
References

1. S. Attardo, Linguistic Theory of Humor, Mou-
ton de Gruyter, 1994.

2. K. Binsted and G. Ritchie, “Computational Rules
for Punning Riddles,” Humor: Int’l J. Humor

Research, vol. 10, no. 1, 1997, pp. 25–76.

3. O. Stock and C. Strapparava, “Getting Serious
about the Development of Computational
Humor,” Proc. 18th Int’l Joint Conf. Artificial

Intelligence (IJCAI 03), Morgan Kaufmann,
2003, pp. 59–64.

4. R. Mihalcea and C. Strapparava, “Laughter
Abounds in the Mouths of Computers: Inves-
tigations in Automatic Humor Recognition,”
Proc. Intelligent Technologies for Interactive

Entertainment (INTETAIN 05), LNCS 3814,
Springer, 2005, pp. 84–93.

5. C. Bucaria, “Lexical and Syntactic Ambigu-
ity as a Source of Humor,” Humor: Int’l J.

Humor Research, vol. 17, no. 3, 2004, pp.
279–309.

6. A. Valitutti, C. Strapparava, and O. Stock,
“Lexical Resources and Semantic Similarity
for Affective Evaluative Expressions Gener-
ation,” Proc. 1st Int’l Conf. Affective Com-

puting and Intelligent Interaction (ACII 05),
LNCS 3784, Springer, 2005, pp. 474–481.

The STANDUP Interactive
Riddle-Builder
Graeme Ritchie, University of Aberdeen

Ruli Manurung and Helen Pain,

University of Edinburgh

Annalu Waller and Dave O’Mara,

University of Dundee

As children grow up, their language and

communication skills develop as a result of

their experience in the world and their inter-

actions with other language users. In many

cultures, an important type of interaction is

language play with the child’s peer group—

word games and joke telling. A child with a

disability such as cerebral palsy might con-

verse using a voice output communication

aid—a speech synthesizer attached to a

physical input device. This cumbersome

way of talking tends to isolate a child from

the repartee, banter, and joke telling typical

of the playground. This lack of practice can

inhibit the development of language skills,

leading to a lack of conversational fluency

or even an undermining of social skills.

Our STANDUP (System to Augment Non-

speakers’ Dialogue Using Puns) project

aims to take a small step toward alleviating

this problem by providing, in software, a

language playground for children with dis-

abilities. The program provides an interac-

tive user interface, specially designed for

children with limited motor skills, through

which a child can create simple jokes (rid-

dles based on puns) by selecting words or

topics. Here are two typical jokes that the

system produces:

• What kind of berry is a stream? A cur-

rent currant.

• How is an unmannered visitor different

from a beneficial respite? One is a rude

guest, the other is a good rest.

The system isn’t just an online jokebook.

It builds new jokes on the spot using 10 sim-

ple patterns for the essential shapes of pun-

ning riddles and a lexical database of about

130,000 words and phrases. We hope chil-

dren will enjoy using the software to experi-

ment with sounds and meanings to the bene-

fit of their linguistic skills.

Background
Although various researchers have

attempted since 1992 to get computers to

produce novel jokes,1 STANDUP’s main pre-

decessor is the JAPE system.2 That pro-

gram could churn out hundreds of punning

riddles, some of which children judged to

be of reasonable quality. However, it was

only a rough research prototype; it took a

long time to produce results and had no

real user interface, and the ordinary user

couldn’t control it. We’ve used JAPE’s cen-

tral ideas to create a fully engineered, large-

scale, interactive riddle generator with a

user interface specially aimed at children

with disabilities.

Designing with users
As computational humor is still in its

infancy, we had no precedent for real-world

use of a system such as STANDUP and cer-

tainly no experience of providing a joke

generator for children with disabilities. We

therefore devoted a substantial portion of

the project to user-centered design. We

consulted potential users and associated

experts (teachers and speech and language

therapists) about how the system, particu-

larly the user interface, should operate.3,4

In the early stages, we used nonsoftware

mock-ups. We showed users laminated

sheets representing screen configurations

and asked them to step through tasks by

pointing to the buttons in the pictures. The

experimenter responded by replacing each

sheet with the appropriate next screen shot.

We adopted this low-tech approach to

emphasize to the participants that the sys-

tem hadn’t yet been built and that sugges-

tions or criticisms at this stage could gen-

uinely influence the software’s eventual

design. Experience had shown that soft-

ware mock-ups, particularly if very slick,

give the impression that a working program

is already available. This discourages par-

ticipants from asking for changes and can

even distract them into asking how they can

get hold of this apparently working program.

On the basis of our studies’ results, we

built a software mock-up of the user interface

(with a dummy joke generator) and tested it

for usability with suitable users. Teachers

and therapists again gave their advice.

In parallel with this, we designed and

implemented the joke-generating back end.

This incorporated a wide variety of facili-

ties for manipulating words and joke struc-

tures, but our studies with users and experts

suggested that this particular user group

needed only a subset of these.

How the system works
You can view the STANDUP program as

having two relatively separate major parts:

the front end, which embodies the user inter-

face and controls any user options, and the

back end, which manages the lexical data-

base and generates the jokes.

The user interface displays three main

areas: the general navigation bar, the joke-

selection menu, and the progress chart (see

figure 3). The navigation bar is a standard

set of buttons for going back, forward, exit-

ing, and so on. The joke-selection menu

consists of large labeled buttons through

MARCH/APRIL 2006 www.computer.org/intelligent 67

The program provides an interactive

user interface, specially designed

for children with limited motor

skills, through which a child can

create simple jokes by selecting

words or topics.



which the user controls the joke generator

using a standard mouse, a touch screen, or

a single-switch scanning interface (rou-

tinely adopted for those with limited motor

skills). The progress chart shows where the

user is in creating or finding a joke, using

the metaphor of a bus journey along a sim-

ple road network, with stops such as “Word

Shop” and “Joke Factory.”

The back end (see figure 4) contains

several components: a set of schemas, a set

of description rules, a set of text templates,

and a dictionary. The schemas define the

linguistic patterns underlying punning rid-

dles. For example, a schema might repre-

sent information such as

Find items X, Y in the dictionary such

that X is a noun or adjective, Y is a noun,

and X and Y sound the same.

This describes the central relationships in

an example like the current/currant joke

shown earlier.

The schema contains information that

mainly constrains the ingredients of the

riddle’s answer, because that’s where the

pun occurs in all the types of riddle we’ve

used. Once the system finds suitable items

to match a schema, it passes these dictionary

entries on to the description rules, which flesh

out the descriptive phrases needed for the

question. For example, starting from “rude”

and “guest,” it might try to find a way to

build a phrase describing or meaning the

same as “rude guest,” such as “unmannered

visitor,” or it might select two items that

can be “crossed” to produce “rude guest,”

such as “boor” and “visitor.”

For the third stage, text templates contain

canned strings such as “What do you get

when you cross a ... and a …” or “What do

you call a ...” alongside labeled slots into

which the template-handling software slots

the words and phrases provided by the

schemas and the description rules, thus pro-

ducing the final text.

The user can control this process via the

graphical interface by imposing constraints

on answer building (the schema), question

building (the description rules), or both.

For example, the user might specify that

the joke must contain a particular word, be

on a particular topic, or be a particular type

of riddle.

Joke creation depends heavily on the dic-

tionary, which contains information from

numerous sources in a relational database.

We took syntactic categories (such as noun

and verb) and semantic relations (synonymy,

being a subclass of, and so on) from the

public-domain lexicon WordNet,5 which

contains approximately 200,000 entries.

For information about the sound of words,

we used the Unisyn pronunciation dictio-

nary to turn a word or phrase’s ordinary

spelling into a standard phonetic notation.

For our final user trials, we attached pic-

tures to as many of the words as possible,

using proprietary symbol sets that two com-

panies involved in creating software aids for

disabled users lent to us. The resulting lexi-

cal database of around 130,000 entries con-

tains several tables, each representing one

important relationship (such as between a

word and its pronunciation or a word and its

synonyms). In this way, we were able to im-

plement dictionary searches as SQL database

queries.

68 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

Figure 3. The STANDUP user interface.

Choose
appropriate items

for question

Choose related
items for answer

User constraints

Insert
items into textual

forms

Riddle

Dictionary

Schemas

Description rules

Text templates

Figure 4. The structure of the STANDUP back end.



Although the joke-generation ideas are

relatively simple and have already been

tested in principle in the JAPE project,

designing and implementing a large-scale,

efficient, robust, easily usable system

involved considerable work. We tried to make

our designs as general as possible and to auto-

mate as much of the dictionary creation as

possible, so that it should be relatively easy

to create revised versions of the dictionary

(for example, from a new version of Word-

Net). We also hope to make the lexical data-

base available to other projects.

How will children use it?
We’re about to start our final evaluations

of the full system with users. This will involve

visiting schools in the surrounding area, both

special-needs establishments and mainstream

schools. There we shall see how children—

both with and without language-impairing

disabilities—use the system. Beforehand,

we’ll assess certain aspects of each child’s

literacy to give us a context for interpreting

what we observe. The time available to us

(a few months) isn’t sufficient for a long-

term study of the software’s effects. How-

ever, we’ll carry out some tests at the end

of a child’s exploration of the system to

see if the sessions have been beneficial in

any way.

This project is very much an exploration

of possibilities, and we don’t know what

we’ll find out. However, we hope that the

work will help move computational humor

from tentative research to practical applica-

tions. In particular, a software language

playground like this could well be of wider

use in educational settings.

Acknowledgments

Grants GR/S15402/01 and GR/R83217/01
from the UK’s Engineering and Physical Sci-
ences Research Council supported this work.
We’re grateful to Widgit Software and Mayer-
Johnson LLC for their help.

References

1. G. Ritchie, The Linguistic Analysis of Jokes,
Routledge, 2004.

2. K. Binsted, H. Pain, and G. Ritchie, “Chil-
dren’s Evaluation of Computer-Generated
Punning Riddles,” Pragmatics and Cognition,
vol. 5, no. 2, 1997, pp. 309–358.

3. R. Manurung et al., “Facilitating User Feed-
back in the Design of a Novel Joke Genera-
tion System for People with Severe Commu-
nication Impairment,” Proc. 11th Int’l Conf.

Human-Computer Interaction (HCI 05), CD-
ROM, Lawrence Erlbaum, 2005.

4. D. O’Mara et al., “The Role of Assisted Com-
municators as Domain Experts in Early Soft-
ware Design,” Proc. 11th Biennial Conf. Int’l

Soc. for Augmentative and Alternative Com-

munication, CD-ROM, ISAAC, 2004.

5. C. Fellbaum, WordNet: An Electronic Lexical

Database, MIT Press, 1998.

For more information on this or any other com-
puting topic, please visit our Digital Library at
www.computer.org/publications/dlib. 

MARCH/APRIL 2006 www.computer.org/intelligent 69

Kim Binsted is an
assistant professor in
Information and Com-
puter Sciences at the
University of Hawaii.
Contact her at binsted@
hawaii.edu.

Benjamin Bergen is
an assistant professor
in the Linguistics
Department at the
University of Hawaii,
Manoa, where he
heads the Language
and Cognition Labo-
ratory. Contact him at
bergen@hawaii.edu.

Seana Coulson is an
associate professor in
the Cognitive Science
Department at the Uni-
versity of California,
San Diego, where she
heads the Brain and
Cognition Laboratory.
Contact her at coulson@
cogsci.ucsd.edu.

Anton Nijholt is a
professor and chair of
human-media interac-
tion in the University
of Twente’s Depart-
ment of Computer
Science. Contact him at
anijholt@cs.utwente.nl.

Oliviero Stock is a
senior fellow at and
former director of
ITC-irst (Center for
Scientific and Techno-
logical Research).
Contact him at
stock@itc.it.

Carlo Strapparava is
a senior researcher at
ITC-irst in the Commu-
nication and Technolo-
gies Division. Contact
him at strappa@itc.it.

Graeme Ritchie is a
senior research fellow 
in the University of
Aberdeen’s Department
of Computing Science.
Contact him at gritchie@
csd.abdn.ac.uk.

Ruli Manurung is a
research fellow in the
University of Edin-
burgh’s School of Infor-
matics. Contact him at
ruli.manurung@ed.ac.uk.

Helen Pain is a senior
lecturer in the Univer-
sity of Edinburgh’s
School of Informatics.
Contact her at h.pain@
ed.ac.uk.

Annalu Waller is a
lecturer in the Univer-
sity of Dundee’s Divi-
sion of Applied Com-
puting. Contact her at
awaller@computing.
dundee.ac.uk.

Dave O’Mara is a post-
doctoral research assis-
tant in the University of
Dundee’s Division of
Applied Computing.
Contact him at domara@
computing.dundee.ac.uk.


