
Issues in Safety Assurance

Martyn Thomas
martyn@thomas-associates.co.uk

SafeComp 2003

Summary

I want you to agree that:

• Safety Integrity Levels are harmful to safety
and should be abandoned.

• We must urgently design a new basis for
developing and assuring/certifying
software-based safety systems.

SafeComp 2003

Safety-Related Systems

Computer-based safety-related systems (safety
systems):

• sensors, actuators, control logic, protection logic,
humans …

• typically, perhaps, a few million transistors and
some hundreds of kilobytes of program code and
data. And some people.

• Complex.

• Human error is affected by system design. The
humans are part of the system.

SafeComp 2003

Why systems fail:
some combination of …

• inadequate specifications

• hardware or software design error

• hardware component breakdown (eg thermal stress)

• deliberate or accidental external interference (eg vandalism)

• deliberate or accidental errors in fixed data (eg wrong units)

• accidental errors in variable data (eg pilot error in selecting
angle of descent, rather than rate)

• deliberate errors in variable data (eg spoofed movement
authority)

• human error (eg shutting down the wrong engine)

• …... others?

SafeComp 2003

Safety Assurance

Safety Assurance should be about achieving justified
confidence that the frequency of accidents will be
acceptable.

• Not about satisfying standards or contracts

• Not about meeting specifications

• Not about subsystems

… but about whole systems and the probability that
they will cause injury

So ALL these classes of failure are our responsibility.

SafeComp 2003

Failure and meeting specifications

A system failure occurs when the delivered
service deviates from fulfilling the system
function, the latter being what the system is aimed
at. (J.C Laprie, 1995)

The phrase “what the system is aimed at” is a means of
avoiding reference to a system “specification” - since it is
not unusual for a system’s lack of dependability to be due
to inadequacies in its documented specification.

(B Randell, Turing Lecture 2000)

SafeComp 2003

The scope of a safety system:

The developers of a safety system should be
accountable for all possible failures of the

physical system it controls or protects, other
than those explicitly excluded by the agreed

specification.

SafeComp 2003

Estimating failure probability
from various causes

û Inadequate specifications

û hardware or software design error

ü hardware component breakdown (component data)

û deliberate or accidental external interference

û deliberate or accidental errors in fixed data

ü accidental errors in variable data/human error (HCI testing
and psychological data)

û deliberate errors in variable data

è System failure probabilities cannot usually be determined
from consideration of these factors.

SafeComp 2003

Assessing whole systems

In principle, a system can be monitored under typical
operational conditions for long enough to determine any
required probability of unsafe failure, from any cause, with
any required level of confidence.

In practice, this is rarely attempted. Even heroic amounts of
testing are unlikely to demonstrate better than 10-4/ hr at 99%.

So what are we doing requiring 10-8/hr (and claiming to have
evidence that it has been achieved?).

I believe that we need to stop requiring/making such claims.

… so let’s look at SILs

SafeComp 2003

Safety Integrity Levels
Low Demand: < 1/yr AND < 2* proof-test freq.

 Safety integrity
level

 Low demand mode of operation
 (Average probability of failure to perform its design

function on demand)
 4 ≥ 10-5 to < 10-4

 3 ≥ 10-4 to < 10-3

 2 ≥ 10-3 to < 10-2

 1 ≥ 10-2 to < 10-1

Proof testing is generally infeasible for software functions.

Why should a rarely-used function, frequently re-tested
exhaustively, and only needing 10-5 pfd, have the same SIL as a
constantly challenged, never tested exhaustively, 10-9pfh
function? Low demand mode should be dropped for software.

IEC
61508

SafeComp 2003

Safety Integrity Levels
High demand

 Safety integrity
level

 High demand or continuous mode of operation
 (Probability of a dangerous failure per hour)

 4 ≥ 10-9 to < 10-8

 3 ≥ 10-8 to < 10-7

 2 ≥ 10-7 to < 10-6

 1 ≥ 10-6 to < 10-5

Even SIL 1 is beyond reasonable assurance by testing.

IEC 61508 recognises the difficulties for assurance, but has
chosen to work within current approaches by regulators and
industry.

What sense does it make to attempt to distinguish single factors of
10 in this way? Do we really know so much about the effect of
different development methods on product failure rates?

IEC
61508

SafeComp 2003

How do SILs affect software?

• SILs are used to recommend software
development (including assurance) methods
– stronger methods more highly recommended at

higher SILs than at lower SILs

• This implies
– the recommended methods lead to fewer failures

– their cost cannot be justified at lower SILs

Are these assumptions true?

SafeComp 2003

(1) SILs and code anomalies
(source: German & Mooney, Proc 9th SCS Symposium, Bristol 2001)

• Static analysis of avionics code:
– software developed to levels A or B of DO-178b

– software written in C, Lucol, Ada and SPARK

– residual anomaly rates ranged from

• 1 defect in 6 to 60 lines of C

• 1 defect in 250 lines of SPARK

– 1% of anomalies judged to have safety implications

– no significant difference between levels A & B.

• Higher SIL practices did not affect the
defect rates.

SafeComp 2003

Safety anomalies found by static
analysis in DO 178B level A/B code:
• Erroneous signal de-activation.

• Data not sent or lost

• Inadequate defensive programming with respected
to untrusted input data

• Warnings not sent

• Display of misleading data

• Stale values inconsistently treated

• Undefined array, local data and output parameters

SafeComp 2003

-Incorrect data message formats
-Ambiguous variable process update
-Incorrect initialisation of variables
-Inadequate RAM test
-Indefinite timeouts after test failure
-RAM corruption
-Timing issues - systems runs backwards
-Process does not disengage when required
-Switches not operated when required
-System does not close down after failure
-Safety check not conducted within a suitable time frame
-Use of exception handling and continuous resets
-Invalid aircraft transition states used
-Incorrect aircraft direction data
-Incorrect Magic numbers used
-Reliance on a single bit to prevent erroneous operation

Source: Andy German,
Qinetiq. Personal
communication.

SafeComp 2003

(2) Does strong software
engineering cost more?

• Dijkstra’s observation: avoiding errors
makes software cheaper. (Turing Award lecture, 1972)

• Several projects have shown that very much
lower defect rates can be achieved
alongside cost savings.
– (see http://www.sparkada.com/industrial)

• Strong methods do not have to be reserved
for higher SILs

SafeComp 2003

SILs: Conclusions

• SILs are unhelpful to software developers:
– SIL 1 target failure rates are already beyond practical

verification.

– SILs 1-4 subdivide a problem space where little
distinction is sensible between development and
assurance methods.

– There is little evidence that many recommended methods
reduce failure rates

– There is evidence that the methods that do reduce defect
rates also save money: they should be used at any SIL.

SafeComp 2003

SILs: Conclusions (2)

• SILs set developers impossible targets
– so the focus shifts from achieving adequate

safety to meeting the recommendations of the
standard.

– this is a shift from product properties to process
properties.

– but there is little correlation between process
properties and safety!

• So SILs actually damage safety.

SafeComp 2003

A pragmatic approach to safety

• Revise upwards target failure probabilities
– current targets are rarely achieved (it seems)

but most failures do not cause accidents

– … so current pfh targets are unnecessarily low

– safety cases are damaged because they have to
claim probabilities for which no adequate
evidence can exist - so engineers aim at
satisfying standards instead of improving safety

• We should press for current targets to be
reassessed.

SafeComp 2003

A pragmatic approach to safety (2)

• Require that every safety system has a
formal specification
– this inexpensive step has been shown to resolve

many ambiguities

• Abandon SILs
– the whole idea of SILs is based on the false

assumption that stronger development methods
cost more to deploy. Define a core set of system
properties that must be demonstrated for all
safety systems.

SafeComp 2003

A pragmatic approach to safety (3)

• Require the use of a programming language
that has a formal definition and a static
analysis toolset.
– A computer program is a mathematically

formal object. It is essential that it has a single,
defined meaning and that the absence of major
classes of defects has been demonstrated.

SafeComp 2003

A pragmatic approach to safety (4)

• Safety cases should start from the position
that the only acceptable evidence that a
system meets a safety requirement is an
independently reviewed proof or
statistically valid testing.
– Any compromise from this position should be

explicit, and agreed with major stakeholders.

– This agreement should explicitly allocate
liability if there is a resultant accident.

SafeComp 2003

A pragmatic approach to safety (5)

• If early operational use provides evidence
that contradicts assumptions in the safety
case (for example,if the rate of demands on
a protection system is much higher than
expected), the system should be withdrawn
and re-assessed before being
recommissioned.
– This threat keeps safety-case writers honest.

SafeComp 2003

A pragmatic approach to safety (6)

• Where a system is modified, its whole
safety assessment must be repeated except
to the extent that it can be proved to be
unnecessary.
– Maintenance is likely to be a serious

vulnerability in many systems currently in use.

SafeComp 2003

A pragmatic approach to safety (6)

• COTS components should conform to the
above principles
– Where COTS components are selected without

a formal proof or statistical evidence that they
meet the safety requirements in their new
operational environment, the organisation that
selected the component should have strict
liability for any consequent accident.

– “proven in use” should be withdrawn.

SafeComp 2003

A pragmatic approach to safety (7)

• All safety systems should be warranted free
of defects by the developers.
– The developers need to “keep some skin in the

game”

• Any safety system that could affect the
public should have its development and
operational history maintained in escrow,
for access by independent accident
investigators.

SafeComp 2003

Safety and the Law

• In the UK, the Health & Safety at Work Act’s
ALARP principle creates a legal obligation to
reduce risks as low as reasonably practicable.

• Court definition of reasonably practicable: “the
cost of undertaking the action is not grossly
disproportionate to the benefit gained.”

• In my opinion, my proposals would reduce risks
below current levels and are reasonably
practicable. Are they therefore legally required?

SafeComp 2003

Summary

• Safety Integrity Levels are harmful to safety
and should be abandoned.

• We must urgently design a new basis for
developing and assuring/certifying
software-based safety systems.

Do you agree?

