
A Brief Tutorial for Using EviCheck

Mohamed Nassim Seghir

University of Edinburgh

Abstract. EviCheck is a tool for the verification, certification and gen-
eration of lightweight fine-grained policies for Android. In this tutorial
we try to cover the different aspects of EviCheck with illustrative exam-
ples and commands that can be directly used as they are to reproduce
some experiments.

1 Obtaining EviCheck

EviCheck can be downloaded here:

http://homepages.inf.ed.ac.uk/mseghir/EviCheck

Instructions on the installation and usage are included in file README that
comes with. All the examples used in this tutorial are provided with EviCheck,
so if you are in EviCheck’s main directory you can test any command shown
here by a simple copy and paste.

2 Verification, Certification and Digital Evidence

Let us consider as a running example the audio recording app Recorder whose
code snippets and the associated graphical interface are illustrated in Figure 1.
The access to the recording device is carried out via object recorder (line 2). At
the creation phase (onCreate), a callback for a click event is associated with the
button Start (line 5). Within the callback onClick, the method startRecording is
invoked (line 24) which in turns calls recorder.setAudioSource and recorder.start

to set the (on-device) microphone as a source and trigger the recording process.
This app requires the permission record audio which is associated with the
API method setAudioSource.

2.1 Verification

We consider the policy recorder.pol composed of the single rule:

EVICHECK ENTRY POINT ∼EVICHECK ONCLICK HANDLER : ∼RECORD AUDIO

such that ∼ represents the negation operator. To verify if the policy is respected
by the app, we call EviCheck as follows:

1 public c lass Recorder extends Act iv i ty {
2 private MediaRecorder r e co rde r = null ;
3
4 public void onCreate (. . . .) {
5 ((Button) findViewById (Star t))
6 . s e tOnCl i ckL i s t ener (s t a r tC l i c k) ;
7
8 // s t a r t R e c o r d i n g () ;
9 }

10
11 private void s tar tRecord ing () {
12 r eco rde r = new MediaRecorder () ;
13 r e co rde r . setAudioSource
14 (MediaRecorder . AudioSource .MIC) ;
15 r e co rde r . setOutputFi le (/∗ f i l e name ∗/) ;
16
17 r e co rde r . s t a r t () ;
18 }
19
20 private View . OnCl ickListener s t a r tC l i c k
21 = new View . OnCl ickListener () {
22 public void onClick (View v) {
23
24 s tar tRecord ing () ;
25 }} ;
26
27 }

Fig. 1. Code snippets and graphical interface of the Recorder app

python2.7 EviCheck.py -f examples/apps/Recorder.apk -g

-p examples/policies/recorder.pol -t recorder.cert -m

The option -f is for the APK file to be analysed, -g means certificate generation
(verification) mode, -p is followed by the policy file, -t is for the certificate which
is stored in file recorder.cert and -m tells EviCheck to use the API-to-permissions
map as initial map. The user has also the option to provide his own initial map
using the option -i. As a result, EviCheck returns:

Policy valid!

============================

APK file: example app/Recorder.apk

Analysis time: 0.00019907951355

Policy checking time: 0.000382900238037

Number of rules: 1

Number of valid rules: 1

Number of violated rules: 0

Number of methods: 73

============================

Which indicates that the policy is valid, followed by some additional information.

2.2 Certification

Let us now try to check the validity of the generated certificate. This is done as
follows:

python2.7 EviCheck.py -f examples/apps/Recorder.apk -c

-p examples/policies/recorder.pol -t recorder.cert -m

As you can see, this time we use -c instead of -g to indicate that we are in the
certificate checking mode. Hence the certificate is read from the file recorder.cert.
As a result we obtain:

Certificate valid!

Policy valid!

============================

APK file: example app/Recorder.apk

Analysis time: 0.000128030776978

Policy checking time: 0.000263214111328

Number of rules: 1

Number of valid rules: 1

Number of violated rules: 0

Number of methods: 73

============================

Meaning that both the certificate and the policy are valid.

2.3 Tempering with the certificate

Let us have a look inside the certificate (recorder.cert), for the sake of the pre-
sentation we omit the prefixes representing package names.

....

File-><init>(Ljava/lang/String; Ljava/lang/String;)V:

Recorder->startRecording()V: RECORD AUDIO

Toast->show()V:

Recorder->stopRecording()V:

Recorder->getString(I)Ljava/lang/String:

....

As we can see, the permission RECORD AUDIO is associated with method startRecord-

ing. Let us try to trick EviCheck by removing RECORD AUDIO from that entry.
If we check the certificate now, we obtain

Invalid certificate!

Problem located in method: Recorder->startRecording()V

So EviCheck is able to detect that the certificate is corrupted and gives the
location of the inconsistency. Let us try another trick by removing the entire
entry. EviCheck answers:

Invalid certificate!

Entry: Recorder->startRecording()V is not present

So it is also able to distinguish this case.

2.4 Tempering with the app

Let u consider the new app Recorder bad corresponding to the previous example
Figure 1 where line 8 is uncommented. We call EviCheck with the verification
option (-g):

python2.7 EviCheck.py -f examples/apps/Recorder bad.apk -g

-p examples/policies/recorder.pol -t recorder.cert -m

and we obtain:

Rule 1 ==> ∼EVICHECK ONCLICK HANDLER EVICHECK ENTRY POINT : ∼RECORD AUDIO

Policy violated!

Tag RECORD AUDIO is in Recorder->onCreate(Landroid/os/Bundle;)V

Here EviCheck points to the violated rule and the cause of its violation, which is
the presence of the tag (permission) RECORD AUDIO in the entry corresponding
to the method onCreate which represents an entry point.

3 Policy Generation

In what follows we will show how to generate anti-malware policies using EviCheck.
This requires a training set of malware and benign applications whose pecifica-
tions will be extracted.

3.1 Specification extraction

A specification is a summary of the usage of different permissions in various
contexts within an app. They somehow represent a condensed (compressed) form
of the generated certificate. For illustration, we consider again the app Recorder

and we call EviCheck as follows:

python2.7 EviCheck.py -f examples/apps/Recorder.apk -g -m -r recorder.spec

The option -r indicates that the specification of the app must be generated and
stored in the file recorder.spec which looks like:

//--

//--------------------- examples/apps/Recorder.apk

//--

EVICHECK ACTIVITY METHOD : RECORD AUDIO

EVICHECK ONCREATE METHOD :

EVICHECK ONCLICK HANDLER : RECORD AUDIO

The specification simply says that the permission RECORD AUDIO is used in a
click handler and in an activity.

3.2 Inferring a policy

As mentioned previously, to infer a policy we require a training set of benign
and malware applications. The goal is to find a policy under which a maxi-
mum of malware is excluded and a maximum of benign applications is allowed.
We formulate this as an optimisation problem and use the SMT solver Z3 as
back-end to solve it. For this, EviCheck takes as input two files containing a
batch of specifications, one for benign apps and the other one for malware. We
consider the two files representing the training set we got from McAfee and
Drebin 1, 1000 malware and 1000 benign. The two files are spec perm train.ben

and spec perm train.mal for benign and malware respectively. We call EviCheck
as follows:

python2.7 EviCheck.py -s examples/specs/train/spec perm train -p policy perm.pol

-z3

Below is a snippet from the generated policy policy perm.pol:

........

EVICHECK PAUSE METHOD : ∼BLUETOOTH

EVICHECK RECEIVER METHOD : ∼SEND SMS

EVICHECK SERVICE METHOD : ∼CHANGE WIFI STATE

EVICHECK START METHOD : ∼BLUETOOTH

EVICHECK DESTROY METHOD : ∼READ LOGS

EVICHECK DO INBACKGROUND : ∼DISABLE KEYGUARD

EVICHECK ONCREATE METHOD : ∼RESTART PACKAGES

EVICHECK DO INBACKGROUND : ∼VIBRATE

EVICHECK ONTOUCH HANDLER : ∼SEND SMS

EVICHECK ONCLICK HANDLER : ∼WRITE HISTORY BOOKMARKS

EVICHECK ONCLICK HANDLER : ∼READ LOGS

EVICHECK ONCLICK HANDLER : ∼SEND SMS

EVICHECK ACTIVITY METHOD : ∼WRITE HISTORY BOOKMARKS

EVICHECK RECEIVER METHOD : ∼ACCESS COARSE LOCATION

EVICHECK ONCREATE METHOD : ∼SEND SMS

EVICHECK SERVICE METHOD : ∼READ LOGS

EVICHECK SERVICE METHOD : ∼READ SMS

EVICHECK ONTOUCH HANDLER : ∼BLUETOOTH

EVICHECK SERVICE METHOD : ∼CHANGE WIFI MULTICAST STATE

EVICHECK ONCLICK HANDLER : ∼ACCESS COARSE LOCATION

EVICHECK RESTART METHOD : ∼VIBRATE

EVICHECK ACTIVITY METHOD : ∼EXPAND STATUS BAR

EVICHECK ONCREATE METHOD : ∼USE CREDENTIALS

.......

1 http://user.informatik.uni-goettingen.de/ darp/drebin/

The batch files for our training set as well as the inferred policy are provided
with EviCheck.

3.3 Testing the policy

We also provide two testing sets (benign and malware) as batch files, namely
spec perm test.ben and spec perm test.mal. If we want to test the policy on the
set of malware, we use the command below with option option -ts for testing:

python2.7 EviCheck.py -s examples/specs/test/spec perm mal.ben

-p examples/policies/policy perm.pol -z3 -ts

We obtain:
Policy violated by 889 apps from 1000

3.4 API-base Policies

We can also infer policies which use APIs instead of permissions. For this,
we are providing two training sets (batch files) of API-based specs which are
spec api train.ben and spec api train.mal. To generate the policy, we use the op-
tion -api in the command below:

python2.7 EviCheck.py -s examples/specs/train/spec api train

-p examples/policies/policy api.pol -z3 -api

We also have two testing batch files, spec api test.ben and spec api test.mal,
of API-based specs generated from the same sets of apps used to generate
permission-based specs. For example, to test the policy policy api.pol on the
set of malware we use the command:

python2.7 EviCheck.py -s examples/specs/test/spec api test.mal

-p examples/policies/policy api.pol -z3 -api -ts

We obtain:
Policy violated by 828 apps from 1000

3.5 Malware detection and explanation

We consider two malware families: FakeInstaller and Plankton. During the veri-
fication of most of the instances of FakeInstaller with respect to the permission-
based policy, we obtain

Policy violated!

Rule 1 ==> EVICHECK RECEIVER METHOD : ∼SEND SMS

Tag SEND SMS is in Checker->onReceive(Landroid/content/Context; ...)V

Rule 13 ==> EVICHECK ACTIVITY METHOD : ∼SEND SMS

Tag SEND SMS is in Main->start()V

Rule 21 ==> EVICHECK ONCLICK HANDLER : ∼SEND SMS

Tag SEND SMS is in Main$1->onClick(Landroid/view/View;)V

We contrast this with descriptions provided by anti-virus companies2:”The user

is forced to click an Agree or Next button, which sends the premium SMS mes-

sages. We have also seen versions that send the messages before the victim clicks

a button”. This is quite in accordance with rules 1, 13 and 21. Hence the policy is
targeting the relevant aspect of the malicious behaviour, thus providing a good
explanation on why the app is bad.

Similarly for the familly Plankton, we have found that among the relevant
rules are: 9 and 17 which respectively correspond to ”forward information to a

remote server” and ”collect or modify the browser’s bookmarks” in the descrip-
tion3.

Policy violated!

Rule 9 ==> EVICHECK SERVICE METHOD : ∼ACCESS WIFI STATE

Tag ACCESS WIFI STATE is in AndroidSDKProvider->i()...

Rule 17 ==> EVICHECK SERVICE METHOD : ∼READ HISTORY BOOKMARKS

Tag READ HISTORY BOOKMARKS is in PushService->onStart(...)V

Rule 22 ==> EVICHECK RECEIVER METHOD : ∼ACCESS FINE LOCATION

Tag ACCESS FINE LOCATION is in AlarmReceiver->onReceive(...)V

2 http://blogs.mcafee.com/mcafee-labs/fakeinstaller-leads-the-attack-on-android-
phones

3 http://www.f-secure.com/v-descs/trojan android plankton.shtml

