Challenge Question Authentication

25 February 2009
Mike Just
University of Edinburgh

(joint work with David Aspinall)
Introducing Your Speaker

- Visiting Research Fellow till Sept 2009
 - EPSRC-funded project with David Aspinall
- Former Director of Innovation, and continue to work part-time, remotely for Canadian Government
- Worked in public and private sectors, and academia during past 10 years (focus on Applied Cryptography)
- In 2005, designed the Challenge Question Authentication Solution used by Canadian Government to authenticate approx 3 million citizens and businesses
- PhD, Carleton University, 1998
Outline of this Talk

- The Scenario
- Challenge Question Research
- Our Research
- Experiments
- Security and Usability Analysis
- What Does it all Mean?
- Further Information
The Scenario (1 of 3)

- What are 'Challenge Questions'?
 - Type of 'authentication credential'
 - Users register Question & Answer
 - To authenticate later, user is posed Question and asked to provide Answer

'Something You Have'
- Access card
- Smartcard
- Mobile

'Something You Are'
- Fingerprints
- Iris/retinal scan
- Facial scan

Authentication Credentials

'Something You Memorize'
- Passwords
- PINs
- Passphrases

'Something You Know'
- Challenge questions
- Images

'Something You Already Know'

25 February 2009
Mike Just - University of Edinburgh
Common Examples

- 'What is my Mother's Maiden Name?'
- 'What was the name of my first pet?'
- 'What was the name of my primary school?'

How do Challenge Questions support authentication?

- The answers to the questions should be known only to the users that registered the questions, similar to how passwords should be uniquely known.
The Scenario (3 of 3)

- How and why do we use Challenge Questions?
 - Almost exclusively as secondary/fallback authentication in case of lost primary credential
 - Often driven by desire to avoid costly help-desk calls
 - In some cases, 're-registration' is possible, but not always
 - Too expensive or takes too much time
 - Not all sites have a registration phase (that includes user identification with shared secrets)
 - So, some form of secondary authentication is desireable
 - Challenge Questions are today's ubiquitous choice
 - (And yes, they could be used as a primary credential as well)
What is studied w.r.t. Challenge Questions?

1. Security (Attacker's Point-of-View)
 - How difficult is it to determine the answers to the questions?
 - Demonstration of security often involves quantitative analysis

2. Usability (User's Point-of-View)
 - How easy is it to choose questions?
 - How easy is it to remember the answers?
 - Demonstration of usability often involves qualitative research
What has been studied w.r.t. Challenge Questions?

- Early '90s usability studies referred to 'word pairs,' and 'associative' or 'cognitive passwords'
- Focused on facts, opinions or interests. Studies [Haga et al.] suggested facts were easier to recall, but more easily guessable by friends or family
- Early '00 analysis focused on tolerating users forgetting or mis-typing answers with secret sharing [Ellison et al., Frykholm et al.]
- Recent work [Rabkin, Jakobsson et al.] has focused directly on the insecurity of administratively-chosen challenge questions, and on specific questions ('Mother's Maiden Name')
- Jakobsson et al. have published a novel solution based upon user preferences (binary), though more study is needed
And while other forms of authentication have received more study, not all is transferable
- 'Known' information risk is difficult to quantify
- A systematic analysis of the security and usability of challenge questions is lacking
- Basic facts regarding Challenge Questions aren't known
Our Research (1 of 2)

- Our goals are to answer the following:
 - Do users choose secure questions?
 - Do users choose memorable answers?
 - Can we lead *realistic* yet *ethical* authentication experiments?
- Investigation of security and usability of user-chosen challenge questions
Our Research (2 of 2)

- Lead three experiments with classes at the University of Edinburgh
 - Human Computer Interaction (HCI) class (Oct/Nov 2008)
 - Computer Security class (Jan/Feb 2009)
 - Biology class (Jan/Feb 2009)
- 170 participants submitted 500 questions
- The remaining slides review our preliminary results
Experiments (1 of 3)

- Collecting authentication data can be tricky
 - Users are consistently told to not reveal their authentication information
 - For our analysis, we'd like to see this information
 - Ethically, we could ask for their information
 - But will users give us 'real' information?

- Our solution
 - Pen-and-paper experiments where participants retain their authentication credentials
 - Participant self-assessments
Experiments (2 of 3)

Stage 1

Participant

Questions

Answers

Match?

Usability Analysis

Stage 2

Questions

Answers

Version 1 – Pen-and-Paper Only

Version 2 – Online & Pen-and-Paper

Experiment

Security Analysis
Participants use of 'real' Questions and Answers

- We asked if participants would use same Questions and Answers in real applications (e.g. Banking)
- Of the respondents (92%) indicating that they would likely reuse their questions, 61% indicated some influence from not submitting their answers

Participants and personal privacy

- We asked participants if they would be concerned if their friends or family members knew their Questions and Answers
- More than two-thirds of the questions raised 'no concern' at all for participants with < 10% meriting strong concern
Existing security analysis of Challenge Questions is limited, and extremely ad hoc.

There are no clear guidelines for choosing 'good' questions and answers.

We're attempting to follow a more systematic approach that will either

- Provide some guidance for secure design, or
- Recommend abandonment of the concept.
Security Analysis (2 of 7)

- Blind Guess
 - Answer alphabet, distribution
 - Common answer sets

- Focused Guess
 - Questions
 - Distribution of likely answers

- Observation
 - Likely user 'peer groups'
 - Personal information about user

- Personalized Guess
 - Increasing Information for Attacker
Blind Guess

- Based upon our preliminary experiment results the average answer length is 7.95 characters
- Unlike passwords, the alphabet for answers is just 26 lowercase letters (plus 10 digits in some cases)
- With uniformly distributed answers, we have entropy (uncertainty) of $4.7 \times 8 = 37.6$ bits for 8-character answer
- According to Shannon, for answers from English language we can reduce to $2.3 \times 8 = 18.4$ bits of uncertainty (approximately 350,000 answers)
- For comparison, a uniformly chosen password (upper and lowercase, numbers) has approx. $6 \times 8 = 48$ bits of uncertainty
Blind Guess (cont'd)

- Use of a single question seems to provide insufficient protection against the simplest attack (Blind Guess)
- Conclusion: Without knowledge of the questions, or personal details, attacks will succeed
- Why? It's a numbers game.
- For a targeted attack (online), some attackers will succeed
- For a random attack (online), some accounts will be compromised
- For an offline attack, all attackers would succeed
Focused Guess

- Knowing question gives further reduction in uncertainty (and questions are effectively public)
- E.g. "What was my first pet's name? (http://www.babynames.com/Names/Pets/ gives the top 200 names for dogs & cats)
- Most questions suggest a small target answer space (see Tables)
- Some questions simply suggest very low entropy answers, e.g. "What religion is my father?", "Favourite colour?"

<table>
<thead>
<tr>
<th>Q Type</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proper Name</td>
<td>50%</td>
</tr>
<tr>
<td>Place</td>
<td>20%</td>
</tr>
<tr>
<td>Name</td>
<td>18%</td>
</tr>
<tr>
<td>Number</td>
<td>3%</td>
</tr>
<tr>
<td>Time/Date</td>
<td>3%</td>
</tr>
<tr>
<td>Ambiguous</td>
<td>6%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proper Name</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last Name</td>
<td>48%</td>
</tr>
<tr>
<td>First Name</td>
<td>12%</td>
</tr>
<tr>
<td>First & Last</td>
<td>9%</td>
</tr>
<tr>
<td>Pet Name</td>
<td>30%</td>
</tr>
<tr>
<td>Other</td>
<td>1%</td>
</tr>
</tbody>
</table>
Observations from many sources

- Questions, User Identifier, Web Site, User, Social Networks, Published data, …
- Gender, Age (range), Interests, Opinions, Relations, …

Personalized Guess

- Typically involves more work (observation), but can contribute to a much-reduced number of guesses
- E.g., "Mother's Maiden Name" is often easy to determine from public records
User Perceptions of Security

We asked participants how difficult they believed it would be for (i) strangers, or (ii) friends/family to determine the answers to their questions.

Perceived effort of Stranger to Discover Answers

- Very difficult (47%), Somewhat difficult (42%), Not difficult at all (11%)

Perceived effort of Friend/Family to Discover Answers

- Very difficult (11%), Somewhat difficult (36%), Not difficult at all (53%)
Usability Analysis (1 of 3)

- Usability often refers to 'usable interface design'
- For usable authentication, similar principles apply
 - The user should be able to understand and execute their task
 - We're dealing specifically with information
- In this case, we're more concerned with mental capabilities, e.g., processing, memory
Usability Analysis (2 of 3)

- **Applicability**
 - Users have sufficient information to provide an answer to a question
 - E.g., 'What was my first pet's name?'
 - Relevant to administratively-chosen questions (not user-chosen)

- **Memorability**
 - Users can consistently recall the original answer to a question over time
 - Precise recall, 'blank'

- **Repeatability**
 - Users can consistently and accurately repeat the original answer to a question over time
 - E.g., 'Favourites' change over time, 'Street' versus 'Avenue'
Our initial results suggest some difficulty with perfect recall of answers

- 15% of respondents in our first experiment gave either a completely different, or slightly different answer
- Comments suggest that 'complicated answers' and allowance of free-form answers may be culprit
- Further results indicate high incidences of recall (perhaps due to our participant population - students)
What Does it All Mean? (1 of 2)

- Our preliminary results indicate that relying upon only a single question-answer is insecure.
- Some Candidate Recommendations
 - Require multiple questions at authentication
 - Dynamically assess Questions and Answers at registration
 - Use fixed-form answers (e.g., drop-down menus)
Next Steps

- Complete our security assessment, aligned to Attack Model
- Study the impact of our recommendations
- Investigate use of 'more recent' information for authentication (not 'original' answers)
- More study of Jakobsson's 'preferences' solution
- Use of image, rather than textual, information

Other 'Lessons Learned'

- 'Prizes' not necessarily sufficient for participation
- Require much larger groups for meaningful usability results
Further Information

- Project web site
 - Includes some recent publications
- Email
 - mike.just@ed.ac.uk