Efficiently Parallelizing Instruction Set Simulation
of Embedded Multi-Core Processors Using
Region-based Just-in-Time Dynamic Binary Translation

Stephen Kyle Igor Bohm

Bjorn Franke

Hugh Leather ~ Nigel Topham

Institute for Computing Systems Architecture
School of Informatics, University of Edinburgh
Informatics Forum, 10 Crichton Street, Edinburgh, EH8 9AB, United Kingdom

s.kyle@ed.ac.uk, i.bohm@sms.ed.ac.uk, bfranke@inf.ed.ac.uk, hleather@inf.ed.ac.uk, npt@inf.ed.ac.uk

Abstract

Embedded systems, as typified by modern mobile phones, are al-
ready seeing a drive toward using multi-core processors. The num-
ber of cores will likely increase rapidly in the future. Engineers
and researchers need to be able to simulate systems, as they are
expected to be in a few generations time, running simulations of
many-core devices on today’s multi-core machines. These require-
ments place heavy demands on the scalability of simulation en-
gines, the fastest of which have typically evolved from just-in-time
(J1T) dynamic binary translators (DBT).

Existing work aimed at parallelizing DBT simulators has fo-
cused exclusively on trace-based DBT, wherein linear execution
traces or perhaps trees thereof are the units of translation. Region-
based DBT simulators have not received the same attention and re-
quire different techniques than their trace-based cousins.

In this paper we develop an innovative approach to scaling
multi-core, embedded simulation through region-based DBT. We
initially modify the JIT code generator of such a simulator to emit
code that does not depend on a particular thread with its thread-
specific context and is, therefore, thread-agnostic. We then demon-
strate that this thread-agnostic code generation is comparable to
thread-specific code with respect to performance, but also enables
the sharing of JIT-compiled regions between different threads. This
sharing optimisation, in turn, leads to significant performance im-
provements for multi-threaded applications. In fact, our results con-
firm that an average of 76% of all JiT-compiled regions can be
shared between 128 threads in representative, parallel workloads.
We demonstrate that this translates into an overall performance im-
provement by 1.44x on average and up to 2.40x across 12 multi-
threaded benchmarks taken from the SPLASH-2 benchmark suite,
targeting our high-performance multi-core DBT simulator for em-
bedded ARC processors running on a 4-core Intel host machine.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Incremental Compilers, code generation
General Terms Design, experimentation, performance
Keywords Dynamic binary translation, parallelization

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

LCTES’12 12-13 June 2012, Beijing, China.

Copyright © 2012 ACM 978-1-4503-1212-7... $10.00

1. Introduction

Dynamic Binary Translation (DBT) is an efficient technique to
achieve high performance instruction set simulation of one target
architecture on another host architecture with possibly different
instruction sets. Such simulators might be aimed at only functional
simulation as in QEMU[3] or cycle accurate or both[5].

In DBT, a thread is interpreted and frequently executed (hot)
areas of code are identified for JIT compilation and, therefore, na-
tive execution. When a single core is being simulated, storing the
natively translated code sections is straightforward. In the multi-
core case, however, a number of issues arise about how individ-
ual simulator threads will cooperate in the compilation process. If
and how they will share translated code sections, who will be re-
sponsible for performing the translations, and how the costs of any
required synchronisations will be mitigated, are crucial questions
that must be resolved to achieve high performance. This paper ex-
amines the optimal strategies for just such a parallelization of one
of the two forms of DBT simulators. The two forms of DBT com-
pilation are trace-based and region-based, and while some work
has investigated parallelization schemes for trace-based systems,
the same cannot be said for the potentially more powerful region-
based ones. This paper is the first paper to do such an investigation.

The trace-based variants of DBT gather linear traces of basic
blocks from a deemed hot entry point, called the trace head. These
linear traces are sometimes collected into trees, with branches
compiled separately and patched together. Due to the lineariza-
tion of control flow in which basic blocks may be replicated in
many different traces, trace-based systems may suffer from code
explosion[2]. The great advantage of trace-based methods is that
the linearization of control flow makes compilation and data-flow
analysis particularly simple, allowing the compilers to be easy to
write, and to have extremely small footprints. However, the benefit
of complex optimizations working over larger control flow graphs
(CEG) is lost.

On the other hand, region-based systems operate on hot, arbi-
trarily shaped sub-graphs of the CFG. Their compilers are necessar-
ily more complicated and difficult to write, but may yield additional
optimisation opportunities that are unavailable to their trace-based
cousins. The advent of retargetable, reusable JIT systems such as
LLVM, has meant that compiler complexity is no longer detrimen-
tal to the development time of region-based systems. Indeed, even
trace-based systems are being retrofitted with such off the shelf
compilers[5].

In trace-based systems, a number of approaches to sharing
translations and efficient synchronization have been tried. A naive

approach to trace-based JIT compilation would operate on a single,
global trace data structure, which would need to be protected from
concurrent updates using an expensive locking mechanism. This
approach has been taken in e.g. [19]. An alternative approach that
avoids this problem is to maintain thread-private traces [13, 18], i.e.
for each application thread a separate trace data structure is main-
tained. While this approach does not suffer from excessive syn-
chronisation cost, it introduces a new problem. Multiple threads,
especially in data parallel applications, may produce nearly identi-
cal traces that differ only in thread-specific constants and accesses
to thread-private variables. Clearly, this approach increases pres-
sure on the JIT subsystem and does not scale.

In region-based DBT, no work has investigated different meth-
ods to parallelize the simulation environment. The work closest to
ours is not region-based but trace-based. Bruening et al.[6] con-
sidered the benefits of sharing linear traces over keeping private
traces. In their work, the compilation of traces is performed on
the execution thread, rather than asynchronously in the background
as in our case, resulting in progress on that thread stalling during
the compilation. In addition, because their compilation units are
traces, rather than regions, only one linear trace can exist per trace
head. As a consequence, if the next executed tail happens to be non-
representative of the general behaviour of the current thread, or in-
deed the many other threads in the system, that poorly chosen trace
will be forever attached to the trace head for all threads. In contrast,
our system builds up regions of hot basic blocks, potentially with
multiple entry points per region. Each thread individually discov-
ers which regions are important to it and shares identical regions
with other threads. Our system permits threads to have overlapping
regions between threads. In this way, each thread is not penalised
by the occasional poor choices of other threads but benefits from
sharing amongst threads which exhibit the same behaviour.

In this paper, we develop a novel and scalable scheme for
region-based JIT compilation of multi-threaded applications. The
key idea is to extend the thread-private region compilation model
with the capability for sharing of regions between threads. Central
to this idea is the generation of thread-agnostic regions, i.e. regions
that do not contain thread-specific constants or data accesses, but
are generic enough to be executed in the contexts of different
threads. With these two features in place, we demonstrate that
region sharing is effective and scalable.

We have implemented and evaluated our proposed technique
using the ARCSIM dynamic binary translator targeting a multi-
core platform comprising up to 128 embedded cores, where each
core is capable of supporting a single application thread using the
Posix threading API. We show that thread-agnostic region code
generation does not incur any performance penalty, although it
may prohibit some minor opportunities for code optimisation. We
demonstrate that region sharing, however, provides great potential
for performance improvement. An average 76% of all JIT-compiled
regions can be shared in the SPLASH-2 benchmarks when run with
128 threads. This results in an overall performance improvement
of 1.44x averaged across all benchmarks and over a state-of-the-art
thread-private region compilation approach without region sharing.

1.1 Region-Recording for Multi-Threaded Applications

Before we take a more detailed look at our approach to scaling
region-based JIT compilation for multi-threaded applications, we
provide a comparison of state-of-the-art recording schemes used in
existing DBT systems, both tracing and region based, to highlight
our key concepts (see Figure 1).

Recording of execution paths in terms of traces is either trig-
gered by detecting a special construct (e.g. loop header, method
entry) [2, 15, 17, 19, 36], or always enabled when interpreting code
[4]. Various backbone data structures have been suggested to cap-

ture recorded traces such as trace-trees [14], control-flow-graphs
(CFG) of traced basic blocks [4], or hybrids between trace-trees
and CFGs called trace-regions [2] or trace-graphs [18]. In gen-
eral, recording approaches for multi-threaded applications can be
categorized based on how CFG recordings are accessed and con-
structed:

® Global Recording Structure - Most [2, 14, 15, 17-19, 36] JIT
compilation systems use one shared global recording structure
(® in Figure 1) to incrementally build CFG sections. This
scheme works well for single-threaded execution environments
but does not scale to multi-threaded applications as additional
synchronisation is required when recording in parallel for mul-
tiple threads.

Local Recording Structures - Another approach is to use private,
local structures for each thread ((2) in Figure 1). While this ap-
proach avoids synchronisation altogether, it causes threads exe-
cuting data-parallel sections of code to independently construct
nearly identical code paths and compile multiple thread-specific
CFG sections specialised for each thread.

Our approach builds on (2) and extends it to compile thread-
agnostic regoins for data-parallel sections of code once and share
the compiled region with all threads that profiled the code region
(see (@ in Figure 1). Consequently, the pressure on the underlying
JIT compiler is reduced and translations become available instan-
taneously to all threads that execute the same region as soon as the
first of a number of identical regions has been compiled.

We take the idea of region-based JIT compilation for multi-
threaded execution environments a step further. Using a lock free
region recording strategy and a JIT code generation approach en-
abling the sharing of compiled code for regions recorded by threads
executing data-parallel sections of code, we demonstrate that our
multi-threaded region-based JIT scheme is highly scalable.

1.2 Motivating Example

Consider the multi-threaded benchmark water—spatial from
the SPLASH-2 benchmark suite, when executed with 128 threads
in our dynamic binary translator. Of all the regions handled by
the asynchronous JIT subsystem, 79% were actually similar to
previously requested regions (see (2) in Figure 2). This shows that
there is a large potential saving to be made in sharing regions
between threads. We demonstrate that our approach leads to a
speed-up of 2.4x for this benchmark (see (D) in Figure 2). This
is made possible through the use of regions that can be executed
by any thread — these are said to be thread-agnostic (see (@ in
Figure 2). These regions then allow us to develop a scheme where
commonality between regions is identified as they are dispatched
for JIT compilation, allowing multiple threads to use the result of
the region translation. This will reduce the amount of time threads
have to continue executing in interpreted mode until a region is JIT
compiled. It enables earlier execution of native code and reduces
the pressure on the JIT compilation subsystem. As a result, the total
JIT compilation time for this benchmark is reduced by 73%.

1.3 Contributions

In this paper, we present the following contributions to improving
the performance of multi-threaded DBT when using region-based
JIT compilation:

1. The use of thread-agnostic regions, that are sections of JIT-
compiled code using indirection to access an executing thread’s
state. This region can then be executed by multiple threads
wishing to execute the same region of code,

2. a strategy for sharing translated regions between application
threads, to both reduce pressure on the JIT subsystem, and

e Region Recording using Shared Global Trace Structure
™ Global Region |
lobal Regi Requi
Global Region Structure Requires D " Basic Block
<« _.. CFG Edge
Time ¥
ead1 ¢ N record regions
Region Recording)
Thread 2 record regions
Region Recording ’ __________________________
Thread 3 record regions
e Region Recording using Private Local Region Structures

: Local Region Structure Enables !
i Lock Free Access during Region Recording |

Time

Local Region

record

Region Recording)
Thread 2

record regions

Region Recording)
Thread 3

e Region Recording using Private Local Thread Agnostic Region Structures

Local Region

Thread Agnostic Regions
Enable Sharing of Translation

: Local Region Structure Enables ;
: Lock Free Access during Region Recording |

[Local Region‘

Time

record

{ Region Recording > ; .
record regions

Thread 2

record regions

Region Recording)
Thread 3

Figure 1. Comparison of recording approaches for multithreaded
applications: (D recording using a shared global structure [2, 15,
17, 19, 36] requiring synchronisation, 2) lock free recording us-
ing private local structures. Finally, 3) shows our lock free region
recording approach using private local thread-agnostic region struc-
tures.

ensure that more threads start executing native code earlier. This
is done through the identification of common regions between
threads, as well as caching of region translations, and

3. an extensive evaluation of performance improvements gained
from using this technique using the SPLASH-2 benchmark
suite.

1.4 Overview

The rest of this paper is outlined as follows. In Section 2, the de-
sign of our dynamic binary translator and the paper’s contributions
are explained in detail, with the performance improvements result-
ing from these contributions presented in Section 3. In Section 4,
related work in dynamic binary translation, trace-based and region-
based JIT compilation is discussed, and in Section 5 we summarise
and conclude.

2. Methodology

We begin this section with a description of our multi-core DBT
system, focusing on its parallel task farm based JIT subsystem.
The design of thread-specific and thread-agnostic regions is then
contrasted, followed by a description of how the DBT has been
extended to enable sharing of regions between threads of execution.

2.1 Multi-core DBT Design

In this paper, we have modified the operation of our dynamic binary
translator, called ARCSIM. This DBT allows the execution of bina-
ries built for the ARCOMPACT instruction set on a host machine
implementing a different host ISA. ARCSIM combines interpreted
execution and native execution following JIT compilation of the
most frequently executed regions of code. JIT compilation is per-
formed asynchronously to the interpretation of the program, as a
parallel task farm based JIT subsystem has been added to the DBT.

Light-weight tracing is always enabled when code is inter-
preted, recording the control flow exhibited by the source program
at run-time. Interpretation is partitioned into intervals (see Fig-
ure 3), the length of which is determined by a user-defined number
of interpreted instructions. At the end of each interval frequently
executed regions are dispatched to a region translation priority
queue, before continuing to interpret the program. A detailed de-
scription of the priority function used to order regions can be found
in [4]. JIT workers operating in parallel threads can then claim a
region from the queue, JIT compile it, and update the region trans-
lation state, thereby indicating the availability of native code for
that recorded region to the interpreter loop.

ARCSIM has the ability to emulate multiple processors execut-
ing concurrently in a shared-memory environment. Each processor
runs in a separate thread on the host machine, and records its own
internal representation of the target binary, dispatching hot regions
to a global priority queue. The JIT subsystem operates as before,
except each work unit dispatched to the queue is tagged with the
requesting processor. Upon translating the region to native code,
the JIT worker updates the region translation state of the processor
that dispatched the region.

2.2 Thread-Agnostic Regions

In order to enable the sharing of regions between threads, native
code must access the thread state structure in a manner that will
work for any thread that may execute the region. As this native code
is generated at run time, the memory location of each thread state
structure is known, and it would be obvious to reference the struc-
ture directly using the known, constant memory addresses. We call
this a thread-specific region (see) in Figure 2). This code gener-
ation scheme, however, prohibits region sharing between threads.
Constant references to thread-private data make it impossible to
reuse the translated region for any other thread other than the one it
has been generated for,

Instead, we propose a scheme whereby the generated native
code accesses the thread state structure indirectly through a base
pointer. Each interpreter must then provide the base pointer to its
own thread state structure when switching over to executing native
code. We call these regions thread-agnostic (see (@) in Figure 2).
In this case, both threads can use the same native code as thread-
specific constants and thread-private variables are accessed via base
pointer indirections.

It would be natural to assume that thread-agnostic regions are
likely to be slower than thread-specific ones, due to the additional
memory accesses and offset calculations. In Section 3.5 we com-
pare the performance of these two approaches and demonstrate that
— contrary to intuition — thread-agnostic code generation does not
incur any performance penalty.

Splash- 2 ‘0 Thread- Specific Code Generation
water- spatial Direct access to thread context
o Speedup A Can Not Share Translated Region

Translated
Region T2

Runtime Memory Layout

3.0x
i 2\":3::2; Variable
2:5x void T1_TRC(void) { ... [void T2_TRC(void) { ... |
2.0x uint32 rl = *((ui) uint32 rl = *((liﬂiﬁ;?*)i P || P—=
uint32 r0 = rl + rl; uint32 r0 = rl + rl; 777 0x648C id
1.5 *((uint32%)0x6490) = r0; *((uint32*)0x8090) = ro0; 06490 0 =
ox — . e e TS 0x6494 rl
J e } o
0.5x [Pseudo Code] [Pseudo Code]| ||| F———
0x808C id
gaseline Region | () Thread- Agnostic Code Generation 0x8090 r0 Y]
. Sharli\g Inc{[rect access via pointer to thread context IS 0x8094 rl
© Region Sharing {@ Can Share Translated Region Translated
| Region T2

void T1_TRC (

uint32 rl =

uint32 r0 =

ctx->r[0] =
Unique Regions por

@ Sharable Regions [Pseudo Codel]|

void T2 TRC (Cc

// Thread Context

uint32 ril //

uint32 r0 = typedef struct {

ctx->r[0] = uint32 id;

""" uint32 r[32];
yor } Context;

[Pseudo Code]

Figure 2. SPLASH-2 water-spatial benchmark - (1) demonstrates the achievable speed-up using our novel region sharing optimisation, while
@ shows the scope of region sharing for this benchmark. The key difference between between) thread-specific and @ thread-agnostic
code generation is highlighted, namely code generation independent of thread context, enabling our region sharing optimisation.

2.3 Inter-thread Region Sharing

As regions are dispatched to the priority queue of the asynchronous
JIT subsystem, it would be beneficial to identify which regions
cover identical code paths, and can therefore be shared between
threads of execution.

To quickly determine if two regions can be shared, we generate
signatures for each region as it is constructed. The signature is the
32-bit result of a hash function applied to the physical addresses
of all basic block entry points in the region. Only if two signatures
match a more expensive check for equality needs to be performed
to establish beyond doubt that the regions indeed cover the same
code paths and rule out hash collisions.

A hash table is maintained alongside the priority queue. For a
given key signature, this table stores all threads that are interested
in the associated region that is currently waiting to be handled by
the JIT subsystem. Adding any region that matches signatures with
aregion already in the JIT subsystem will result in this region being
added to the hash table, instead of the priority queue itself. These
regions are bundled in a manner which includes a reference to the
requesting thread, so that JIT workers can update the requesting
thread with the result of the JIT compilation (see (I) Figure 3).

The JIT compilation workers continue to fetch regions from the
queue. When handling a region, the worker checks the hash table
for the threads that are interested in this region, allowing them to be
updated with the native code generated from the region. See Figure
3 for an example of an overview of our DBT design, as well as how
regions can be shared between threads.

This technique has the dual effect of reducing the period many
threads must wait between the dispatch of a region and the receipt
of a translation. It also reduces the number of similar regions in the
priority queue, thereby reducing the pressure on the underlying JIT
subsystem.

2.4 Region Translation Caching

The previous section describes how we can share regions if a thread
attempts to dispatch a region while a similar region is currently in
the JIT subsystem. What if a particular thread reaches a hot region
of code much later than other threads? In this case, there are no

similar regions currently in the JIT subsystem, so a JIT worker
would need to compile the region again.

One possible solution for this problem would be to register a
translated region with all threads once it has been JIT compiled.
The drawback of this solution is that translations might be regis-
tered for threads that have not yet executed that specific code path,
thereby adding complexity to the tracing interpreter loop. Further-
more, for task-parallel workloads most if not all translated regions
cannot be shared and will only be used by one thread.

Instead we use a software cache for region translations and
add each JIT compiled region to this region translation cache.
When a region is dispatched for JIT compilation we first check if
a translation is already present in the region translation cache. If
so, all native code generation can be skipped, and the translation
can be registered for the thread that dispatched the region (see 2)
Figure 3). Region translation caching thereby removes redundant
re-compilation from the critical path of execution for many threads,
improving overall performance.

3. Empirical Evaluation

In this paper, we use the SPLASH-2 benchmark suite [38] to evalu-
ate the performance benefits resulting from the use of region shar-
ing to improve region-based JIT compilation in multi-threaded exe-
cution environments. SPLASH-2 is a set of 12 parallel benchmarks
covering a range of application domains such as linear algebra,
complex fluid dynamics and graphics rendering. In cases where
both contiguous and non-contiguous versions of a benchmark are
provided, we have used the contiguous version.

In the remainder of this section, we describe our experimental
set-up, before presenting performance improvements as well as
throughput measurements and data relating to the potential for
region sharing in each benchmark.

3.1 Experimental Set-up

A machine running the operating system Scientific Linux 5.5 with
the following specifications was used to perform all experiments: a
4-core Intel Xeon E5430 running at 2.66Ghz, with 8GB of memory
available.

IEZIIIYY interpretation with Profiling Native Code Execution

€gion

Q
@m 13

ilnterval 6
<——
Thread 1 .
Native
Region 1C
D{ =
..... <
Regions Q ?
Thread 2 Cg «
Interval 1 Interval 2 Interval 3 ilnterval 4 Elnterval 5
T2 e —— e —
Thread 2 * . -
4 | Native Native Native Profiling

Region In Translation
Tag Existing Entry

Shared Regions

a_
Region 2

Tag Entry —

JIT Compilation)
Worker Thread 1

JIT Compilation >
Worker Thread 2

""""""""""""""" T2I C
JIT Compilation . —|
Worker Thread 3 > Region 2

e [Regions Already Translated
! Retrieve from Translation Cache

=

(D 7
Region 10

LEC NI Region 9 Region 9

Time

Figure 3. Region sharing for sample multi-threaded application - Frequently executed program regions from two threads T1 and T2 are
recorded as regions and dispatched for JIT compilation. As soon as a region is compiled it is cached in a translation cache and its availability
is registered with the thread responsible for dispatching the region. (1) Shows how T1 records a region (Region 2) that is equal to a previously
dispatched region (Region 1) by T2. The previously dispatched region is still in translation, hence it is tagged to record the fact that its
translation must be registered with T2 and T1. @) When a thread records a new region that has already been translated by another thread, its
translation is immediately retrieved from the translation cache, enabling almost instant availability of native code.

All experiments were performed under low system load and
each experiment was run at least 15 times. In all results, error
bars represent the standard error. The number of JIT compilation
workers used in each experiment is fixed at 3 + |/ogy (n)], where n
is the number of threads being executed.

3.2 Performance Improvements

Our first experiment was to measure the runtime improvements
gained through the use of region sharing. In Figure 4 we present
speed-ups obtained when executing 4, 32 and 128 threads on our
4-core host machine. Our baseline here is the same private tracing
DBT - still with thread-agnostic regions, but without region shar-
ing. As the number of threads increases, so too should the potential
for sharing regions between threads resulting in improved perfor-
mance.

We observe that in all cases the use of region sharing im-
proves the performance of the DBT. The average improvement for
4 threads is 1.06x, 1.22x for 32 threads, and for 128 threads, 1.44x.

The highest speed-up of 2.40x is obtained for water-spatial
with 128 threads.

On average, we can see that the speed-up obtained when shar-
ing regions increases as the number of executed threads increases.
However, three benchmarks do not follow this average trend:
cholesky, fmm, and volrend. This is due to a lower poten-
tial for region sharing resulting from non-homogeneous compute
patterns in these benchmarks. As Section 3.4 will show, these three
benchmarks have a smaller percentage of sharable regions than the
average. Fewer shared regions lead to reduced savings in JIT com-
pilation time in relation to the overheads added by increasing the
number of threads.

Our results clearly highlight the benefits of region sharing be-
tween application threads. Extending our parallel task-farm JIT
subsystem with a scheme to tag sharable regions ensures that mul-
tiple threads can be served simultaneously from just a single re-
gion translation. Additional caching of recently handled regions
supports this sharing concept further. More threads reach native

2.50
[Region Sharing with 4 Threads

395 [Region Sharing with 32 Threads
M FRegion Sharing with 128 Threads
Baseline - Mo Region Sharing

1.60
148
2
9 1.22
107

1.00
0.75

0.50

i

© 8

§
&
S

P

LY

3

g ¢
&

Speedup With Region Sharing - Splash-2

240
173
133
144
134 134
1.07 v
E:
|_ﬂ |
o
- v} =
E 4 é LA B
3 & & $ R 4

Figure 4. Speed-ups achieved through the use of region sharing, over a baseline execution where region sharing is not used. Speed-ups are
presented when executing 4, 32, and 128 threads with all benchmarks from the SPLASH-2 suite.

code execution sooner. This is demonstrated by an overall larger
percentage of natively executed code.

3.3 JIT Subsystem Service Throughput

The JIT subsystem used in our DBT is essentially a decoupled
service that the DBT can utilise to perform JIT compilation. As
such, we can look at the service throughput of the JIT subsystem -
how many threads can it provide with native code in any given unit
of time? In the region sharing case, this means that if a region is
shared among e.g. three threads, then the worker will have served
three threads after performing the translation to native code (rather
than just one if no regions are shared). Figure 5 shows how the
throughput differs when using and not using region sharing, when
executing 128 threads.

We note that for every benchmark, the use of region sharing in-
creases the throughput of the JIT subsystem. The highest through-
put seen is 10.3 regions/time unit when executing radix with re-
gion sharing, but the greatest actual improvement obtained is an in-
crease of 4.39x in water—spatial. The generally low through-
put of £t may be due to particularly large regions being gener-
ated, or the total number of regions being generated in the bench-
mark being relatively small in comparison to its total runtime. The
important result to note is that region sharing roughly doubles the
throughput of the system on average, increasing from 2.1 to 4.6
regions/time unit.

3.4 Percentage of Potentially Shareable Regions

The speed-ups we present in Section 3.2 are due to our ability to
share regions between threads, reducing the time that threads need
to spend interpreting until they can execute native code, and reduc-
ing pressure on the JIT subsystem. For each benchmark, it would be
interesting to know what percentage of the regions that are handled
by the JIT subsystem are similar to regions that have already been
handled when not sharing regions. This would imply that in a per-
fect situation, all the time spent compiling these sharable regions
could be saved. To measure this, we modified the non-sharing ver-
sion to output signatures of regions that are handled. Figure 6 shows

) IT Subsystem Throughput - Splash-2

L

= = =
o N N

o]

Throughput (Regions handled per time unit)
o

4
2 i f I
7 D N IS X ¢ D > L
S FEE F 5 £ 88
§ ¢ N ¢ &8 & E $§35§
¢ L <& QNG
G < s L &
’ p->2
@ No Region Sharing g £
[C Region Sharing £

Figure 5. Comparison of JIT subsystem service throughput, with
and without region sharing enabled, when executing 128 threads.

the percentage of unique and sharable regions for each benchmark,
when executed across 128 cores.

With the exception of radiosity, all benchmarks have over
65% of their regions marked as sharable, with an average of 76%.
The largest percentage seen here was the 94% of regions generated
during the execution of radix. The low 47% of radiosity
could be explained by the fact that the benchmark had to be built
without parallel preprocessing, increasing the total percentage of
the program that was executed sequentially.

These percentages demonstrate the great potential that exists to
speed up execution of multi-threaded programs when using region-
based JIT compilation. 94% of all regions are sharable, this means
that 94% of all time spent compiling regions could be saved if
we share region translations between threads using thread-agnostic
regions, inter-thread region sharing, and region translation caching.

1005, PErCENtage of Potentially Sharable Regions-Splash-2

90%

80%
70%
60%
50%
40%
30%
20%
10%

2 S o D v D @
S FEE F &5 S £L8S
Ny (/4 [N (&7 o 0 & < @ o
@ S S < S S Q @
<O 9 ° S > O S o X
*Q ,:D IG Qo, Q,}: o
5 &
Unique ,DS' N
[l Sharable N

Figure 6. Percentage of sharable regions for the SPLASH-2 bench-
mark suite when executing 128 threads.

3.5 Thread-Specific vs. Thread-Agnostic Regions

In Section 2.2, we discussed the use of thread-agnostic and thread-
specific regions, explaining that thread-agnostic regions allow us
to share region translations between threads. Code generated for
thread-agnostic regions requires the use of indirection via a pointer
to access the thread’s state, versus direct access to addresses known
at JIT compilation time. It would be natural to presume that this
indirection imposes a penalty on the overall performance of execu-
tion, so we present the effect this tracing style has on the runtime
of the SPLASH-2 benchmarks — when executing only one thread —
in Figure 7.

Surprisingly, we can see that the use of thread-agnostic regions
is often faster than using thread-specific regions - a speed-up of
1.09x on average. One would expect that having to obtain the thread
state pointer and calculate an offset would be more expensive than
simply accessing a constant known at runtime. However, this does
not take into account the issue of code size. On the x86 host
architecture used throughout this paper, an instruction that accesses
a memory location using register + offset calculations should not
require more than 4 bytes to encode. On the other hand, encoding
a 32 or 64-bit immediate constant requires at least 4 or 8 bytes to
encode the constant alone, ignoring the rest of the instruction.

We have observed that the use of thread-specific tracing leads to
an increase in overall code size, even if the number of instructions
generated may decrease. This larger code may lead to slower exe-
cution, for instance, if sections of code can no longer reside com-
pletely in the cache. Of course, these results may differ on other
architectures. These results show that the use of thread-agnostic
tracing actually results in faster execution of threads, even before
enabling the sharing of regions between threads.

3.6 JiT Compilation Time Saved

One aim of sharing regions is to reduce the amount of time we
spend JIT compiling regions. If 128 threads will all request that the
same region be JIT compiled, then it should be possible to remove
127 compilations, allowing JIT workers to move onto other regions
of code that are enqueued. For each of the SPLASH-2 benchmarks,
we present the percentage of time that workers spent compiling
regions when sharing them, in comparison to when not. Figure 8
presents these results, when executing 128 threads. These baseline
here of 100% represents the time spent JIT compiling when not
sharing regions.

14 Speedup With Thread-Agnostic Regions -Splash-2

Speedup
=] =} =
N -J> o) - N
e

2
QO
&
2
AN
o

|| Thread- Specific Regions &
[l Thread- Agnostic Regions £

Figure 7. Relative performance when using thread-agnostic over
thread-specific regions, when executing one thread for the
SPLASH-2 benchmark suite.

On average, JIT compilation time is reduced by 56% when
sharing regions. These results also reinforce which benchmarks
have less potential for sharing available — the compilation time for
radiosity is reduced by only 15%, and previously (in Figure
6) only exhibited 47% of its regions as sharable. The best reduc-
tions can be seen in ocean and radix, which are reduced by
92% and 88%, respectively. These results confirm that the use of
thread-agnostic regions and region sharing can greatly reduce JIT
compilation time.

3.7 Summary of Key Results

In summary, we have seen that the use of thread-agnostic tracing —
as well as the sharing of regions that this enables — leads to faster
execution of multi-threaded programs when using region-based JIT
compilation to enhance performance. These effects are often more
pronounced as the number of cores increases — with an average
speed-up of 1.44x with 128 threads. For the SPLASH-2 benchmark
suite, 76% of all regions produced could be shared on average,
when executing 128 threads.

4. Related Work

In this section, we discuss the previous work done in the areas of
static binary translation, dynamic binary translation, tracing and
region-based JIT compilation, and tracing and non-tracing parallel
JIT compilation.

4.1 Static Binary Translation

Simulating instruction sets was performed by static compilation
in [26]. Programs are compiled by mapping instructions through
macros in C switch statements. In [11], source binaries are initially
translated to an intermediate representation before converting to C
or assembly; portability is much enhanced. SYNTSIM [7] only stat-
ically translates those instructions determined to be hot by a prior
profiling run and interprets the remainder. Such static approaches
can not easily handle self modifying code and must determine in-
struction targets even in the presence of indirect branches.

4.2 Dynamic Binary Translation

The MIMIC simulator[24] simulates IBM System/370 instructions
on the IBM RT PC and translates groups of target basic blocks into
host instructions. SHADE[10] and later EMBRA[37] cache transla-
tions to speed execution. Both pause execution during translation.
DAI1SY[12] translates PowerPC code onto a VLIW machine. They
use page faults to trap necessary translation tasks. The CRUSOE

100% Percentage of Time Spent] IT Compiling - Splash-2

90%
80%
70%
60%
50%
40%

30%
20%
10%
o
& &
el
<

%

o IS S
= o
& & é
S 5
5
| No Region Sharing
[l Region Sharing

Figure 8. Percentage reduction in time JIT workers spend compil-
ing when using region sharing.

processor from Transmeta[20] also translates to a VLIW in soft-
ware but from source x86 code.

Just-In-Time Cache Compiled Simulation (JIT-CCS)[27] exe-
cutes and caches pre-compiled instruction-operation functions for
each function fetched. The Instruction Set Compiled Simulation
(Ic-Cs) simulator [31] precompiles the source binary but notices
changes to the instructions and invokes a runtime recompilation as
needed. [5] merges hot basic blocks from MIPS source binaries into
regions and JIT compiles them using LLVM. These approaches tar-
get a single threaded environment for execution and compilation.

4.3 Tracing and Region-based JIT Compilation

Tracing is a well established technique for dynamic profile guided
optimization of native binaries. DYNAMO[1] introduced tracing
as a method for runtime optimization of native program binaries.
YETI[39] uses tracing in a mixed in-line, subroutine threading
interpreter to avoid additional virtual method calls and unnecessary
branches.

Partial method compilation is used in [35] uses profile infor-
mation to detect never or rarely executed parts of a method and to
ignore them during compilation. If such a part gets executed later,
execution continues in the interpreter. Region-based compilation is
used in [33] to overcome the limitations of method-based compila-
tion. They eliminate rarely executed sections of code, but rely on
expensive runtime code instrumentation for trace identification.

Dynamically profiled trace trees are the compilation units for
[13, 15]. Traces are aggregated into trees. Trace trees suffer from
the problem of code explosion when many control-flow paths are
present in a loop, causing them to grow to very large sizes due to
excessive tail duplication. The need for interpretation is removed
in [2] by first compiling the method with instrumentation but no
optimisation. When suitable thresholds are reached, a execution
switches to compiled tracing version of the code. Finally, the se-
lected traces are aggressively optimised.

4.4 Non-tracing Parallel J1IT Compilation

Krintz et al. [21] pushed JIT compilation into the background while
interpreted execution continued. Only single compiler and execu-
tion threads were employed and hot method detection was per-
formed by offline profling. The ability of background compilation
to be more aggressive is exploited by [34] to choose the best way
to compile a program on an embedded device as its battery en-
ergy changes. Again, only single execution and compiler threads
are used. Kulkarni et al.[23] dynamically increase the priority of
its compilation thread to increase compiler throughput. Their tech-

nique is useful when the number of application threads is greater
than the number of physical cores. The potential to extend their
work to multiple compiler threads is considered in [22], wherein the
impacts of iteration count thresholds and the number of compiler
threads are explored. The Java Hotspot(tm) Server Compiler[28],
allows for the creation of multiple compiler threads via a command
line option. Azul VM may use as many as fifty compiler threads for
large programs, as reported in [23]. These techniques all focus on
compiling whole methods, not traces.

The Ultra-fast Instruction Set Simulator is presented in [30].
This paper pioneered the concept of concurrent JIT compilation
workers to speed up DBT, but suffers from a number of flaws.
First, rather than taking a trace-based compilation approach en-
tire pages are translated — this is unnecessarily wasteful in a time-
critical JIT environment. Second, there are no provisions for a dy-
namic work scheduling scheme that prioritizes compilation of hot
traces — this may defer compilation of critical traces and lower over-
all efficiency. Third, JIT compilers reside in separate processes on
remote machines — this significantly increases the communication
overhead and limits scalability. This last point is critical, as results
shown in [30] are based solely on CPU time of the main simulation
process rather than the more relevant wall clock time that includes
CPU time, I/O time and communication channel delay. A parallel
JIT for C is demonstrated in [29]. Whole translation units are com-
piled at once by one background compiler thread. Execution is able
to jump from iterpretation to native whenever the compilation is
complete. A form of region based parallel JIT for DBT appears in
JpsX, a PlayStation emulator written entirely in Java[32]. Multi-
ple compilation threads translate R3000 code into Java byte-codes
with the different threads managing progressively higher optimiza-
tion levels. Code is initially interpreted or translated via an in-line
threading interpreter or, when suitably hot, translated with the most
optimising compiler thread. loading mechanism to initiate compi-
lation of unvisited code. The HotSpot JVM then provides additional
optimisation, being able to make use of the fact that all code blocks
are translated to static methods, leading to a system which is so fast
that it requires careful synchronisation, not present in the original
binaries, to ensure that video frames are not produced faster than
the screen can display.

4.5 Tracing Parallel JIT Compilation

Ha et al.[17] attach a ‘Compiled State Variable’ (CSV) to each
trace anchor. The CsV is allows a tracing JavaScript interpreter
and background compiler to manage transitions from interpreted
execution to native without locks. Their approach, however, is only
applied to single execution and compilation threads. M0JO[9] is
system very like dynamo but extends it to permit proper exception
handling. Individual blocks are compiled and then when hot traces
are identified, those are translated. M0OJO also offers support for
multi-threading; threads maintain a private list of individual blocks
but share the set of translated paths. Inoue[19] implement tracing in
the IBM J9/TR JvM. They use a global trace cache and note that the
time spent searching the cache is significant. Only one background
compilation thread is used. A similar global trace cache is used by
Héubl[18] for the Hotspot JvM. Wimmer et al.[36] note that tracing
enables simple phase change detection by comparing the ratio of
side exits taken to the time spent in the trace itself. Traces can be
discarded and recompiled when a phase change is detected. Their
work uses a global trace cache and permits only one background
compiler thread.

Some approaches [8, 14] have attempted to exploit pipeline par-
allelism in the JIT compiler. However, pipelining of the JIT com-
piler has significant drawbacks. First, compiler stages are typically
not well balanced and the overall throughput is limited by the slow-
est pipeline stage — this is often the front-end or IR generation stage.
Second, unlike method based compilers, trace-based JIT compilers

operate on relatively small translation units in order to reduce the
compilation overhead to a bare minimum [16]. Small translation
units and long compilation pipelines, however, increase the relative
synchronization costs between pipeline stages and, again, limit the
achievable compiler throughput. Third, compilation pipelines are
static and do not scale with the available task parallelism in inher-
ently independent translation units.

Mebhrara et al. take a different tack [25]. They note that a consid-
erable time is spent executing trace guards, which would trigger a
side exit but are rarely taken. They offload the checking to another,
background thread, enabling the main execution thread to specula-
tively continue along the trace. If the background thread discovers
a guard violation, the main thread is halted and execution resumes
at the appropriate side exit.

5. Summary and Conclusions

In this paper we have developed an approach to region-based JIT
compilation that enables sharing of common regions between mul-
tiple application threads. For this we first need to modify the code
generator to generate regions that do not depend on any thread-
specific context, but are generic enough to be executed in any thread
context. Surprisingly, this thread-agnostic code generation does not
only enable region sharing, but also facilitates a minor performance
improvement when applied in isolation. Sharing of regions between
application threads then reduces the pressure on the JIT subsystem
and improves performance further. In our experiments we found
that on average 76% of all regions can be shared in the SPLASH-2
benchmarks when run with 128 threads in our ARCSIM dynamic
binary translator. This results in an overall performance improve-
ment of 1.44x averaged across all benchmarks and over a state-of-
the-art thread-private region compilation approach without region
sharing.

Future work will focus on region sharing in other multi-threaded
and JIT compilation based execution environments such as JVMs.

REFERENCES

[1] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia, Dy-
namo: a transparent dynamic optimization system, Proceed-
ings of the ACM SIGPLAN 2000 conference on Programming
language design and implementation (New York, NY, USA),
PLDI "00, ACM, 2000, pp. 1-12.

[2] Michael Bebenita, Mason Chang, Gregor Wagner, Andreas
Gal, Christian Wimmer, and Michael Franz, Trace-based com-
pilation in execution environments without interpreters, Pro-
ceedings of the 8th International Conference on the Principles
and Practice of Programming in Java (New York, NY, USA),
PPPJ *10, ACM, 2010, pp. 59-68.

[3] Fabrice Bellard, QEMU, a fast and portable dynamic trans-

lator, Proceedings of the annual conference on USENIX An-

nual Technical Conference (Berkeley, CA, USA), ATEC 05,

USENIX Association, 2005, pp. 41-41.

Igor Bohm, Tobias J.K. Edler von Koch, Stephen Kyle, Bjorn

Franke, and Nigel Topham, Generalized just-in-time trace

compilation using a parallel task farm in a dynamic bi-

nary translator, Proceedings of the ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation,

PLDI’'11, ACM, 2011.

[5] F. Brandner, A. Fellnhofer, A. Krall, and D. Riegler, Fast

and accurate simulation using the LLVM compiler framework,

Proceedings of the 1st Workshop on Rapid Simulation and

Performance Evaluation: Methods and Tools, RAPIDO’09,

2009, pp. 1-6.

Derek Bruening, Vladimir Kiriansky, Timothy Garnett, and

Sanjeev Banerji, Thread-shared software code caches, Pro-

ceedings of the International Symposium on Code Generation

[4

—

[6

—_

and Optimization (Washington, DC, USA), CGO ’06, IEEE
Computer Society, 2006, pp. 28-38.

[7] Martin Burtscher and et al., Automatic synthesis of high-speed
processor simulators, Proceedings of the 37th annual Interna-
tional Symposium on Microarchitecture, MICRO’04, 2004.

[8] Simone Campanoni, Giovanni Agosta, and Stefano Crespi
Reghizzi, A parallel dynamic compiler for CIL bytecode, SIG-
PLAN Not. 43 (2008), 11-20.

[9] W.-K. Chen, S. Lerner, R. Chaiken, and D.M. Gillies, Mojo: a
dynamic optimization system, Proceedings of the Third ACM
Workshop on Feedback-Directed and Dynamic Optimization,
FDDO’00, 2000.

[10] Bob Cmelik and David Keppel, Shade: A fast instruction-set
simulator for execution profiling, Proceedings of the ACM
SIGMETRICS Conference on the Measurement and Model-
ing of Computer Systems, SIGMETRICS’94, 1994, pp. 128-
137.

[11] Jianwen Zhu Daniel and Daniel D. Gajski, A retargetable,
ultra-fast instruction set simulator, Proceedings of the Design
Automation and Test Conference In Europe, DATE’95, 1995,
pp. 363-373.

[12] Kemal Ebcioglu and Erik R. Altman, Daisy: Dynamic compi-
lation for 100% architectural compatibility, 1997.

[13] A. Gal, C. W. Probst, and M. Franz, HotpathVM: an effective
JIT compiler for resource-constrained devices, Proceedings of
the 2nd International Conference on Virtual Execution Envi-
ronments, VEE’06, ACM, 2006, pp. 144-153.

[14] Andreas Gal, Michael Bebenita, Mason Chang, and Michael
Franz, Making the compilation “pipeline” explicit: Dynamic
compilation using trace tree serialization, Tech. Report 07-12,
University of California, Irvine, 2007.

[15] Andreas Gal, Brendan Eich, Mike Shaver, David Anderson,
David Mandelin, Mohammad R. Haghighat, Blake Kaplan,
Graydon Hoare, Boris Zbarsky, Jason Orendorff, Jesse Rud-
erman, Edwin W. Smith, Rick Reitmaier, Michael Bebenita,
Mason Chang, and Michael Franz, Trace-based just-in-time
type specialization for dynamic languages, Proceedings of the
2009 ACM SIGPLAN conference on Programming language
design and implementation (New York, NY, USA), PLDI *09,
ACM, 2009, pp. 465-478.

[16] Michael Gschwind, Erik R. Altman, Sumedh Sathaye, Paul
Ledak, and David Appenzeller, Dynamic and transparent bi-
nary translation, Computer 33 (2000), 54-59.

[17] Jungwoo Ha, Mohammad R. Haghighat, Shengnan Cong, and
Kathryn S. McKinley, A concurrent trace-based just-in-time
compiler for single-threaded Javascript, Workshop on Paral-
lel Execution of Sequential Programs on Multicore Architec-
tures, PESPMA’09, June 2009, in conjunction with ISCA 09.

[18] Christian Héubl and Hanspeter Mossenbock, Trace-based
compilation for the Java HotSpot virtual machine, Proceed-
ings of the International Conference on Principles and Prac-
tice of Programming in Java (Kongens Lyngby, Denmark),
PPPJ’11, August 2011.

[19] H. Inoue, H. Hayashizaki, Peng Wu, and T. Nakatani, A trace-
based Java JIT compiler retrofitted from a method-based
compiler, Code Generation and Optimization, 2011 9th An-
nual IEEE/ACM International Symposium on, CGO’11, april
2011, pp. 246 —-256.

[20] Alexander Klaiber, The Technology Behind Crusoe Proces-
sors, Tech. report, Transmeta Corporation, January 2000.

[21] Chandra Krintz, David Grove, Derek Lieber, Vivek Sarkar,
and Brad Calder, Reducing the overhead of dynamic compi-
lation, Software: Practice And Experience 31 (2000), 200-1.

[22] P.A. Kulkarni and J. Fuller, JIT compilation policy on single-
core and multi-core machines, Interaction between Compil-

ers and Computer Architectures, 2011 15th Workshop on, IN-
TERACT’11, feb. 2011, pp. 54 -62.

[23] Prasad Kulkarni, Matthew Arnold, and Michael Hind, Dy-
namic compilation: the benefits of early investing, Proceed-
ings of the 3rd international conference on Virtual execution
environments (New York, NY, USA), VEE "07, ACM, 2007,
pp- 94-104.

[24] C. May, Mimic: a fast System/370 simulator, Papers of the
Symposium on Interpreters and interpretive techniques (New
York, NY, USA), SIGPLAN 87, ACM, 1987, pp. 1-13.

[25] M. Mehrara and S. Mahlke, Dynamically accelerating client-
side web applications through decoupled execution, Code
Generation and Optimization, 2011 9th Annual IEEE/ACM
International Symposium on, CGO’09, april 2011, pp. 74 —
84.

[26] Christopher Mills, Stanley C. Ahalt, and Jim Fowler, Com-
piled instruction set simulation, 1991.

[27] Achim Nohl, Gunnar Braun, Oliver Schliebusch, Rainer Le-
upers, Heinrich Meyr, and Andreas Hoffmann, A universal
technique for fast and flexible instruction-set architecture sim-
ulation, Proceedings of the 39th annual Design Automation
Conference (New York, NY, USA), DAC ’02, ACM, 2002,
pp. 22-27.

[28] Michael Paleczny, Christopher Vick, and Cliff Click, The Java
Hotspot™ server compiler, USENIX Java Virtual Machine
Research and Technology Symposium, USENIX-JVM’01,
2001, pp. 1-12.

[29] Michael Plezbert and Ron K. Cytron, Does "just in time" =
"better late than never"?, In Proceedings of ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, POPL'97, ACM Press, 1997, pp. 120-131.

[30] Wei Qin, Joseph D’Errico, and Xinping Zhu, A multipro-
cessing approach to accelerate retargetable and portable
dynamic-compiled instruction-set simulation, Proceedings
of the 4th international conference on Hardware/software
codesign and system synthesis (New York, NY, USA),
CODES+ISSS 06, ACM, 2006, pp. 193—198.

[31] Mehrdad Reshadi, Prabhat Mishra, and Nikil Dutt, Instruc-
tion set compiled simulation: a technique for fast and flexi-

ble instruction set simulation, Proceedings of the 40th annual
Design Automation Conference (New York, NY, USA), DAC
’03, ACM, 2003, pp. 758-763.

[32] Graham Sanderson, High performance: Writing a Sony
PlayStation emulator using Java™ technology, 2006.

[33] Toshio Suganuma, Toshiaki Yasue, and Toshio Nakatani, A
region-based compilation technique for dynamic compilers,
ACM Trans. Program. Lang. Syst. 28 (2006), 134-174.

[34] P. Unnikrishnan, M. Kandemir, and F. Li, Reducing dynamic
compilation overhead by overlapping compilation and execu-
tion, Proceedings of the 2006 Asia and South Pacific Design
Automation Conference (Piscataway, NJ, USA), ASP-DAC
’06, IEEE Press, 2006, pp. 929-934.

[35] John Whaley, Partial method compilation using dynamic pro-
file information, Proceedings of the 16th ACM SIGPLAN
conference on Object-oriented programming, systems, lan-
guages, and applications (New York, NY, USA), OOPSLA
’01, ACM, 2001, pp. 166—179.

[36] Christian Wimmer, Marcelo S. Cintra, Michael Bebenita, Ma-
son Chang, Andreas Gal, and Michael Franz, Phase detec-
tion using trace compilation, Proceedings of the 7th Inter-
national Conference on Principles and Practice of Program-
ming in Java (New York, NY, USA), PPPJ *09, ACM, 2009,
pp. 172-181.

[37] Emmett Witchel and Mendel Rosenblum, Embra: Fast and
flexible machine simulation, Measurement and Modeling of
Computer Systems, SIGMETRICS’96, 1996, pp. 68-79.

[38] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie,
Jaswinder Pal Singh, and Anoop Gupta, The SPLASH-2 pro-
grams: characterization and methodological considerations,
Proceedings of the 22nd annual international symposium on
Computer architecture (New York, NY, USA), ISCA ’95,
ACM, 1995, pp. 24-36.

[39] Mathew Zaleski, Angela Demke Brown, and Kevin Stoodley,
Yeti: a gradually extensible trace interpreter, Proceedings of
the 3rd international conference on Virtual execution environ-
ments (New York, NY, USA), VEE *07, ACM, 2007, pp. 83—
93.

