Challenge Questions:
Authentication's Weakest Link?

ICCS Seminar
13 February 2009
Mike Just

(joint work with David Aspinall)
Introducing Your Speaker

- Visiting Research Fellow till Sept 2009
 - EPSRC-funded project with David Aspinall
- Former Director of Innovation, and continue to work part-time, remotely for Canadian Government
- Worked in public and private sectors, and academia during past 10 years (focus on Applied Cryptography)
- In 2005, designed the Challenge Question Authentication Solution used by Canadian Government to authenticate approx 3 million citizens and businesses
- PhD, Carleton University, 1998
Outline

- The Scenario
- Challenge Question Research
- Our Research
- Experiments
- Security and Usability Analysis
- What Does it all Mean?
- Further Information
The Scenario (1 of 3)

- What are 'Challenge Questions?'
 - Type of 'authentication credential'
 - Users register Question & Answer
 - To authenticate later, user is posed Question and asked to provide Answer

- 'Something You Have'
 - Access card
 - Smartcard
 - Mobile

- 'Something You Are'
 - Fingerprint
 - Iris/retinal scan
 - Facial scan

- 'Something You Know'
 - Passwords
 - PINs
 - Passphrases

- 'Something You Memorize'

- 'Something You Already Know'
 - Challenge questions
 - Images
The Scenario (2 of 3)

- Common Examples
 - 'What is my Mother's Maiden Name?'
 - 'What was the name of my first pet?'
 - 'What was the name of my primary school?'

- How do Challenge Questions support authentication?
 - The answers to the questions should be known only to the users that registered the questions, similar to how passwords should be uniquely known.
How and why do we use Challenge Questions?

- Almost exclusively as secondary/fallback authentication in case of lost primary credential
- Often driven by desire to avoid costly help-desk calls
- In some cases, 're-registration' is possible, but not always
 - Too expensive or takes too much time
 - Not all sites have a registration phase (that includes user identification with shared secrets)
- So, some form of secondary authentication is desireable
 - Challenge Questions are today's ubiquitous choice
- (And yes, they could be used as a primary credential as well)
What is studied w.r.t. Challenge Questions?

1. Security (Attacker's Point-of-View)
 - How difficult is it to determine the answers to the questions?
 - Demonstration of security often involves quantitative analysis

2. Usability (User's Point-of-View)
 - How easy is it to choose questions?
 - How easy is it to remember the answers?
 - Demonstration of usability often involves qualitative research
What has been studied w.r.t. Challenge Questions?

- Early '90s usability studies referred to 'word pairs,' and 'associative' or 'cognitive passwords'
- Focused on facts, opinions or interests. Studies [Haga et al.] suggested facts were easier to recall, but more easily guessable by friends or family
- Early '00 analysis focused on tolerating users either forgetting or mistyping answers with secret sharing and error correction [Ellison et al., Frykholm et al.]
- Recent work [Rabkin, Jakobsson et al.] has focused directly on the insecurity of administratively-chosen challenge questions, and on specific questions ('Mother's Maiden Name')
- Jakobsson et al. have published a novel solution based upon user preferences (binary), though more usability study is needed
And while other forms of authentication have received more study, not all is transferable

- 'Known' information risk is difficult to quantify

- A systematic analysis of the security and usability of challenge questions is lacking

- Basic facts regarding Challenge Questions aren't known
Our Research (1 of 2)

- Our goals are to answer the following:
 - Do users choose secure questions?
 - Do users choose memorable answers?
 - Can we lead *realistic* yet *ethical* authentication experiments?

Investigation of security and usability of user-chosen challenge questions
Our Research (2 of 2)

- Lead(ing) three experiments
 - HCI class – Oct/Nov 2008
 - Computer Security class – Jan/Feb 2009
 - Biology class – Jan/Feb 2009
- 170 participants submitted 500 questions
- The remaining slides review our preliminary results
Collecting authentication data can be tricky

- Users are consistently told to not reveal their authentication information
- For our analysis, we'd like to see this information
- Ethically, we could ask for their information
- But will users give use 'real' information?

Our solution

- Pen-and-paper experiments where participants retain their authentication credentials
- Participant self-assessments
Experiments (2 of 3)

Stage 1

Participant

Questions

Answers

Stage 2

Questions

Answers

MATCH?

Usability Analysis

Experiment

Security Analysis

Version 1 – Pen-and-Paper Only

Version 2 – Online & Pen-and-Paper
Experiments (3 of 3)

- Participants use of 'real' Questions and Answers
 - We asked if participants would use same Questions and Answers in real applications (e.g. Banking)
 - Of the respondents (92%) indicating that they would likely reuse their questions, 61% indicated some influence from not submitting their answers

- Participants and personal privacy
 - We asked participants if they would be concerned if their friends or family members knew their Questions and Answers
 - More than two-thirds of the questions raised 'no concern' at all for participants with < 10% meriting strong concern
Security Analysis (1 of 7)

- Existing security analysis of Challenge Questions is limited, and extremely ad hoc
- There are no clear guidelines for choosing 'good' questions and answers
- We're attempting to follow a more systematic approach that will either
 - Provide some guidance for secure design, or
 - Recommend abandonment of the concept
Security Analysis (2 of 7)

<table>
<thead>
<tr>
<th>Attack Methods</th>
<th>Information Available to Attacker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blind Guess</td>
<td>Attacker knows the answer alphabet and probability distribution of the answer characters.</td>
</tr>
<tr>
<td>Focused Guess</td>
<td>Attacker also knows (or can guess) valid user identifiers and determine the challenge questions. From the questions the attacker can determine a set of possible answers and their probability distribution.</td>
</tr>
<tr>
<td>Site-Specific Guess</td>
<td>Attacker can also infer additional information about the user, including gender, age range, interests, place of residence, based upon the site at which the questions and answers were registered.</td>
</tr>
<tr>
<td>Personalized Guess</td>
<td>Attacker can also determine information specific to a targeted user.</td>
</tr>
</tbody>
</table>
Blind Guess

- Based upon our preliminary experiment results the average answer length is 7.95 characters.
- Unlike passwords, the alphabet for answers is just 26 lowercase letters (plus 10 digits in some cases).
- With uniformly distributed answers, we have entropy (uncertainty) of $4.7 \times 8 = 37.6$ bits for 8-character answer.
- According to Shannon, for answers from English lang. we can reduce to $2.3 \times 8 = 18.4$ bits of uncertainty (approximately 350,000 answers).
- For comparison, a uniformly chosen password (upper and lowercase, numbers) has approx. $6 \times 8 = 48$ bits of uncertainty.
Blind Guess (cont'd)

- Use of a single question seems to provide insufficient protection against the simplest attack (Blind Guess)
- Conclusion: Without knowledge of the questions, or personal details, attacks will succeed
- Why? It's a numbers game.
- For a targeted attack (online), some attackers will succeed
- For a random attack (online), some accounts will be compromised
- For an offline attack, all attackers would succeed
Security Analysis (5 of 7)

- **Focused Guess**
 - Knowing question gives further reduction in uncertainty (and questions are effectively public)
 - E.g. "What was my first pet's name?" (http://www.babynames.com/Names/Pets/ gives the top 200 names for dogs & cats)
 - Most questions suggest a small target answer space (see Table)
 - Some questions simply suggest very low entropy answers, e.g. "What religion is my father?", "Favourite colour?"

<table>
<thead>
<tr>
<th>Answer</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proper Name</td>
<td>45%</td>
</tr>
<tr>
<td>Place</td>
<td>22%</td>
</tr>
<tr>
<td>Name</td>
<td>15%</td>
</tr>
<tr>
<td>Number</td>
<td>6%</td>
</tr>
<tr>
<td>Time/Date</td>
<td>4%</td>
</tr>
<tr>
<td>Ambiguous</td>
<td>8%</td>
</tr>
</tbody>
</table>
Security Analysis (6 of 7)

- **Site-Specific Guess**
 - Dependent upon the site, one can sometimes learn the likely gender, age range, interests, place of residence of users
 - E.g. “First album bought?”, ”Who is my favourite actor?”

- **Personalized Guess**
 - Only necessary once previous attacks have been exhausted
 - E.g., ”Mother's Maiden Name” is often easy to determine from public records
User Perceptions of Security

We asked participants how difficult they believed it would be for (i) strangers, or (ii) friends/family to determine the answers to their questions.

Perceived effort of Stranger to Discover Answers

- Very difficult (47%), Somewhat difficult (42%), Not difficult at all (11%)

Perceived effort of Friend/Family to Discover Answers

- Very difficult (11%), Somewhat difficult (36%), Not difficult at all (53%)
Usability often refers to 'usable interface design'.
For usable authentication, similar principles apply:
- The user should be able to understand and execute their task.
- We're dealing specifically with information.
In this case, we're more concerned with mental capabilities, e.g., processing, memory.
Usability Analysis (2 of 3)

- **Applicability**
 - Users have sufficient information to provide an answer to a question
 - E.g., 'What was my first pet's name?'
 - Relevant to administratively-chosen questions (not user-chosen)

- **Memorability**
 - Users can consistently recall the original answer to a question over time
 - Precise recall, 'blank'

- **Repeatability**
 - Users can consistently and accurately repeat the original answer to a question over time
 - E.g., 'Favourites' change over time, 'Street' versus 'Avenue'
Our initial results suggest some difficulty with perfect recall of answers

- 15% of respondents in our first experiment gave either a completely different, or slightly different answer
- Comments suggest that 'complicated answers' and allowance of free-form answers may be culprit
- Further results indicate high incidences of recall (perhaps due to our participant population - students)
What Does it All Mean? (1 of 3)

- Our preliminary results indicate that relying upon only a single question-answer is insecure.
- Some Candidate Recommendations
 - Require multiple questions at authentication
 - Dynamically assess Questions and Answers at registration
 - Use fixed-form answers (e.g., drop-down menus)
What Does it All Mean? (2 of 3)

- **Next Steps**
 - Third experiment ends tomorrow
 - Complete our security assessment (vs user perception) by aligning to Attack Model

- **Other 'Lessons Learned'**
 - 'Prizes' not necessarily sufficient for participation
 - Require much larger groups for meaningful usability results
What Does it All Mean? (3 of 3)

- Looking ahead ...
 - Study the impact of our recommendations
 - Investigate use of 'more recent' information for authentication (not 'original' answers)
 - More study of Jakobsson's 'preferences' solution
 - Use of images, or image-elicited passwords
Further Information

- Project web site
- Email
 - mike.just@ed.ac.uk