodal using the given
method. The Edinburgifown Infogrammar is not part of the GF/GoDiS grammar library, but can b
seen as a proof-of-concept of the generality of the methauhtider additional grammar, thie’am Demo
grammar, is used as a pedagogical example when introduzéngnéthod in section 2.1.1 and is therefore
not described in this chapter.

3.1 The GF/GoDiS grammar library

3.1.1 The module hierarchy of the GF/GoDiS grammar library

The modules of the GF/GoDiS grammar library are divided fiolar main parts — ontologies, the core
GoDiS grammar, the different domain grammars, and genesaurce modules.

Ontologies

In this grammar library we mean by the term ontology, a sefftained grammar capturing a domain
which can be used in several different dialogue systems.mwlagy O consists of at least three grammar
modules — one abstract and the English and Swedish concoetales. Apart from these there can be
resource modules for simplifying grammar writing.

All ontologies are located in the directoBntology in the grammar library, meaning that ontolo@y

29

IST-507802 TALK D:1.2b 07/02/06 Page 30/73

Godis_Abstrac

Godis_Phrases_|Interfage
_ A - - _ &

Godis_Semantic9 ¢ Godis_Speech_Incomplele Godis_Phrases_Englis) Godis_Phrases_Swedi
> —

5 - =
_ - /
- - = - A_ S
C God|s Thinlet Incompleté /God|s Click Incomplete) Godis Speech Englisp Godis Speech Swedi
Godis_Thinlet Englls GOdIS Thinlet_Swedis| Godis_Click Enghsh GOdIS Click_Swedis

Figure 3.1: The module structure of the core GoDiS grammar

W)l

will be namedOntology O. Note that this is not an existing GF module, but instead treynamed
Ontology_ O_M, whereM € {Abstract ,Semantics ,English ,Swedish }. TheSemantics module con-
sist of the GoDiS Prolog terms corresponding to the termiérontology.

If some ontologies can be naturally grouped together intmified ontology, they are defined as sub-
ontologies. An example i®ntology Music , which consists oDntology Music_Albums , Ontology
_Music_Artists andOntology_Music_Songs

The core GoDiS grammar modules

The grammar for the core of the GoDiS-based dialogue systelmsated in the director@odis , with the
module structure shown in figure 3.1. The abstract syntaxutedd Godis_Abstract , and the concrete
syntax for communicating with the GoDiS dialogue managealkedGodis_Semantics

The concrete system and user grammars exist as a unimodahtv@peech), a parallel multimodal
variant for communicating via the Thinlet GUTHinlet), and an integrated multimodal varia®i¢k).

For each of these there is an incomplete concrete moduldwigiiostantiated by the languages English
or Swedish. Finally there are resource modules (c&llgdses) implementing a small library of canned
phrases, as an interface which is instantiated with Engligh Swedish. These resources are used in the
concrete grammaiSpeech, Thinlet andClick — dependencies which are not shown in the figure.

This means that the core GoDiS grammar modules are the folipgnes:
e Godis_Abstract
e Godis_Semantics

e Godis_ Src Lng, whereSrce {Speech,Thinlet ,Click }
andLng € {Incomplete ,English ,Swedish }

e Godis_Phrases_ LngwhereLnge {Interface ,English ,Swedish }

The domain grammars

All domain grammars reside in the directobpmain, which means that the current two domains are
Domain_Agenda and Domain_MP3. In other respects they have almost the same structure asothe

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 31/73

grammar. What is missing are the incomplete grammar mogdafeswhat is added is an abstract module
for the integrated modality modul@omain_Dom Click .

The grammar modules are thus the following, wHeoen € {Agenda , MP3}:

e Domain_Dom Abstract
e Domain_Dom Semantics
e Domain_Dom Click_Abstract

e Domain_Dom Src Lng, whereSrce {Speech , Thinlet ,Click }
andLng e {English ,Swedish }

e Domain_Dom Phrases_ Lng whereLng € {Interface ,English ,Swedish }

General resource modules

Some resource modules are very general, and do not fit in athedhree previous categories, instead
they are placed in the directoBesource . These resources contain operations for simplifying gramm
writing in formal languages, such as Prolog, XML and ThinBt/l. The corresponding modules are
namedResource_Prolog , Resource XML andResource_Thinlet

3.1.2 Translating between user languages and GoDiS dialogunoves

The GoDiS dialogue manager does not operate on utteranpassar trees or some other kind of syntactic
representation. Instead the basic input and output iteendialogue moves, which can be seen as semantic
representations of the minimal informative units in a cesaion [Larsson, 2002]. An utterance by the
user or the system is represented as a sequence of dialoges.mo

The role of GF in this context is as a translator between disgdanoves and linguistic utterances, or even
representations in other modalities. The dialogue graranmaour library all share the same structure,
as explained in section 3.1.1. There is one single abstyatts capturing all information that can be
shared between the dialogue participants. For each diff&ned of uni-/multi-modality and each different
language, there is a concrete syntax module.

Finally there is one single concrete module describing thBiS dialogue moves. As will be seen later in
section 3.3, the structure of the abstract syntax is sirtdlre hierarchical structure of the GoDiS dialogue
moves, which means that the definition of the GoDiS concrgtéag module is quite straightforward.

In the dialogue system the translation takes place as fellovuser utterance is parsed to an abstract
syntax term which is then linearized to a sequence of GoDafbgile moves. The dialogue moves are
interpreted by the dialogue application which generatesdialogue moves. These are in turn parsed and
linearized by the GF interpreter to system utterances.

3.1.3 Resources used in the grammar library

We have used two kinds of resource modules in the GF/GoDifwmi library — linguistic and non-
linguistic resources.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 32/73

Linguistic resources

The linguistic resource modules consist of language-fipeparameters, and definitions of common
phrases and utterances. The common phrases and utterasdesi@ed as interface modules, and instan-
tiated for each surface language. This is used in the core&di2logue system grammars, where each
different modality consists of one incomplete concretaaymvhich only makes use of language-specific
phrases and utterances from an interface module. Theaddiffaurface level languages then consist of
simple instantiations of interface modules.

This structure makes it simple to add a new language. Thetbifg we have to do is to create a new
instance module for the common phrases — the core GoDiS gaahmes not have to be changed at all.

Non-linguistic resources

The non-linguistic resources consist of macros for simplf grammar writing in formal languages, such
as Prolog and XML.

The Prolog resource module makes it simple to translate &5 into compound terms in Prolog syntax.
This is used in the semantics modules of the core GoDiS grantheeontologies and the domain specific
grammars.

The XML resource module contains macros for linearizing €&t as XML expressions. This in turn
is used in the Thinlet resource module with which we can er&lill objects described in Thinlet XML
syntax.

There is also a resource module which defines the lineaizéitpes that are used in the GF/GoDiS gram-
mars, and operations for simple creation of terms of thesalization types. The different participants of
the dialogue system are defined as parameters, togethdrelfittul operations. Some of these parameters,
operations and linearization types are described latexdtian 3.4.

3.2 Grammars for describing ontologies

In this grammar library we mean by the term ontology, a sefftained grammar capturing a domain
which can be used in several different dialogue systems. iVitledthe ontology grammars inttatabases
andlinguistic ontologies A database mainly consists of a listing of elements of one few categories,
such as a listing of all known artists or possible event tythas can be stored in an agenda. A linguistic
ontology on the other hand consists of a more elaborate gesnuascribing a linguistic concept such as
numbers or time descriptions.

3.2.1 Databases
Music — Artists, Albums, Songs

The music ontology is divided into three sub-ontologiesists, aloums and songs. Each ontology gram-
mar defines a GF categorir{ist , Album andSong, respectively) together with its entities.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 33/73

Radio and TV stations

These ontologies contain names of radio and TV stations.

Events and locations

These ontologies contain possible kinds of events that eastdred in an agenda, and possible locations
where the events can take place.

3.2.2 Linguistic ontologies
Numbers

This ontology defines the numbers from 0 to 99, in both catdind ordinal notation.

Time descriptions

This ontology defines hours and minutes, and how to combiesetlinto a linguistically correct time
expressions.

Date descriptions

Finally, the ontology of date descriptions defines weekdmy relative date expressions (e.g. today, to-
morrow).

3.3 The GF/GoDiS dialogue move grammar
In this section we present the type hierarchy of GoDiS andaéxfpow this has influenced the abstract

syntax of the GF grammar. The version of GoDiS that we desdshction-oriented-dialoguéLarsson,
2002, chapter 5].

3.3.1 The type hierarchy in GoDiS

In this section we give an overview of the hierarchy of type&bDiS. For a more thorough description,
see Larsson [2002].

Domain-dependent types

A domain consists of a number fdividuals which are grouped intsorts

e Ny,....ny: Ind

® Si,...,9 - Sort

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 34/73

For forming propositions and questions, there are a nunfiesicpredicateswhich can be either atomic
(Pred0) or take one argument (Pred1):

® P1,...,pn : PredO or Predl
To form requests for actions, there is a number of basiiobns
e ai,...,an . Action
The domain also consists of td@logue participantswhich in our case only are theserand thesystem
e user, system : Participant
Finally, there are someasonswhich are used when reporting success or failure:
® r1,...,Iy : Reason

The rest of the types and objects are domain-independeshfarardescribed in the rest of this section.

Dialogue moves

A dialogue movas the basic entity that the update rules in a GoDiS dialogséeem works on. We can
distinguish between six different kinds of dialogue mov@ingle dialogue moveasnsist of greeting and
quitting, in the beginning and the end of a conversation:

e greet, quit : SingleMove

An action can beequestedand a question can lasked
e requestd) : Request4 : Action]
e ask@) : Ask [q: Question]

There are two kinds ofnswers propositions and short answers, which are semanticallienspecified
propositions:

e answerp) : Answer [p : Proposition orp : ShortAnswer]

Thereport dialogue move handles reporting of success and failuretafres; sometimes giving a reason
for why the action failed:

e report@, failed()) : Report p: Action, r : Reason]

e report@, done), confirmd) : Report p: Action]

Interactive Communications Managemé&i€M), is used as a general term for coordination of the com-
mon ground. The different kinds of ICM dialogue moves arecdbed later in the end of this section.

We don’t need higher arity than 1, since GoDiS uses a redua®distic representation, where complex predi-
cates are replaced by (a number of) 1-place predicates.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 35/73

Propositions

GoDiS uses a reduced semantic representation, where coprplgositions with conjunctions andary
predicates are represented as sets of 1-ary predicatéschfgptonstant individuals:

e p: Proposition p: Pred0]

e p(n) : Proposition p: Pred1,n: Ind]

GoDiS uses a rudimentary system of domain-dependent siensamtal categories, for distinguishing
meaningful propositions from meaningless ones. What tivieumts to is the restriction thai(n) is a
meaningful proposition only ip andn are associated with the same sorn the GF grammar library we
encode the association to a sort as a type dependency,dd.@fand Indg) are GF categories only #:
Sort.

Disjunction is not present, and conjunction is not neededhs only logical connective we need is nega-
tion:

e not(p) : Proposition p : Proposition]
Finally, there are a number of ways of talking about questiactions and propositions on a meta-level:

e issue(), fail(g), fail(g,r) : Proposition § : Questionr : Reason]
e action@), donef) : Proposition & : Action]

e undd, p) : Proposition {l : Participant,p : Proposition]

Note that these propositions can be viewed as applicatibpsedicates, but they need special consid-
eration, since the arguments are not individual constaRtgithermore, they are only used in special
circumstances — issug(and actiond) are only used in questions and ICM dialogue moves; di)(is
only used in ICM dialogue moves; whereas f@)j(fail(q, r) and doneg) are only used as success repdrts.
This means that they are not categorized as proposition®iGE grammar library, but as special cases
for wh-questions, ICM and reports.

Short answers

Short answers are semantically underspecified proposjtiand consist of yes/no-answers, individual
constants, or negations of individual constants:

e yes, no : ShortAnswer

e not(s(n)), s(n) : ShortAnswer §: Sort,n : Ind]

2Internally in the GoDiS information state they can functaspropositions, but to an external observer they are
only used in these circumstances.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 36/73

Questions

There are three kinds of questions — y/n-questions, aligenquestions and wh-questions. They can be
seen as subtypes of the type for questions:

e (: Question§: YNQ orq: AltQ or q: WhQ]
Y/n-questions are formed from a proposition:

e ?p: YNQ [p: Proposition]
Alternative questions are sets of y/n-questions:

e {q,...,0n} : AltQ [a1: YNQ, ...,0n: YNQ]

Wh-questions are lambda-abstractions of proposition&témrwith a question mark instead of a lambda),
but since lambda-abstracting a negation is linguisticdifficult we exclude negated propositions. This
leaves us with three forms of wh-questions:

e Xp(X): WhQ [x: Var, p: Predl]
e ?X.issuek), 2x.action§) : WhQ [x : Var]

Var is the type of variables;, y, z, ... : Var.

Interactive Communications Management (ICM)

Larsson [2002] uses Interactive Communication ManagerfiéM) as a general term for coordination
of the common ground. ICM dialogue moves are explicit sigmalabling coordination of updates to the
common ground, such as keeping track of topics currentheudiscussion, subactivities, sequencing and
turn taking.

There are two kinds of ICM dialogue move patterns in GoDiS Wain pattern deals with feedback and
grounding:

e (icm:l*p),(icm:1* p:argy:ICM[I: Level, p: Polarity]

There are fiveaction levels- contact, perception, semantic understanding, pragmatierstanding, and
acceptance/reaction. These are abbreviated con, pre,usehand acc, respectively. There are three
polarities — positive, negative and interrogative. These are ablieeVipos, neg and int, respectively.
Some feedback moves also requargumentswhich depending on the action level and the polarity can
be either a question, a proposition, an action or a string. Sthing is yet another GoDiS type, consisting
of all possible surface-level strings.

The second pattern for ICM dialogue moves is used for ICM rotten feedback:
e (icm:typ8, (icm :type: args) : ICM

Thetypecan be any of reraise, loadplan, accomodate and reaccomo8ame of these can also take
optionalarguments.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 37/73

3.3.2 Representing GoDiS types in GF abstract syntax

In this section we describe how we have translated the Gofp8 hierarchy into GF. This central
GF/GoDiS grammar consists of the abstract mo@deis_Abstract

The obvious idea is to represent the GoDiS types as GF césgand the GoDiS objects as GF constants
and functions. However, in some places we have divided aitypeseveral categories. There are also
some other minor differences, due to some simplifying aggioms we have made on the grammar.

Domain-dependent categories

Sorts, individuals, 0- and 1-place predicates, actionsraadons are defined as basic categories in the
central GF/GoDiS grammar. However, all these categoriesuainhabited since their elements will be
defined in the domain grammar.

cat Sort;
Ind Sort;
Pred0 Sort;
Predl Sort;
Action;
Reason;

Since individuals and predicates are associated with ainexort, these categories depend on the category
of sorts. This is an example of dependent types, which weaigié restrictions for e.g. how to combine
a predicate with an individual.

Note that we have excluded dialogue participants, sincg #ne already fixed in the systems we are
focussing on, and since they are anyway only used in a limisesber of dialogue moves. The participants
are instead hard-coded in the grammars.

A central goal of the grammar library is that (almost) evesit,ogether with its associated individuals,
should be defined in an ontology. This means that definingdtte and individuals of a dialogue domain
merely consists of enumerating the ontologies that are imstdte domain. This is done by inventing a
name for the sort, and giving a coercion function from thelmgly category to an individual. E.g. the sort
of numbers can be defined by giving the following two funcgion

fun NumberSort : Sort;
numberind : Number -> Ind NumberSort;

Dialogue moves
We start by defining the basic category of dialogue moves:
cat Move;

The different kinds of dialogue moves are also basic GF oaiey which are given together with coercion
functions to the category of moves:

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 38/73

cat SingleMove; fun singleMove : SingleMove -> Move;
YNAnswer; yesnoMove : YNAnswer -> Move;
Request; requestMove : Request -> Move;
Ask; askMove . Ask -> Move;
Answer Sort; answerMove : (s:Sort) -> Answer s -> Move;
Report; reportMove : Report -> Move;
ICM; icmMove . ICM -> Move;

Note that the answers are divided into two categories, sicanswers cannot be associated with a sort.
This also means that y/n-answers are not considered assstsovers in the GF grammars.

Thesingle movegreet and quit are GF constants, as areyffheanswergyes and no:

fun greetMove, quitMove : SingleMove;
yesAnswer, noAnswer : YNAnswer;

An action can beequestedand a question can lasked

fun requestAction : Action -> Request;
askQuestion : Question -> Ask;

An answercan be a short answer or a proposition. But since y/n-ansaveralready treated, the type of
short answers is not implemented as a GF category. Shoreasisre thus elliptic individuals, possibly
negated. Furthermore, as explained below, only positiepgsitions are considered, meaning that there
is a possibility of a negated propositional answer:

fun indAnswer . (s:Sort) -> Ind s -> Answer s;
notindAnswer : (s:Sort) -> Ind s -> Answer s;
propAnswer . (s:Sort) -> Proposition s -> Answer s;

notPropAnswer : (s:Sort) -> Proposition s -> Answer s;

An action can beeportedas a success or a failure. However, we also consider faifdhneding an answer
to a question as a report, instead of an answer. This is geEtiguse we do not consider fg)lor fail(qg, r)
as propositions, but also because failures are often dtiera different way than are traditional answers:

fun confirmActionReport . Action -> Report;
failedActionReport . Action -> Reason -> Report;
failedQuestionReasonReport : Question -> Reason -> Report ;
failedQuestionReport : Question -> Report;

Finally, ICM dialogue moves are treated later in this section.

Utterances

An utterance in GoDiS consist of a sequence of dialogue mavass we define the category of utterances,
and lists of dialogue moves; together with a function fororg utterances from a list of moves:

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 39/73

cat Utterance; fun utterance : [Move] -> Utterance;
[Move[{1},

Note that in GF[Move] is syntactic sugar for the categdrigtMove ; and by declaringMovel{1} , the
following two functions are silently defined:

fun BaseMove : Move -> [Move];
ConsMove : Move -> [Move] -> [Move];

Although many dialogue moves are independent of the diagqoarticipant, there are some dialogue
moves (such as reports) that can only be uttered by the systainother moves (such as requests) that
can only be uttered by the user. This information is used igipg, and is encoded in the concrete syntax.
For this purpose, we define the categories of user and systerances, together with forming functions:

cat UserUtterance; fun userUtterance : Utterance -> UserUt terance;
SystemUtterance; systemUtterance : Utterance -> SystemUt terance;
Propositions

Since both predicates and individuals depend on sortsppitigns will also be associated with sorts:
cat Proposition Sort;

None of the meta-level propositions are seen as proposiiiothe grammar library. Furthermore, we
choose to also exclude negated propositions. Some reagotissf arei) that we want to minimize the
recursiveness in the grammar for efficiency reasd@pgthat negation can be difficult or complicated to
represent syntactically correct in its generality, dindthat negated propositions are meaningless when
viewed as y/n-questions. Thus, propositions can only bmddrby applications of 0- and 1-place predi-
cates:

fun predOprop : (s:Sort) -> Pred0 s -> Proposition s;
predlprop : (s:Sort) -> Predl s -> Ind s -> Proposition s;

Questions

The category of questions is subdivided into y/n-questiafiernative questions and wh-questions. These
are declared as categories, together with coercion fumtio

cat Question;

YNQ; fun yngQuestion : YNQ -> Question;
AltQ; altQuestion : AltQ -> Question;
WhQ; whgQuestion : WhQ -> Question;

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 40/73

Y/n-questions are formed from propositions, and from théanphevel propositions issug(and actiond):

fun propYNQ : (s:Sort) -> Proposition s -> YNQ;
issueYNQ : Question -> YNQ;
actionYNQ : Action -> YNQ;

Alternative questions are formed from sequences of y/rsties, which has to be defined as a category
itself:3

cat [YNQJ{2};
fun altQ : [YNQ] -> AltQ;

Wh-questions can finally be formed from 1-place predicates:
fun predWwhQ : (s:Sort) -> Predl s -> WhQ
There are also the two special wh-questiongs8uek) and X.action):

fun issueWhQ, actionWhQ : WhQ

Interactive Communications Management (ICM)

The different ICM dialogue moves are defined by enumeratiegntin the GF grammar. The reason for
not having some more general functions dealing with ICM iglypdecause different action levels and
polarities can take different arguments, and partly bexaues want to have different surface forms for
different ICM's.

There are two ICM’s for acceptance, negative and positiwt;since the negative version can take an
optional question or proposition argument, we get in tatal f{GF functions:

fun accNegICM o ICM;
accNegQuelCM : Question -> ICM;
accNegPropICM : (s:Sort) -> Proposition s -> ICM;
accPosICM . ICM;

There is only one ICM for contact, and that is negative:
fun conNegICM : ICM;

There are three ICM's for perception — negative, positivd Brerrogative; where the positive version
takes a string comprising the utterance as the system heard i

fun perNegICM . ICM;
perPosStriCM : String -> ICM;
perintiCM . ICM;

3The argumeng2} says that a list of y/n-questions has to have at least twoeslsn This is accomplished by
giving theBaseYNQfunction an arity of 2.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 41/73

There are in total seven ICM for understanding — mostly beedite positive version can take both positive
and negative propositions, including issues:

fun undNegICM . ICM;
undPosProplCM . (s:Sort) -> Proposition s -> ICM;
undPosNotProplCM : (s:Sort) -> Proposition s -> ICM;
undPosQuelCM . Question -> ICM;
undPosNotQuelCM : Question -> ICM;
undintPropICM . (s:Sort) -> Proposition s -> ICM;
undintQuelCM . Question -> ICM;

Finally there are eight non-feedback ICM functions, siremising and accomodation can take questions
or actions as arguments:

fun reraiselCM . ICM;
reraiseQuelCM . Question -> ICM;
reraiseActiICM . Action > ICM;
loadplanICM :ICM;
accomodatelCM . ICM;
accomodateQuelCM : Question -> ICM;
reaccomodatelCM . ICM;

reaccomodateQuelCM : Question -> ICM;

3.4 Concrete syntaxes for the central GF/GoDiS grammar

3.4.1 Prolog syntax for connecting to GoDiS — Semantics

The concrete grammar moduBndis_Semantics transforms the abstract GF syntax terms into Prolog
readable terms suitable for input to GoDiS. The translaajuite straightforward, since the structure of
the abstract grammar reflects the GoDiS type hierarchy. eTéer resource modul@&esource_Prolog
andGodis_Semantics_Resource for creating GoDiS terms in Prolog syntax, with operatiamscfeating
simple and compound terms, lists, operator applicationd,ather special Prolog and GoDiS construc-
tions.

All categories have the same linearization type PStr, wisctefined in the Prolog resource module:
lincat Move, ... = PStr;

As an example, the linearizations for the four kinds of arsveee defined like thi$:
indAnswer sort ind = ppl "answer" (ppl sort.pl ind);
notindAnswer sort ind = ppl "answer" (ppl "not" (ppl sort.pl ind));

propAnswer _ prop = ppl "answer" prop,
notPropAnswer _ prop = ppl "answer" (ppl "not" prop);

4The first argument opropAnswer and notPropAnswer is the sorts, which is used in the dependent type
Proposition s, but is not used in the surface form, hence the underscore.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 42/73

The operationgp0 andppl (andpp2 andpp3...) are defined in the Prolog resource module and create
Prolog terms taking zero or one (or two or three. ..) argusent

oper pp0 : Str -> PStr = \f -> {pl = f};
ppl 1 Str -> PStr -> PStr = fx -> {pl = f ++ "(" ++ xpl ++ ")}

The PStr linearization type consists of only one string,airitle labebl :
oper PStr : Type = {pl : Str};
Provided suitable linearization definitions for numbeing, following is the result of linearization in GF:

> | (notindAnswer NumberSort (numberind n3)
answer (not (number (3)))

3.4.2 Natural language utterances — English and Swedish

We have chosen to have a very flat structure in the grammagsniglish and Swedish. By this we mean
that there is no intricate grammatical structure inherenthe linearizations — instead they consist of
canned phrases. The main reason for this is that the GoDIi&gdi system is based on sequences of
dialogue moves, which are often mapped to single short periasan utterance. Thus, a GoDiS dialogue
system has itself a flat linguistic structure to its semantic

The only differences between the English and Swedish grasmara the canned phrases — they have
the same linearization types, and the phrases have the saroei®. Because of this the grammars are
implemented as a singlacomplete concretgrammar modulé:

incomplete concrete Godis_Speech_Incomplete of Godis_Ab stract =
PredefCnc ** open Godis_Phrases_Interface in ...

TheinterfacemoduleGodis_Phrases_Interface consists of declarations of the canned phrases. For all
languages, the declarations in the interface are instadtia theinstancemodulesGodis_Phrases_English
andGodis_Phrases_Swedish

To give the final English concrete GF/GoDiS grammar, the nmglete moduleGodis_Incomplete is
completed by the respective instance modules:

concrete Godis_Speech_English of Godis_Abstract = Godis_ Speech_Incomplete
with (Godis_Phrases_Interface = Godis_Phrases_English) X

The Swedish concrete grammar is created analogously.

SRecall that in Prolog there must not be any whitespace bebtadanctor and its opening parenthesis, but this
is handled in the tokenization phase.

5The predefined GF moduRredefCnc defines the category aftrings which is used in the ICM move for
positive perception.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 43/73

Common phrases

Phrases and substrings that might occur in different placcaggrammar are preferrably put in a resource
module. We go one step further and use the same phrases fFoEhgtish and Swedish.The canned
phrases can then be defined iniarerfacemodule:

interface Godis_Phrases_Interface = {

oper yesS . Str;
noS . Str;
no_waitS : Str;

i_want toS : Str;
i_wonderS : Str;

The interface can now be instantiated by a specific languagainstancemodule:

instance Godis_Phrases_English of Godis_Phrases_Interf ace = {
oper yesS = variants{"yes"; "yup"; ['that's correct"]};
noS = variants{"no"; "nope"};
no_waitS = optStr noS ++ "wait";
i_want_toS = "I" ++ variants{["'want"]; [‘would like"]} ++ " to";

i_wonderS = variants{["l wonder"];
i_want_toS ++ variants{"ask";"know"}}
++ optStr (variants{"if";"whether"});

Note that we can reuse phrases when defining new phrases p@regionoptStr makes its string argu-
ment optional:

oper optStr : Str -> Str = \s -> variants{[]; s};

Dialogue participants

In the dialogue systems we are considering, some dialogwesrare system specific and some are user
specific, and there are also dialogue moves that can beditig@ny dialogue participant. For this purpose
we define dialogue participant as a GF parameter:

param Participant = System | User | Both;
Now, most of the categories in the GF/GoDiS grammar will hiwearization types with an inherited
argument saying which participant is allowed to use a gieemt This is accomplished by extending the

linearization types with the recoilhg and a helper function for creatinvghorecords:

oper Who : Type = {who : Participant};
who : Participant -> Who = \p -> {who = p};

’Note that this approach might be more difficult if the langemgre not similar.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 44/73

Dialogue moves

First we define the basic linearization type of string resptdgether with a function for forming string
records:

oper SS : Type = {s : Str};
ss : Str -> SS = \str -> {s = str};

The linearization type for a dialogue move consists of agtrecord extended with a dialogue participant:
oper SMove : Type = SS ** Who;
lincat Move, SingleMove, Request, Ask,

YNAnswer, Answer, Report, ICM = SMove;

We also define some helper operations for creating dialogneesn The main operation takes a participant
and a string as arguments, and the other ones fixes the partici

oper sMove : Who -> Str -> SMove = \w,s -> W ** ss §;
sBoth Str -> SMove = sMove (who Both);
sUser Str -> SMove = sMove (who User);

sSystem : Str -> SMove = sMove (who System);

Now we can say that action requests can only be uttered bystireand that reports are system-specific:

lin requestAction act = sUser (optStr i_want toS ++ acts ++ pleaseS);
confirmActionReport act = sSystem (act.sDecl);

Note the two constituents of an action — one for the useraesg(“play some music”), and another for
the system'’s confirmation (“Okay, playing some music”).

Ambiguity and system utterances

Both user and system utterances are described in the sagremgrammar module, which yields a small
conflict when there are several alternative surface formghfosame utterance — which of the possibilities
is the preferred one for system utterances. An example iBlemove for negative perception, which
could e.g. be uttered as “I'm sorry, | didn't get that”, “whditl you say” or simply “what”. This can be
encoded in GF with theariants{...} construction:

lin perNegICM = sBoth (variants{ ['I'm sorry, | didnt get th at';
['what did you say"]; ['what"] });

We choose to take the first of the possible variants as theltlsfgstem utterance, meaning that whereas
the user can say any of the three variants for the same d&lomye, the system will always say “I'm
sorry, | didn't get that”. This means that the system and w&r gpeak the same language — i.e. that the
system can recognize its own utterances. This is good direceser tends to speak in the same way as the
system does (see, for example, Pickering and Garrod, 2004).

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 45/73

Utterances as sequences of dialogue moves

An utterance is made from a sequence of moves, which in tucneisted by linearizing the functions
BaseMove andConsMove:

lincat [Move], Utterance = SMove;

lin BaseMove m =m;
ConsMove m ms = combineWho m ms ** ss (m.s ++ ms.s);
utterance ms = ms;

When combining two moves we check that both moves are assdaidth the same participaft:

oper combineWho : Who -> Who -> Who = \Wwlw2 ->
who (case <wl.whow2.who> of

{ <p.Both> = p;
<Both,p> = p;
<System,System> => System;
<User,User> => User,

=> variants{} });

User and system utterances are those utterances which catetezl by the user and the system respec-
tively. Then we do not need to include a participant in thieiedrization types:

lincat UserUtterance, SystemUtterance = SS;
lin systemUtterance utt = checkSystem ultt;
userUtterance utt = checkUser utt;

In these linearizations we make use of operations for emguhiat a dialogue move can be uttered by a
given participant:

oper checkSystem : SMove -> SS = \m -> case m.who of

{ System | Both => m; _ => variants{} };
checkUser : SMove -> SS = \m -> case m.who of
{ User | Both => m; _ => variants{} };

Propositions
The surface form of propositions consists of a string andibbdue participant:
lincat Proposition = SMove;

Propositions are formed from predicates, where a 0-plaedigate is a proposition of its own, and a
1-place predicate is applied to an individual:

lin predOprop _ pred = pred;
predlprop _ pred ind = apply pred ind;

The linearization operatioapply is defined below when we describe 1-place predicates.

8Note that due to record subtyping, tb@nbineWho operation can be applied to any linearization type which is
an extension ofVhqg such asSMove as in the definition o€onsMove.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 46/73

Questions

A question can be used in two different contexts — eitherctliyeas a question (“Which artist do you
mean?”), or indirectly by talking about a question (“We'adking about which artist you mean”). Also,
in a specific dialogue domain, different questions can bedsly the system (“What song do you want
to listen to?”) and the user (“Which song is playing now?"hisTsuggests that the linearization type for
guestions consists of two strings and the dialogue paatitip

oper SQuestion = SQue ** Who;
SQue = {sQue : Str; sInd : Str};
lincat Question, YNQ, [YNQ], AltQ, WhQ : SQuestion;

Y/n-questionsare formed from propositions. The dialogue participanhis dpposite of the participant
of the proposition — if one participant can propose a prdfsithen the other participant can ask if the
proposition is true:

lin propYNQ _ prop = switchWho prop **
prefixQue ["is it true that"] (prop.s);

Switching participants is defined as an operation:

oper switchWho : Who -> Who = \w -> who (case w.who of
{ System => User; User => System; Both => Both });

The operatiorprefixQue prefixes an indirect question to form a direct question:

oper prefixQue : Str -> Str -> SQue = \prefix,indir ->
{sQue = prefix ++ indir; sind = indir};

Y/n-questions can also be formed from questions and actesmsthey can only be asked by the system:

lin issueYNQ que = {who = System} **
prefixQue you_wantS (['ask about”] ++ que.sind);
actionYNQ act = {who = System} **
prefixQue you_wantS (act.s);
oper you_wantS = ['do you want to'];

Alternative questionsare formed from lists of questions:
lin altQ yngs = yngs;

All questions occuring in a list of y/n-questions have toadrporate the same participant, which is done
by thecombineWho operation:

lin BaseYNQ yng yng' = combineWho yng yng **
prefixQue you_wantS (yng.sind ++ ['or'] ++ yng'.sInd);
ConsYNQ yng yngs = combineWho yng yngs **
prefixQue you_wantS (yng.sind ++ ['"] ++ yngs.sInd);

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 47/73

Since all alternative questions that occur in our dialogtstesn consist of issue/action-questions, we can
useprefixQue you wantS to get aggregation; i.e. so that the system can ask “do yotteak B or C”
instead of asking “do you want to A, do you want to B or do you tarC”.°

Wh-questionsare formed from 1-place predicates, with switched paticip. This means that if it is the
user who asks a question about e.g. the current song, tretihé system who will give the answer:

predWhQ _ pred = switchWho pred ** pred;
There are also the two special system-only wh-questionstamions and issues:

actionWhQ = {who = System;
sQue = ['what can | do for you'";
sind = ["how | can help you'l};
issueWhQ = {who = System;
sQue = ['do you need some information"];
sind = ["what kind of information you need'J};

ICM

Most ICM moves can only be uttered by the system, except ivegatd positive acceptance and negative
perception which can be uttered by both participants:

lin accNegICM = sBoth i_dont_knowsS;
accPosICM = sBoth okays;
perNeglCM = sBoth whatS;

Some other examples of ICM moves are:

lin accNegQuelCM g = sSystem (['l can't answer questions abo ut"] ++ g.slnd);
undintPropICM _ p = sSystem (p.s ++ [, is that correct ?"));
reraiseActiCM a = sSystem (['Returning t0"] ++ a.s);

Domain-specific categories
Sorts, individuals and reasons are simply strings:
lincat Sort, Ind, Reason = SS;

Actions are used either in user requests (“play some musidf) system confirmations (“Okay, playing
some music”):

oper SAction : Type = SS ** {sDecl : Str};
lincat Action = SAction;

9A better way of solving aggregation is to use GF transfersubeit this is an experimental feature still under
development, so we have decided not to incorporate thisicuhrent version of the grammar library.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 48/73

O-place predicates are only used as propositions, meamghiey have the same linearization type:
lincat Pred0 = SMove;

1-place predicates are the most complicated — they can loeassanswers and questions. Furthermore,
when they are used as answers they are applied to an individhigh depending on the predicate can
occur in different places in the phrase. E.g. “iMadonnawho has made the song”, or “you’re listening
to Madonnd. Therefore we use a string with a hole as the answer linatwia:

oper SPred : Type = Who ** SHole ** SQue;
lincat Predl = SPred;

A string with a hole is in reality implemented as two discontus strings:
oper SHole : Type = {sl : Str; s2 . Str},

Now, a string with a hole can be applied to an ordinary strinfptm a string, which is used when forming
a predicate proposition from a predicate and an individual:

oper apply : Who ** SHole -> SS -> SMove
= \p,n -> sMove p (p.sl ++ n.s ++ p.s2);

3.4.3 Parallel multimodality — Thinlet GUI XML-format

System output can be not only speech, but also presentatiargraphical user interface. We have chosen
to use the Thinlet GUI toolkiP for alternative representations. Thinlet GUI componentsigets, are
described in XML format and are rendered as java AWT compisndviost standard AWT components,
e.g. buttons, lists and text fields, are supported. For enamiling, any public Java method accessible for
the Thinlet component can be called. The widgets can beargfed by using theame attribute.

Graphical representation of dialogue moves

We represent a list of dialogue moves as a panel widget, whieigets representing the individual moves
are added in a top-down fashion; i.e. the first move is at theofdhe panel, and the last move is at the
bottom:

<panel name="godis-output" columns="1">
Move;-Widget

Move,-Widget
</panel>

10The Thinlet GUI toolkit is described at and can be downloadeah http://www.thinlet.com/

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 49/73

For dialogue management purposes, it is important to disiéin between interactive and non-interactive
widgets. Non-interactive widgets are represented as \aioglets, where the text on the label is the natural
language representation of the dialogue move. Interawtidgets are represented as panels containing
clickable buttons which are associated to a specific inpalbdue move. When clicking a button, the
dialogue move is written to the dialogue manager.

Currently only questions (except for wh-questions) aragasgnted as interactive widgets, while other
kinds of moves are non-interactive. A simple non-intexactnove is the quit move:

<panel columns="1">
<label text="Goodbye."/>
</panel>

An answer is represented as a panel containing the moveisahtdnguage representation as labels. For
instance, the dialogue move “answer(songs_by_artist(iik prayer))” with the English representation
“Like a prayer” is translated to the following widget:

<panel columns="1">
<label text="Like a prayer"/>
</panel>

A yes/no-question is represented as a panel containingebdald two buttons. The text on the label is the
natural language representation of the yes/no-questierhuttons correspond to the yes and no answet,
respectively:

<panel columns="1">
<label text="Do you want to pause?'/>

<button name="answer(yes)" text="Yes" action="input(th is.name)"/>
<button name="answer(no)" text="No" action="input(this .name)"/>
</panel>

Also the ICM move “icm:und*int:usr*artist(madonna)” withe English representation “Madonna, is that
correct?” is translated to:

<panel columns="1">
<label text="Madonna, is that correct?"/>

<button name="answer(yes)" text="Yes" action="input(th is.name)"/>
<button name="answer(no)" text="No" action="input(this .name)"/>
</panel>

Alternative questions are represented as a panel corgaimia button for each alternative plus a cancel
button, used to reject the whole alternative question. Talegue move

ask({?action(handle_player), ?action(handle_playlizaction(handle_stations)})

with the English representation "Do you want to control theer, manage playlists or listen to radio?"
is represented as:

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 50/73

<panel>
<button name="answer(action(handle_player))"
text="Control the player" action="input(this.name)"/>
<button name="answer(action(handle_playlist))"
text="Manage playlists" action="input(this.name)"/>
<button name="answer(action(handle_stations))"
text="Listen to radio" action="input(this.name)"/>
<button name="answer(no)" text="Cancel" action="input(this.name)"/>
</panel>

Wh-questions differ from the other question types in thaytare non-interactive widgets. Like the other
non-interactive move representations, they simply coo$is natural language representation of the move
on a label. So the move Xaction)”, corresponding to the English utterance "What do you wauiako?"

is represented as:

<panel columns="1">
<label text="What do you want to do?"/>
</panel>

Linearization types for Thinlet output

We use both natural language phrases and GoDiS semanticsprdaiucing the Thinlet widgets, which
is reflected in the linearization types. To the original &irization records in the speech and semantics
grammars, we add a record row for XML output:

lincat Move, ... = SMove ** SSem ** XML;

The XML linearization type is defined in the XML resource mtand consists of a string under the
labelxml :

oper XML : Type = {xml : Str};
xmlConcat : XML -> XML -> XML = \x1,x2 ->
{xml = xLxml ++ x2.xml};
xmiBegin : Str -> Str -> XML = \elem,attrs ->
"<" ++ elem ++ attrs ++ ">"
xmlEnd .
xmlEmpty ...

The XML resource module also defines operations for crea{id. elements and attributes, which are
then used by the Thinlet resource module in defining operafior creating widgets of different kinds:

oper panel : XML -> XML = \xmiContents ->

xmlConcat (xmiBegin "panel" (xmlAttr “columns" "1" ...))
(xmIConcat xmlIContents (xmlEnd "panel"));

label : Str -> XML = \text ->
XmIEmpty "label" (xmlAttr “text" text ...);

button : Str -> Str -> XML = \name,text ->
XxmIEmpty "button" (xmlAttr "name" name

(xmlAttr “"text" text ...));

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 51/73

Reuse of existing grammars

Note that we need both an English and a Swedish version oftil@eT grammar, since the GUI consists
of text as well as graphical objects. We do this in the same asbefore by writing an incomplete

concrete grammar in which the XML output is known, but theciiielanguage is unknown. We reuse
the concrete syntaxes from the spoken language interfaddr@m the semantics, for creating the Thinlet
widgets:

incomplete concrete Godis_Thinlet_Incomplete of Godis_A bstract =
open (Text = Godis_Speech_Incomplete),
(Sem = Godis_Semantics),
Resource_Thinlet in ...

We do not have any participant in the dialogue moves, sinsegha system output-only grammar. The
non-interactive moves are quite straightforward, suclhasduit” move:

lin quitMove = Text.quitMove ** Sem.quitMove **
panel (label (Text.quitMove.s));

Questions are slightly more complicated. Yes/no-questmsist of a label and two buttons:

lin yngQuestion yng = Text.yngQuestion yng ** Sem.ynqQuest ion yng **
panel (xmiConcat (label (yng.sQue))
(xmIConcat (button "answer(yes)" "Yes")
(button "answer(no)" "No"));

Alternative questions consist of a number of buttons, ptuexra “Cancel” button:

lin altQ gs = TextaltQ gs ** Sem.altQ gs **
panel (xmiConcat gs (button "answer(no)" "Cancel"));

Each alternative yes/no-question corresponds to a button:
lin ConsYNQ g gs = Text.ConsYNQ g gs ** Sem.ConsYNQ g gs **
xmiConcat (button ((ppl "answer" g).sem) (g.sind)) gs;
Abstracting the GUI description language

In the grammar library we have chosen Thinlet as the GUI datsun language of our choice. But
if we also want other similar description languages, we emmame and abstractify the resource module
Resource_Thinlet into theinterfacemoduleResource_GUI_Interface . ThenResource_GUI_Thinlet
would be arinstanceof the interface, and the GF/GoDiS concrete grammar mdgadis GUI_Incomplete
would depend on two incomplete modules.

No changes necessary to the domain grammars

Note that everything that is needed for Thinlet grammarsusd in the central GF/GoDiS grammar. This
means that exactly the same domain-specific grammar careddarsGUI output or spoken output.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 52/73

3.4.4 Integrated multimodality — utterances with click modality

We do not have to change the abstract syntax since no nevwocategr functions are defined. Definitions
of the specific multimodal demonstrative expressions dtedehe dialogue domain, since different do-
mains and different sorts might have different associatestances. E.g. to specify a place of departure
one might have to say “from here” together with clicking on apmbut to specify a song to play, the
associated utterance might be “this song”.

The method for adding integrated multimodality in sectioh.2 can be used on ancompleteconcrete
module as well as ordinary concrete modules. We use thisdatgfine a new incomplete module for the
addition of a click modality to the concrete grammar.

incomplete concrete Godis_Click_Incomplete of Godis_Abs tract =
open (S = Godis_Speech_Incomplete),
Resource_MultimodalPoint in ...

Note that we open the unimodal GoDiS gramrBadis_Speech_Incomplete (as the shortcu), since
the method tells us to preserve all unimodal informatiorgéneral, the definition of the functioihlooks
like:

lin f Xg...%, = S. f Xg...%, ** (point/click information)

That is, we keep all information from the unimodal lineatiaa, but add the click modality. This is only
done for thedemonstrativeeategories, and the categories which depend on demowvetati

Demonstrative categories
The category which we use as demonstratives is the catégbrgf individuals:
lincat Ind = Dem SS;

The categories which depend on indivuduals, i.e. havinghation taking a demonstrative as argument,
are also demonstratives:

lincat Proposition, Answer, Ask, ICM, Move, [Move],
Utterance, SystemUtterance, UserUtterance = Dem SMove;
YNQ, [YNQ], AltQ, Question = Dem SQuestion:

Non-demonstrative categories

The rest of the categories have the same linearization ggeésthe unimodal grammar. There lineariza-
tions are simply reflections of the unimodal linearizations

in f X1...% = S. f X1... Xn;
predWhQ = S.predWhQ;

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 53/73

Adding point/click information to demonstrative function s
A function taking only one demonstrative as argument, juspagates the click information.
lin predlprop sort pred ind = S.predlprop sort pred ind ** ind ;

Note that due to record subtyping we can wiitg instead ofmkPoint (ind.point) . A demonstrative
function taking no demonstrative arguments can be writtenthis:

lin requestMove m = S.requestMove m ** noPoint;
Finally, a function taking several demonstrative arguraéats to concat the clicks of the arguments:

lin ConsMove m ms = S.ConsMove m ms ** concatPoint m ms;

Completing the click module

Finally we can complete the Click module with a specific tafgeguage by instantiating the phrases:

concrete Godis_Click_English of Godis_Abstract = Godis_C lick_Incomplete
with (Godis_Phrases_Interface = Godis_Phrases_English) ;

3.4.5 Strategies for improving speech recognition

With the given definitions, any dialogue move can follow oeqade any other move. Such a liberal
grammar is not good for the speech recognizer. What we needié&y of restricting the language model.
Now, in the dialogue system we are focussing on, the follgwigular expression over dialogue move
types captures the different possibilities of user utteean

SingleMove |
Negative-ICM |
(YNAnswer | Positive-ICM)? (Request | Ask)? Answer*

By Negative-ICM we mean all ICM moves with negative action level, andPogitive-ICM we mean
all ICM moves with positive action level. This regular exgg®mn can be directly encoded into the GF
grammar with just a few minor changes:

e The category ICM has to be divided into two categories. Akdively, ICM has to depend on
Polarity:

cat ICM Polarity;
cat Polarity;
fun Positive, Negative : Polarity;

e The function userUtterance has to be removed, and a numbathef UserUtterance functions
reflecting the regular expression have to be defined, amamg something like the following:

fun userRequest : MaybeYesnolCM -> Request -> [Answer];

This will restrict the user grammar, which in turn restrittte corpus that is generated in TALK deliverable
D1.3 [Weilhammer et al., 2006].

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 54/73

Restricting the possible answers

The utterances can be restricted even further, by obsetliatgor a given dialogue system, each action
and question has a fixed number of follow-up questions — bayattion to play some music has two

follow-up questions: which artist and which song. This neé#mat only an artist answer and a song
answer (in any order) should be allowed after a request toguee music. Also, even if the user does not
request an action or asks a question, but only gives someeasismot all answers should be allowed. In
some applications it might feel strange to give the same &frahswer several times in a row, regardless
of which question the user is answering.

Our problem is how to encode such restrictions in the gramiivargive two possible solutions and hint

at a third. But first we decide that the kind of answer is deduoem the sort — which is already done in

the abstract syntax in section 3.3.2.

Solution 1: Encoding the restrictions in dependent types

We can change the types of questions (i.e. 1-place predjcaitel actions to depend on a list of sorts:
cat Question [Sort]; Predl [Sort]; Action [Sort];

The restriction that a list of answer sorts can only be takemfa given list, can be encoded as Horn
clauses:

AnswerList[])
VX, xs AnswerLigtxs) — AnswerListx : xs)
Vxsys Seledixsys) A AnswerListys) — AnswerListxs)

The second clause handles the case when a sort is hot andwetteeiuser. The last clause is when the
user answers one of the possible sorts, which is then sél&oim the list of restrictions:

VX,xs Answefx) — Selectx : xs xs)
Vx,Xxsys Seledixsys) — Selectx: xsx:ys)

These Horn clauses are straightforwardly translated ift@tBtract syntax — the only things one have to
remember are that the Horn predicates Answers and SeleGFacategories, that variables are typed, that
lists of sorts are constructed BgseSort andConsSort , and that each Horn clause gives rise to a unique
GF function:

cat Answerlist [Sort]; Select [Sort] [Sort];

fun baseAnswers : AnswerlList BaseSort;
skipAnswers : (x:Sort) -> (xs:[Sort]) ->
AnswerList xs -> AnswerList (ConsSort x Xs)
consAnswers : (xs,ys:[Sort]) ->
Select xs ys -> AnswerList ys -> AnswerList xs

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 55/73

fun answerSelect : (x:Sort) -> (xs:[Sort]) ->
Answer x -> Select (ConsSort X Xs) Xs
recurseSelect : (x:Sort) -> (xs,ys:[Sort]) ->
Select xs ys -> Select (ConsSort x xs) (ConsSort x ys)

Now the functionuserRequest , defined above, can be redefined to include the sorts of thveecasis

fun userRequest : (xs:[Sort]) ->
MaybeYesnolCM -> Request xs -> AnswerList xs;

This means that to each action and question we have to assaeclest of sorts corresponding to the
feasible follow-up answers:

fun playMusic : Action (ConsSort SongSort (ConsSort Artist Sort BaseSort));

How can this dependently typed grammar help speech redmgpifThere are two ways — either we can
create a context-free speech recognition grammar obelgmgestrictions, or we can use the grammar to
generate a corpus from which a statistical language modebedrained.

It is possible to transform away the type dependencies s$imare is only a finite number of sort lists in
the grammar — one for each action and predicate/wh-queskiom simplest way is to instantiate the sorts
and sort lists and incorporate them with the categofiesver , Select andAnswerlList , thus giving a
large number of context-free categori¢snswer x} , {Select xs ys} and{AnswerList xs} for all
possibilities ofx, xs andys.

After having transformed away the type dependencies, thteaadh syntax is a context-free grammar which
then can be used to create a context-free speech recoggiiommar, or to generate a corpus of syntax
trees.

Solution 2: Restricting the generation of syntax trees

The second solution can be considered more of a hack thamgherfe. But on the other hand it is much
simpler, since dependent types are not involved.

The idea is based on the fact that the tree generation conaa@F (calledgt andgr) can be restricted
by an incomplete syntax tree, meaning that all generates tnégll be on the given form. The original
domain grammar need not be altered, so the agtimyMusic for playing some music will just be an
Action , without any type dependencies. However, we know that eaeh utterance for playing music
will be on the form:

userRequest ? (requestAction playMusic) ? Answers

where the list of answers can be on one of the following forms:

BaseAnswer

(ConsAnswer SongSort BaseAnswer)

(ConsAnswer ArtistSort BaseAnswer)

(ConsAnswer SongSort (ConsAnswer ArtistSort BaseAnswer))
(ConsAnswer ArtistSort (ConsAnswer SongSort BaseAnswer))

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 56/73

This means that a corpus of all possible utterances forqdagiusic can be generated by five GF com-
mands for generating trees. This can of course be repeatedi &xctions and predicates/wh-questions in
the domain. For a normal-sized domain there will be a hugetsurof GF tree generation commands that
have to be invoked, but these can be generated automaticaitythe information saying which answer
sorts each action and predicate/wh-question can take.

The solution will thus consist of some scripts that autooaly generate a corpus of underspecified trees,
which then can be fed into GF to generate an instantiatedusoffo each dialogue domain we only have
to specify the kind of answers that are allowed to follow epdicate (in a wh-question) and action (in
a request).

A drawback of this solution is that it can only be used whenegating a corpus, but since TALK de-
liverable D1.3 [Weilhammer et al., 2006] shows that tragnam SLM gives better results than creating a
speech recognition grammatr, it is still a feasible solution

Future solution 3: Transfer modules

The most general solution would probably be to traasfer moduleso transform a non-restricted gram-
mar into a restricted grammar, and put all restrictions @nattions and predicates/wh-questions in the
transfer rules. However, this solution is still only thedral since transfer modules are very experimental
in GF and still under development.

Not implemented in the grammar library

None of the restrictions suggested in this section are imgided in the current version of the Multimodal
Grammar Library, since there are different possible adtéivas and we do not want to decide on one single
solution.

3.5 Domain dependent grammars

In this section we describe the specifics of a dialogue dontféinst we explain what is needed to create
a new grammar for a given dialogue domain. Then we describspkcific details of our two example
dialogue systems — the MP3 player and the calendar applicati

The grammar library is designed to make it as easy as pogsiloieate new dialogue grammars, which
we hope is shown by our examples. Note that both examplesating dialogue systems for which we
have created new dialogue grammars, which can be seen ad afKistress test” for the core dialogue
grammar described previously.

3.5.1 Whatis needed to describe a new domain?

Suppose we want to write a grammar for the new dontam Then the following is a recipe of what
kinds of things that have to be added to the core GoDiS gramiaiassume that the dialogue system is
already specified, i.e. that the possible dialogue movets,sndividuals, etc. are known.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 57/73

Ontologies

We have to decide which ontology grammars we will make usa ¢fié¢ domain. The domain grammar
is extended by each of these grammars. Suppose that we argtgaise the ontologie3y, . ..,Op, then
the abstract and concrete grammars start like follows, @tyeg € {English , Swedish }:

abstract Domain_ Dom Abstract =
Godis_Abstract,
Ontology_ O1_Abstract,

Ontology _ Op_Abstract ** ...

concrete Domain_ Dom Speech_Lng =
Godis_Speech_ Lng,
Ontology_ O1_Lng,

Ontology_ On_Lng ** ...

Sorts and individuals

The sorts and individuals are preferrably derived from thimlogies — i.e. for each main categ@@at in
an ontologyO, we declare thaCatSort is a sort:

fun CatSort : Sort;

We also have to give a coercion function from the elementatagoryCat into the individuals of the sort
CatSort :

fun ind Cat : Cat -> Ind CatSort;

In some cases we want to add elements to an ontology, or efiee denew sort which does not depend
on an ontology. In this case we simple enumerate the indiédu

fun iq, .., im : Ind CatSort;

The sortCatSort only has to be given a linearization in the GoDiS semanticdutey and this will be the
GoDiS predicate that corresponds to the sort:

lin CatSort = "the_category_as_recognized_by godis";
In all languages, the individuals are linearized as in thielogy:
lin ind Cat x = x;

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 58/73

Predicates

For each 0-place predicafein the domain, associated with the sgriefine the GF constanmt
fun p: Pred0 s

The linearization for the GoDiS semantics is straightfooia
linp = pp0 " p"

When linearizing to a language, we must decide which diaqgarticipant is allowed to state thptis
true. The linearization should be as a proposition, e.g.:

lin p = sUser (variants{'it is true that p " pis true");

A 1-place predicatg is also associated with a sgtand both its abstract definition and the semantics are
similar:

fun p: Predl s
lin p = pp0 " p*

However, the linearization type for spoken utterancesistsef three constituents as explained in section
3.3.2: p can be applied to an individual to form a propositigncan be used as a wh-guestion, which
in turn can be direct or indirect. This is done by giving thpdegases, of which the propositional phrase
consists of a “hole” where the individual will be put:

lin artists_songP = {who = System} **
sHole ["it is"] ['who has made the song"] **
sQue ("who" ++ hasmadeV ++ optStr songN)
['who made the song";

Note that the recorgystem says that the system can give answers (“itis ABBA who has rtassong”),
and the opposite participant (i.e. the user) can ask quesfisvho has made the song”). The indirect
guestion occurs when the system talks about the given quegtet’s return to the question about who
made the song”).

Questions, answers and reports

In some cases there might be questions which have no congisigoanswer, or answers without corre-
sponding questions. We might prefer to add these as direstigns or answers:

fun listenToQ : Question;
lin listenToQ = pWhQ "listenTo";

11The operationpp0, ppl, andpp2 are defined in the Prolog resource module and create Prailotg teaking
zero, one or two arguments.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 59/73

In the natural language grammars we have to give both thetdirel the indirect question, together with
the preferred participant:

lin listenToQ = {who = System} **
sQue ['do you want to listen to radio or music']
["whether you want to listen to radio or music'];

Some kind of answers can be described syntactically asnsysigorts, e.g. when the system fails to find
an answer to a question it can be described as a report oligefailstead of an answer. This is left as a
choice to the grammar writer.

Actions

Each actiora in the dialogue system is added as a GF function, with thatiinearization in the seman-
tics:

fun a : Action;
lin a = pp0 "a"

There are two ways of uttering an action — either as a requast the user, or as a declarative when the
system reports that the action is done:

lin a = sAct ['do a'] ['l have done a";

Phrases

To simplify things, common phrases can be put in resourceuasgdwhich might be callebomain_Dom Phrases_ Lng,
as described previously.

Adding multimodality

Parallel GUI multimodality is handled automatically by tb@re GoDiS grammar, but for the integrated
“click” multimodality, some things have to be added. To thstsact syntax we have to add functions from
points to individuals, for each of the multimodal “herefwa-click” expressions. l.e. for each clickable
Catin an ontology, we add the functidhis Cat:

abstract Domain_ Dom Click_Abstract = Domain_ Dom Abstract ** {
fun this Cat : Point -> Ind CatSort;
The concrete grammar module reuses the unimodal speecHenodu
concrete Domain_ Dom Click_ Lng of Domain_ Dom Click_Abstract =
Godis_Click_ Lng,
., Ontology ~ O;_Lng, .. *
open (S = Domain_ Dom Speech_Lng) in {

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 60/73

Each multimodal individual th3at is defined as a demonstrative:
lin this Cat p = ss ['this cat'] ** mkPoint p;
The other individuals are not demonstratives, i.e. theyhspoint associated with them:
lin ind Cat x = S.ind Cat x ** noPoint;
c. = S.¢ * noPoint;
Finally, predicates and actions are not changed at all:

lin act = S.act;
pred; = S. pred;;

3.5.2 DJGoDIS

Ontologies

The ontologies used in this domain are the following:

e Music — Artists, Albums and Songs
e Radio stations

e Numbers

Sorts and individuals

The Sorts reflects the ontologies: ArtistSort, AlbumSodngSort and StationSort (for radio stations).
The PlaylistSort is currently so small and domain specifat this not described in any ontology. The
ontology of numbers is used to define IndexSort, the sortaflist indices.

The Individuals are just the elements of the respectivelogies. A playlist index can be any natural
number, or the special indices “next” and “previous”.

Predicates

The predicates that the user can ask for and the system fingento argpath (to find the search path to
a song),artists_songwhich artist has made a given songjtists_album(which artist has made a given
album), albums_by_artis{which albums has a given artist madepngs_by_artis{which songs has a
given artist made), ancurrent_songwhich is the song currently playing).

The predicates that the system asks for almim station artist, song playlist, itemAdd(which item
should be added to the playlisiifemRem(which item should be removed from the playlisgroup-
ToAdd(which group should be added to the playlisthng_artist(which artist has made the song), and
what_to_play(which song in the playlist should be played).

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 61/73

Questions and answers

There is one general question: “do you want to listen to masithe radio”, which is encoded as the
GoDiS predicatdistenTa

There are three special answers, which are used when it ¢siipe to find a suitable answer to a question
— path_nomatchthere is no matching search pathjtists _album_bestofthe album is a compilation of
many artists), andlbums_by_artist_nomatgfthere are no albums by the artist in the database).

Actions

There are in total 23 possible actions that can be requestieidh range from playing, stopping and
pausing, via fast forward and backward, and handling themelcontrol, to adding and removing items
from the playlist. There are also top-level actions foragsig the dialogue, and selecting the player, the
playlist or the radio.

Adding integrated multimodality

All sorts except numbers are clickable, meaning that we hdddilowing functions:

fun thisArtist : Point -> Ind ArtistSort;
thisAlbum : Point -> Ind AlbumSort;
thisSong . Point -> Ind SongSort;
thisStation : Point -> Ind StationSort;

The different sorts can be referred to by different phrasgg,an artist can be referred to as “them?”, “her”,
“him”, etc., while an album or a song are better referred ttttas” or “that”:

lin thisArtist p = ss (variants{"them";"her";"him";["thi S artist]}) **
mkPoint p;

thisAlbbum p = ss (variants{"this";"that"} ++ optStr "album ") x*
mkPoint p;

3.5.3 Agenda-Talk
Ontologies

The ontologies used in this domain are the following:

e Time expressions
e Date expressions
e Eventtypes

e Locations

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 62/73

Sorts and individuals

The Sorts reflects the ontologies: TimeSort, DateSort, B8ahand LocationSort. Furthermore, AMPM-
Sort is defined together with the time expressions. The iddals are just the elements of the respective
ontologies.

There is also a meta-level Sort called InfoSort which is uskdn we want to specify another sort (date,
time or location):

fun InfoSort : Sort;

datelnfo, timelnfo, locationinfo : Ind InfoSort;
lin datelnfo = ss ['date"];

timelnfo = ss ['time"]

locationinfo = ss (variants{["place"];["location"]});

Finally, there is a BookingSort, consisting of lists of etgeand times:

fun BookingSort : Sort;
emptyBookings : Ind BookingSort;

bookings . [EventTime] -> Ind BookingSort;
lin emptyBookings = ss ['no bookings'];
bookings books = ss (['the following bookings :"] ++ books.s);

A booked event can have a specified time, or be without tirarinétion:

fun eventTime : Event -> Time -> EventTime;
eventNotime : Event -> EventTime;

lin eventTime e t = ss (e.s ++ ts);
eventNotime e = ss (e.s ++ ['unspecified time"]);

Predicates

The predicates that both dialogue participants can ask roistare_start_timge store_duration_time
store_locationandstore_eventWhen the user asks these questions, the idea is to find thiagtame,
duration time, location or event for an existing booking e Hystem however, can also ask questions about
when, how long, where and what for new bookings.

There are two predicates that only the user can askddays_datdwhat is today’s date) andookings
(what are the scheduled events a given date).

The predicates that the system asks forraetime(what time should the event be moved to)ddate
(what date is the event currentiewdate(what date should the event be moved to) avidch_info
(which information is wrong).

There are also three system-only 0-place predicateage(giving information about the application),
take_down_everfsaying that a new event will be recorded), @mpty even(saying that there is nothing
booked on the specified time).

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 63/73

Questions and answers

There is one general question: “do you want to add any mooerirdtion”, which is encoded as the GoDiS
predicateadd_more_info

Actions

The following are the possible actions:

e adding and removing bookingsa€d_eventdelete_eventdelete current_event

e adding more information to a bookingmore_infg

e changing information, date or time of a bookinghange_infochange_datechange_timg
e checking existing bookings get_infa

There is also a top-level action for restarting the dialogue

Adding integrated multimodality

The sorts that are clickable are dates, times and bookedseveor each of these sorts we add a demon-
strative functiorthisDate , thisTime andthisEvent

The different sorts can be referrred to by different phrasas a date can be referred to as “then”, “this
date” or “that date”, while an event is referred to as “thishat” or “this/that event”.

3.6 The Edinburgh Town Info grammar

TheTown InfoGF grammar has been developed at UEDIN to cover the in-camivetion-seeking domain
of the SACTI data collections and the baseline system witliogeeement learning, see Lemon et al. [2006]
and TALK deliverable D4.2 [Lemon et al., 2005]. It has alsebaised to test the method presented in
2.1.1 for adding multimodality to an existing grammar.

There is currently not a GoDiS application for tihiewn Infogrammar, since it is used with the DIPPER
dialogue manager. Therefore it is not part of the GF/GoDi&rgnar library, but the structure is very
similar to the previous exampl&s) GoDiSandAgendaTalkn section 3.5.

3.6.1 The unimodal grammar
Ontologies

The ontologies used in this domain are:

e Restaurants: cuisine type, price range, address, name
e Bars: bar type, price range, address, name

e Hotels: class, room type, address, name - Numbers

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 64/73

Sorts and Individuals

The sorts reflect the ontologies: RestaurantCuisineTypstaRrantPriceRange, RestaurantAddress, Restau-
rantName, BarType, BarPriceRange, BarAddress, BarNawte]Elass, HotelRoomType, HotelAddress,
HotelName, and ChoiceNumber.

The individuals are elements of these respective ontadogie

Predicates

The predicates that the user can ask for @reice_numbeito choose a particular entity and get its
description), and the different task typéswn_info_hotelstown_info_barstown_info_restauranjs

The predicates the system asks for aredhisine_typerestaurant_price_rangebar_type(e.g. a jazz bar
or wine bar)bar_price_rangehotel_classhotel _room_typeandoption_numbefwhich of the presented
options should be described fully).

Actions

The user can request to change to a different task, ask thensys restart, repeat, or select a particular
option.

3.6.2 Adding integrated multimodality

A proof-of-concept multimodal version of this grammar wasained by following the steps presented in
section 2.1.1.

A map location ("here") is now clickable, allowing the useichoose an option on the map by saying say
"here [click]" etc.

The abstract grammar consists of the following multimodés:

fun pl . Point;
LocHere : Point -> Phrs;
UttRule : Phrs -> Sentence;
MMinput : Sentence -> MMsentence;

Using the multimodal conversion combinators, the linedian types become the following:

lincat Point = Point;
Phrs = Dem SS;
Sentence = Dem SS;

MMsentence = SS;

The linearizations also use the multimodal combinators:

lin pl = mkPoint "pl";
LocHere p = ss ['here"] ** mkPoint p;
UttRule u = u;

MMinput i = ss (i.s ++ " ++ ipoint);

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 65/73

This enables parsing of simple multimodal expressions l&sifs:

> p -cat=MMsentence "here ; pl"
MMinput (UttRule (LocHere pl))

3.6.3 Coverage

Here are some examples showing the coverage of the curraminggir (the "Bpm" prefixes are present
because the base grammar is in fact compiled from a Busimess$3 Model describing the domain):

> p "i need some indian food"

UttRule (UttRulePhrs23 | _need_some (Bpm_generalTypeRul e 13
(Bpm_town_info_restaurants_cuisine_indian_Type_Rule
Bpm_town_info_restaurants_cuisine_indian))

(Bpm_spotting_restaurants_1 spot_restaurants_food))

> p "i um want a chinese meal and uhhh a cheap hotel please in the town center"
UttRule (ConsPhrs (UttRulePhrs7 Want A (restaurants_ask_ food_type 1
(Bpm_restaurants_cuisine_chinese_Type_Rule Bpm_chine se))) (ConsPhrs (UttRulePhrs2
(Bpm_spotting_restaurants_1 spot restaurants_meal)) (ConsPhrs (UttRulePhrs4 A
(hotels_ask_price_1 (Bpm_cheap_Type_Rule Bpm_cheap))) (ConsPhrs (UttRulePhrs2
(Bpm_spotting_hotels_1 spot_hotels_hotel)) (ConsPhrs (UttRulePhrs2
(hotels_ask_location_2 (Bpm_central_Type Rule Bpm_tow n))) (ConsPhrs (UttRulePhrs2
(hotels_ask_location_2 (Bpm_central_Type_Rule Bpm_cen ter))) BasePhrs))))))

There is a development set of 207 user utterances which wheeted for building the enhanced language
models for the baseline dialogue system of TALK deliverdde2 [Lemon et al., 2005].

The currentTown Infogrammar performs quite well on this test set at 91% (189 of t28% sentences).
This could be improved with further development time.

3.7 Summary

In this chapter we have described in detail the contents efhltimodal and multilingual GF/GoDiS
grammar library, written in Grammatical Framework. Thergnaars in the library have been made mul-
timodal by using the method described in chapter 2 in thiselelble.

The grammar library connects user and system utterancesisgén GF with a dialogue system using the
GoDiS dialogue manager. The library is designed for malgrepisy to add new dialogue domains, source
languages, and input and output modalities. Currentlyibivarly consists of two dialogue domains, each
with two source languages and three different modalitidse fivo domains are the calendar application
AgendaTalkand the MP3 playebJ GoDiS

An additional GF grammar has been described, which has bade multimodal using the given method.
The EdinburghTown Infogrammar is not part of the GF/GoDiS grammar library, but carséen as a
proof-of-concept of the generality of the method. Anothdditional grammar, th&ram Demagrammar,

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 66/73

was used as a pedagogical example when introducing the chigtlehiapter 2 and has therefore not been
described in this chapter.

By using the diversity of the GF module system, such as resoonodules, incomplete modules, inter-

faces and instances, we have maximized sharing of commomiation between languages, modalities,
ontologies and domains. This is done to make adding a newéygg modality, ontology or domain as

simple as possible.

Version: Final (Public) Distribution: Public

Chapter 4

Summary and Conclusions

The ISU approach uses abstract representations for delsgues and update rules which allow the
generic characterisation of flexible dialogue strategi€bis enables the same code for dialogue man-
agement techniques to be used for different natural laregiagd for different domains.

In this deliverable, we have shown that by using an abstemresentation for grammars, we can further
enable rapid porting of dialogue systems between languatpsains and modalities. The main tool
in defining such grammars is Grammatical Framework (GF)chig used in collaboration by UGOT,
UEDIN and UCAM for making ISU-based dialogue systems.

We have described two approaches to adding multimodalitjmimodal dialogue systems and grammars.
The first approach is to implement multimodality at the graanfevel. We have given a language- and
domain-independent method for how to add multimodal infation to a unimodal GF grammar, thus
simplifying the transition from a speech-only dialogueteysto a multimodal one. The second approach
is to implement multimodality at the level of the dialoguermager, which has been tried out in the ISU-
based dialogue system DelfosNCL, developed by USEV.

The main part of the deliverable has been a detailed desmeritf the multimodal and multilingual
GF/GoDiS grammar library, written in Grammatical Framekvorhe grammar library connects user and
system utterances specified in GF with a dialogue systeng tiss\lSU-based GoDiS dialogue manager.
The library has been designed for making it easy to add neloglie domains, source languages, and
input and output modalities. Currently the library corsist two dialogue domains, each with two source
languages and three different modalities. The two domamshe calendar applicatiohgendaTalkand
the MP3 playeDJ GoDiS

Furthermore, two additional multimodal GF grammars havenbdescribed, which are created using the
method for adding multimodality. They are not part of the G&DiS grammar library since they are not
part of a GoDiS dialogue system, but can be seen as proafsrafept of the generality of the method.
The Tram Demogrammar, used by the UGOT Tram Information System (GOTTh&}% been used as
a pedagogical example when introducing the method. The NEDwn Infogrammar, used with the
ISU-based DIPPER dialogue manager, has been used to tesethed.

By using the diversity of the GF module system, such as resauodules, incomplete modules, interfaces
and instances, we have maximized sharing of common infeomaietween languages, modalities, on-
tologies and domains. This has been done to make adding eangwadge, modality, ontology or domain
as simple as possible.

67

IST-507802 TALK D:1.2b 07/02/06 Page 68/73

Conclusions

We have presented techniques for incorporating multinigdako dialogue systems with grammars. We
have distinguished two kinds of multimodality: paralletlantegrated multimodality (multimodal fusion)
and explored techniques for incorporating this both inemgmars directly and by treating in terms of the
interaction between grammar and dialogue management. Vdeshawn a general technique for creating
multimodal grammars from unimodal grammars.

While the kind of multimodality we handle is limited (selext by clicking and/or talking) we are pointing
to general techniques that will enable to the rapid devetomf new multimodal dialogue systems in a
way that will be generalizable to other kinds of multimotahs well.

Version: Final (Public) Distribution: Public

Bibliography

Richard A. Bolt. Put-that-there: Voice and gesture at tlaphics interfaceACM SIGGRAPH Computer
Graphics 14(3):262-270, July 1980.

Bjorn Bringert, Robin Cooper, Peter Ljunglof, and Aarne Ran Development of multimodal and
multilingual grammars: viability and motivation. Deliadle D1.2a, TALK Project, 2005. URL
http://www.talk-project.org/

Hakan Burden and Peter Ljunglof. Parsing linear contese-flewriting systems. IWPT’05, 9th Inter-
national Workshop on Parsing Technologi®ancouver, Canada, October 2005.

Michael Johnston. Unification-based multimodal parsimgColing-ACL, pages 624—630, 1998.

Michael Johnston and Srinivas Bangalore. Finite stateimattal parsing and understanding. Fmno-
ceedings of the 18th conference on Computational lingigigtiages 369-375, 2000.

Michael Johnston, Philip R. Cohen, David McGee, Sharon LiahwWames A. Pitman, and Ira A. Smith.
Unification-based multimodal integration. ACL, pages 281-288, 1997.

Staffan Larssorissue-based Dialogue ManagemeRhD thesis, Géteborg University, Goteborg, Sweden,
2002.

Oliver Lemon, Kallirroi Georgila, James Henderson, andthtay Stuttle. An ISU dialogue system ex-
hibiting reinforcement learning of dialogue policies: gen slot-filling in the TALK in-car system. In
Proceedings of EACLlpage to appear, 2006.

Oliver Lemon, Kallirroi Georgila, and Matthew Stuttle. Stwase exhibiting reinforcement learning for
dialogue strategies in the in-car domain. Deliverable D#ALK Project, 2005. URLhttp://www.
talk-project.org/

Peter Ljunglof. Expressivity and Complexity of the Grammatical FramewofhD thesis, Géteborg
University and Chalmers University of Technology, Gothangh Sweden, November 2004.

Peter Ljunglof, Bjorn Bringert, Robin Cooper, Ann-ChattofForslund, David Hjelm, Rebecca Jonsson,
Staffan Larsson, and Aarne Ranta. The TALK grammar libraryintegration of GF with TrindiKit.
Deliverable D1.1, TALK Project, 2005. URtitp://www.talk-project.org/

SL. Oviatt, A. DeAngeli, and K. Kuhn. Integration and synchization of input modes during multimodal
human-computer interaction. Proceedings of Conference on Human Factors in Computinte®s
CHI 97, New York, 1997. ACM Press.

69

IST-507802 TALK D:1.2b 07/02/06 Page 70/73

Marint Pickering and Simon Garrod. Toward a mechanisticpsiogy of dialogueBehavioral and Brain
Sciences27(2):169-226, 2004.

José F. Quesada, Doroteo Torre, and Gabriel Amores. DeSigmatural command language dialogue
system. Siridus Project Deliverable D3.2, 2000.

Aarne Ranta. Grammatical Framework, a type-theoreticaingnar formalism.Journal of Functional
Programming 14(2):145-189, 2004.

David Traum, Johan Bos, Robin Cooper, Staffan Larsson, kamirh, Colin Matheson, and Massimo
Poesio. A model of dialogue moves and information statesigwi Trindi Project Deliverable D2.1,
1999.

Karl Weilhammer, Rebecca Jonson, Aarne Ranta, and StevagY@aeneration of language models using
GF. Deliverable D1.3, TALK Project, 2006. URtttp://www.talk-project.org/

Version: Final (Public) Distribution: Public

Appendix A

The Multimodal Grammar Library

A.1 Downloading the grammar library

The TALK Multimodal Grammar Library can be downloaded from
http:/iwww.ling.gu.se/projekt/talk/software/

The distribution consists of a collection of GF grammar medudistributed in the following directories:

Godis Core grammars for GoDiS-based dialogue systems
Ontology Grammars describing general ontologies

Domain The application domains MP3 (for ttiz) GoDiSapplication) and Agenda (for thisgendaTalk
application

Resource General GF resource grammars

The directories and grammar modules are described in meaé sechapter 3.

A.2 Installation instructions

First download and install Grammatical Framework. Soude¢ binaries and installation instructions
can be found on the GF homepage:

http://www.cs.chalmers.se/~aarne/GF/

Set the search path to the GF library, and start GF from irtkielelirectory of the grammar files:

71

IST-507802 TALK D:1.2b 07/02/06 Page 72/73

e In csh, tcsh:
> setenv GF_LIB PATH (path-to-GF)lib

> (path-to-GF)bin/gf
Welcome to Grammatical Framework, Version 2.4

e In bash:
$ export GF_LIB_PATH= (path-to-GF}lib

$ (path-to-GF)bin/gf
Welcome to Grammatical Framework, Version 2.4

If GF will be used on a regular basis, the binary should be added to the global search path and the
environment variabl&F LIB_PATH should be set globally.

A.3 Testing the grammars

The grammars can be tested separately by loading them intd l&Felevant concrete syntax modules
are:

Domain_Dom Src Lnggf , whereDome {MP3,Agenda }, Srce {Speech,Thinlet,Click H
andLng € {English,Swedish }.

The following is an example of the capabilities of the GF pamg. For more information about how to
use GF, see the GF documentation. This example assumes vesting theDJ GoDiSspoken language
grammar, which of course can be replaced by any of the otlaenmars in the library.

1. Start GF in the directory where the grammars are located:

$ cd (path-to-grammar-libraryDomain/MP3/
$ of

2. Load the source module(s) into GF:

> | -conversion=finite Domain_MP3_Semantics.gf

> | -conversion=finite Speech/Domain_MP3_Speech_Englis h.gf
> | -conversion=finite Speech/Domain_MP3_Speech_Swedis h.of
The option-conversion=finite compiles away finite dependent types, which are used as de-

scribed in section 3.3.2. Without this option the parsaunrmet too many parse trees, which have to
be filtered by the GF commarpd -transform=solve

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2b 07/02/06 Page 73/73

3. Select the English concrete grammar, and the startimgoat:

> sf -lang=Domain_MP3_Speech_English
> sf -cat=UserUtterance

4. Parse an English utterance:

> p -cfg "play like a virgin by madonna"
UserUtterance (ConsMove ...)

The optioncfg selects an improved context-free parsing algorithm. Tli@ulieparsing algorithm
is overgenerating on grammars with dependent types, sutiisame, and the resulting parse trees
have to be filtered byt -transform=solve

5. Translate (i.e. parsing followed by linearization) fré&mnglish to Swedish:

> p -cfg "play like a virgin by madonna" | | -all -lang=Domain_M P3_Speech_Swedish
spela like a virgin med madonna / ...

The option-all shows all possible variants of linearizing a syntax term.

6. Translate from English to GoDiS dialogue moves:
> p -cfg "play like a virgin by madonna" | | -lang=Domain_MP3_ Semantics
[request(play),answer(song(like_a_virgin)),answer(a rtist(madonna))]
7. Generate 5 random Swedish utterances:
> gr -number=5 | | -lang=Domain_MP3_Speech_Swedish
in the city med eagle eye cherry
rant radio
va

jag vill &ndra balansen mitten tack
jag vill spela nummer tre tack

8. Quit GF:

> q

Version: Final (Public) Distribution: Public

