
Documentation for the NITE XML Toolkit
Document revisions
0.3 - 11 June 09
0.2 - 28 March 07
0.1 - 12 Jan 07

JEAN CARLETTA
STEFAN EVERT

JONATHAN KILGOUR
CRAIG NICOL

DENNIS REIDSMA
JUDY ROBERTSON

HOLGER VOORMANN

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

1. Drafts before v1.0 ...4
2. A Basic Introduction to the NITE XML Toolkit5
3. Downloading and Using NXT ...6

3.1. Prerequisites ..6
3.2. Getting Started...6

Sample Corpora ..6
3.3. Setting the CLASSPATH7
3.4. How to Play Media signals in NXT.........................7
3.5. Programmatic Controls for NXT.............................8
3.6. Compiling from Source and Running the Test
Suites .. 9

4. Data.. 10
4.1. The NITE Object Model11
4.2. The NITE Data Set Model12
4.3. Data Storage..14

Namespacing ..14
Coding Files...14
Links ..14
Data And Signal File Naming15

4.4. Metadata ..16
Preliminaries ..16
Top-level corpus description..................................16
Reserved Elements and Attributes (optional)17
CVS Details (optional, beta)19
Independent Variables on Observations19
Agents (optional) ...19
Signals (optional) ...20
Corpus Resources (optional)21
Ontologies (optional) ...22
Object Sets (optional) ..22
Codings and Layers...23
Callable Programs (optional)25
Observations ...25

4.5. Dependency Structures26
Resource File Syntax ..26
Behaviour ..27
Validation...28

4.6. Data validation ...28
Limitations in the validation process......................28
Preliminaries - setting up for schema validation29
The validation process...29

4.7. Data Set Design...30
Children versus Pointers30
Possible Tag Set Representations30

Orthography as Textual Content versus as an String
Attribute ...31
Use of Namespaces ..31
Division into Files for Storage31
Skipping Layers ...32

4.8. Data Builds...32
Examples and explanation of format32

5. The NXT Query Language (NQL).................................34
5.1. General structure of a simple query34

Declaration part ...34
Condition part ..35

5.2. Property tests ...36
Simple and functional property expressions36
Property existence tests ..37
String and number comparisons using == , != , <= , <
, > , and >= ..37
Regular expression comparisons38

5.3. Comments..38
5.4. Structural relations ...38

Identity ...38
Dominance...38
Precedence..39

5.5. Temporal relations ...39
5.6. Quantifier..40
5.7. Query results ..40
5.8. Complex queries ..41
5.9. Known Problems ..41

Multiple observations and timings..........................42
Search GUI and forall ..42
Immediate Precedence..42
Arithmetic ..42
Inability to handle namespacing42
Speed and Memory Use ..42

5.10. Helpful hints ...43
5.11. Related documentation43

6. Analysis ..45
6.1. Command line tools for data analysis45

Preliminaries ..45
Common Arguments..46
SaveQueryResults ...46
CountQueryResults ...46
MatchInContext..47
NGramCalc: Calculating N-Gram Sequences47
FunctionQuery: Time ordered, tab-delimited output,
with aggregate functions48

Table of Contents

Indexing ...49
6.2. Projecting Images Of Annotations50

Notes ...51
6.3. Reliability Testing...52

Generic documentation ...52
MultiAnnotatorDisplay..52
CountQueryMulti..53
Example reliability study ..53

7. Graphical user interfaces ...57
7.1. Preliminaries ..57

Invoking the GUIs ..57
Time Highlighting...57
Search Highlighting ...57

7.2. Generic tools that work on any data57
The NXT Search GUI ..57
The Generic Display ..58

7.3. Configurable end user coding tools58
The signal labeller ...58
The discourse entity coder58
The discourse segmenter58
The non-spanning comparison display..................59
The dual transcription comparison display59
How to configure the end user tools59

7.4. Libraries to support GUI authoring67
The NXT Search GUI as a component for other
tools ...67

8. Using NXT in conjunction with other tools68
8.1. Recording Signals ..68

Signal Formats ..68
Capturing Multiple Signals68
Using Multiple Signals ...68

8.2. Transcription ..69
Using special-purpose transcription tools69
Using programs not primarily intended for transcrip-
tion...69
Using Forced Alignment with Speech Recognizer
Output to get Word Timings...................................70
Time-stamped coding ..71

8.3. Importing Data into NXT72
Transcriber and Channeltrans72
EventEditor ..72

The Observer ...73
Other Formats..73

8.4. Exporting Data from NXT into Other Tools73
TGREP2 via Penn Treebank Format73
TigerSearch ...76

8.5. Knitting and Unknitting NXT Data Files76
Knit using Stylesheet ...76
Knit using LT XML2 ...77
Unknit using LT XML2 ...77

8.6. General Approaches to Processing NXT Data.....78
Option 1: Write an NXT-based application78
Option 2: Make a tree, process it, and (for re-import-
ation) put it back ..78
Option 3: Process using other XML-aware soft-
ware ...80

8.7. Manipulating media files.......................................80
Appendix A. FAQ ..81
Appendix B. How To Use Metadata................................85

B.1. What metadata files do..85
B.2. What metadata files look like...............................85
B.3. Metadata examples ...85
B.4. Using Metadata to validate data86

Validation limitations ..86
Appendix C. Comparison to other efforts87

C.1. Annotation Graph Toolkit (AGTK)........................87
C.2. ATLAS ...87
C.3. MMAX..88
C.4. EMU...88
C.5. Others..88
C.6. Relationship to the Text Encoding Initiative.........88

Summary of Answer ..88
Data without crossing hierarchies or timing89
Crossing hierarchies ..89
Timing data ..90
Standardized GUIs ..90
Other frameworks ..90

Appendix D. Information and Further Reading................90
D.1. NXT's history and funding....................................91
D.2. Technical Documents ..91
D.3. Documentation for Programmers91
D.4. Academic publications...92

Table of Contents

1 Drafts before v1.0
In October 2006, we decided to move over NXT documentation from being completely web-based to being written in
DocBook so that we can generate HTML, JavaDoc, and PDF at will. We are rewriting much much of the documentation
at the same time. Versions of the documentation numbered before v1.0 are incomplete, although the outline gives some
idea of our intentions for it. In this version, version 0.1, not all of the information has been checked for accuracy yet. The
most likely difficulties concern the following areas: corpus resources, ontologies, and object sets; validation; incomplete
description of data set concepts. In addition, not all the formatting works, and the query reference manual has not been
fully converted over to DocBook, so it is incomplete and hard to read in this version.

NXT Documentation: 1. Drafts before v1.0

Page 4 of 94

2 A Basic Introduction to the NITE XML Toolkit
There are many tools around for annotating language corpora, but they tend to be good for one specific thing and they
all use different underlying data formats. This makes it hard to mark up data for a range of annotations - disfluency and
dialogue acts and named entities and syntax, say - and then get at the annotations as one coherent, searchable data-
base. It also makes it hard to represent the true structure of the complete set of annotations. These problems are par-
ticularly pressing for multimodal research because fewer people have thought about how to combine video annotations
for things like gesture with linguistic annotation, but they also apply to audio-only corpora and even textual markup. The
open-source NITE XML Toolkit is designed to overcome these problems.
At the heart of NITE there is a data model that expresses how all of the annotations for a corpus relate to each other. NXT
does not impose any particular linguistic theory and any particular markup structure. Instead, users define their annota-
tions in a "metadata" file that expresses their contents and how they relate to each other in terms of the graph structure
for the corpus annotations overall. The relationships that can be defined in the data model draw annotations together
into a set of intersecting trees, but also allow arbitrary links between annotations over the top of this structure, giving a
representation that is highly expressive, easier to process than arbitrary graphs, and structured in a way that helps data
users. NXT's other core component is a query language designed specifically for working with data conforming to this
data model. Together, the data model and query language allow annotations to be treated as one coherent set containing
both structural and timing information.
Using the data model and query language, NXT provides:

• a data storage format for data that conforms to the data model

• routines for validating data stored in the format against the data model

• library support for loading data stored in the format; working with it and modifying it; and saving any changes

• a query language implementation

• libraries that make it easier to write GUIs for working with the data by providing data display components that, for in-
stance, synchronize against signals as they play and highlight query results

• annotation tools for some common tasks including video annotation and various kinds of markup over text or transcrip-
tion (dialogue acts, named entities, coreference, and other things that require the same basic interfaces)

• command line tools for data analysis that, for instance, count matches to a specific query

• command line tools for extracting various kinds of trees and tab-delimited tables from the data for further processing or
more detailed analysis

NXT Documentation: 2. A Basic Introduction to the NITE XML Toolkit

Page 5 of 94

3 Downloading and Using NXT
Platform-independent binary and source distributions of NXT can be downloaded from Sourceforge at ht-
tp://sourceforge.net/projects/nite/. For most purposes the binary download is appropriate; the source download will be
distinguished by _src suffix after the version number. For the most up-to-date version of NXT, the SourceForge CVS
repository is available. For example

cvs -z3 -d:pserver:nite.cvs.sourceforge.net:/cvsroot/nite co nxt

would get you a current snapshot of the entire NXT development tree.

3.1 Prerequisites
Before using NXT, make sure you have a recent version of Java installed on your machine: Java 1.4.2_04 is the minimum
requirement and Java 1.5 is recommended. Learn about Java on your platform, and download the appropriate version
using Sun's Java Pages.
For optimum media performance you may also want to download JMF and the platform-specific performance pack for
your OS. NXT comes packaged with a platform-independent version of JMF. Users of MacOS should use the FMJ lib-
raries instead which use QuickTime for media playback for improved performance and easier installation. NXT comes
packaged with a version of FMJ compiled specifically with QuickTime support.

3.2 Getting Started
• Step 1: download and unzip nxt_version.zip

• Step 2: Some data and simple example programs are provided to give a feel of NXT. On windows, try double-clicking
a .bat file; on Mac, try running a .command file; on Linux (or Mac) try running a shell script from a terminal e.g. sh
single-sentence.sh. More details in Sample Corpora section below.

• Step 3: Try some sample media files: Download signals.zip (94 Mb) and unzip it into the Data directory in your NXT
directory. Now when you try the programs they should run with synced media.

3.2.1 Sample Corpora
Some example NXT data and simple example programs are provided with the NXT download. There are several corpora
provided, with at most one observation per corpus, even though in some cases the full corpus can actually consist of
several hundred observations. Each corpus is described by a metadata files in the Data/meta directory, with the data
itself in the Data/xml directory. The Java example programs reside in the samples directory and are provided as simple
examples of the kind of thing you may want to do using the library.

• single-sentence - a very small example corpus marked up for part of speech, syntax, gesture and prosody. Start the
appropriate script for your platform; start the Generic Corpus Display and rearrange the windows. Even though there is
no signal for this corpus, clicking the play button on the NITE Clock will time-highlight the words as the time goes by.
Try popping up the seacrh window using the Search menu and typing a query like ($g lgest)($w word):$g #
$w. This searches for left-handed gestures that temporally overlap words. You should see the three results highlighted
when you click them.

• dagmar - a slightly larger example corpus: a single monologue marked up for syntax and gesture. We provide a sample
gesture-type coding interface which shows synchronisation with video (please download signals.zip to see this in ac-
tion).

NXT Documentation: 3. Downloading and Using NXT

Page 6 of 94

• smartkom - a corpus of human compuiter dialogues. We provide several example stylesheet displays for this corpus
showing the display object library and synchronization with signal (again, please download signals.zip above to see
synchronisation)

• switchboard - a corpus of telephone dialogues. We provide coders for animacy and markables which are in real-world
use.

• maptask-standoff - This is the full multi-rooted tree version of the Map Task corpus. We provide one example program
that saves a new version of the corpus with the part-of-speech values as attributes on the <tu> (timed unit) tags, mov-
ing them from the "tag" attribute of <tw> tags that dominate the <tu> tags.

• monitor - an eye-tracking version of the Map Task corpus.

• ICSI - a corpus of meetings. We provide coders for topic segmentation, extractive summarization etc. The entire meet-
ing corpus consists of more than 75 hours of meeting data richly annotated both manually and automatically.

3.3 Setting the CLASSPATH
All of the .bat, .command and .sh scripts in the NXT download have to set the Java CLASSPATH before running an NXT
program. To compile and run your own NXT programs you need to do the same thing. The classpath normally includes
all of the .jar files in the lib directory, plus the lib directory itself. Many programs only use a small proportion of those
JAR files, but it's as well to include them all. JMF is a special case: you should find NXT plays media if the CLASSPATH
contains lib/JMF/lib/jmf.jar. However, this will be sub-optimal: on Windows JMF is often included with Java, so
you will need no jmf.jar on your CLASSPATH at all; on other platforms consult 'How to Play Media in NXT' p.7.

3.4 How to Play Media signals in NXT
NXT plays media using JMF (the Java Media Framework). JMF's support for media formats is limited and it depends
on the platform you are using. A list of JMF supported formats is at http://java.sun.com/products/java-media/jmf/2.1.1/
formats.html. This list is for JMF 2.1.1, which NXT currently ships with.
There are several ways of improving the coverage of JMF on your platform:

• Performance packs from Sun - these improve codec coverage for Windows and Linux, and are available from the JMF
download page. In particular, note that MPEG format isn't supported in the cross-platform version of JMF, but it is in the
performance packs.

• Fobs4JMF for Windows / Linux / MacOSX is a very useful package providing Java wrappers for the ffmpeg libraries
(C libraries used by many media players which have a wide coverage of codecs and formats). Download; information.
Make sure you follow the full installation instructions which involve updating the JMFRegistry and amending your
LD_LIBRARY_PATH.

• MP3 - There's an MP3 plugin available for all platforms from Sun.

Note:

direct playback from DVDs or CDs is not supported by JMF.

NXT Documentation: 3. Downloading and Using NXT

Page 7 of 94

NXT comes with a cross-platform distribution of JMF in the lib directory, and the .bat/.sh scripts that launch the GUI
samples have this copy of JMF on the classpath. On a Windows machine, it is better to install JMF centrally on the ma-
chine and change the .bat script to refer to this installation. This will often get rid of error messages and exceptions
(although they don't always affect performance), and allows JMF to find more codecs.
It is a good idea to produce a sample signal and test it in NXT (and any other tools you intend to use) before starting
recording proper, since changing the format of a signal can be confusing and time-consuming. There are two tests that
are useful. The first is whether you can view the signal at all under any application on your machine, and the second is
whether you can view the signal from NXT. The simplest way of testing the latter is to name the signal as required for
one of the sample data sets in the NXT download and try the generic display or some other tool that uses the signal. For
video, if the former works and not the latter, then you may have the video codec you need, but NXT can't find it - it may
be possible to fix the problem by adding the video codec to the JMF Registry. If neither works, the first thing to look at is
whether or not you have the video codec you need installed on your machine. Another common problem is that the video
is actually OK, but the header written by the video processing tool (if you performed a conversion) isn't what JMF expects.
This suggests trying to convert in a different way, although some brave souls have been known to modify the header in a
text editor.

Media on the Mac
NXT ships with some startup scripts for the Mac platform (these are the .command files) that attempt to use FMJ to pass
control of media playing from JMF to the native codecs used by the Quicktime player.
If the FMJ approach fails, you should still be able to play media on your Mac but you'll need to edit your startup script. Take
an existing command file as a template and change the classpath. It should contain lib/JMF/lib (so jmf.properties is picked
up); lib/JMF/lib/jmf.jar and lib/fmj/lib/jffmpeg-1.1.0.jar, but none of the other FMJ files. This approach uses JFFMPEG more
directly and works on some Mac platforms where the default FMJ approach fails. It may become the default position for
NXT in future.

3.5 Programmatic Controls for NXT
This section describes how to control certain behaviours of NXT from the command line.
These switches can be set using Java properties. Environment variables with the same names and values are also read,
though properties will override environment variables. Example:
java -DNXT_DEBUG=0 -DNXT_QUERY_REWRITE=true CountQueryResults -c mymeta.xml

-o IS1003d -q '($s summ)($w w):text($w)="project" && $s^$w'
This runs the CountQueryResults program with query rewriting on in silent mode (i.e. no messages). Setting environ-
ment variables with the same names will no longer work .

Java Arguments Controlling NXT Behaviour
NXT_DEBUG=number

The expected value is a number between 0 and 4. 0: no messages; 1: errors only; 2: important messages; 3: warn-
ings; 4: debug information. The arguments true and false are also accepted to turn messages on or off.

NXT_QUERY_REWRITE

Values accepted: true or false; defaults to false. If the value is false, NXT will automatically rewrite queries in
an attempt to speed up execution.

NXT_LAZY_LOAD

Values accepted: true or false; defaults to true. If the value is false, lazy loading will not be used. That means
that data will be loaded en masse rather than as required. This can cause memory problems when too much data is
loaded.

NXT_RESOURCES_ALWAYS_ASK

Values accepted: false or false; defaults to false. If the value is false, the user will be asked for input at all
points where there is more than one resource listed in the resource file for a coding that needs to be loaded. The

NXT Documentation: 3. Downloading and Using NXT

Page 8 of 94

user will be asked even if there are already preferred / forced / defaulted resources for the coding. This should only
be used by people who really understand the use of resources in NXT.

NXT_RESOURCES

A list of strings separated by commas (no spaces). Each string is taken to be the name of a resource in the resources
file for the corpus and is passed to forceResourceLoad so that it must be loaded. Messages will appear if the resource
names do not appear in the resource file.

NXT_ANNOTATOR_CODINGS

A list of strings separated by semi-colons. If any of the strings are coding names in the metadata file, they are used
when populating the list of existing annotators for the 'choose annotator' dialog. If no valid coding names are listed,
all available annotators are listed.

3.6 Compiling from Source and Running the Test Suites
• Go into the top level nxt directory, decide on a build file to use and copy it to the right directory e.g. cp

build_scripts/build.xml .. Type ant to compile (ant jar is perhaps the most useful target to use as it doesn't
clean all compiled classes and rebuild the javadoc every time). If there are compile errors, copy the error message into
an email and send it to Jonathan or another developer (see the SourceForge members page for emails).

• Run the test suite(s). The NXT test suite is by no means comprehensive but tests a subset of NXT functionality. To run,
you need to have the JUnit jar on your CLASSPATH. Then

javac -d . test-suites/nom-test-suite/NXTTestScratch.java

Now run the tests:

java junit.textui.TestRunner NXTTestScratch

Again, any errors should be forwarded to a developer.

• If you are making a real public release, Update the README file in the top-level nxt directory, choosing a new minor or
major release number. Commit this to CVS.

• Now build the release using the build_scripts/build_release.xml ant file (use the default target). This com-
piles everything, makes a zip file of the source, and one of the compiled version for release, and produces the Javadoc.
If you're on an Edinburgh machine, copy the Javadoc (in the apidoc directory) to /group/project/webltg/NITE/
nxt/apidoc. Test the shell script examples, and upload the new release to SourceForge.

NXT Documentation: 3. Downloading and Using NXT

Page 9 of 94

4 Data
Our approach to data modelling is motivated by the need to have many different kinds of annotations for the same basic
language data, for linguistic levels ranging from phonology to pragmatics. There are two reasons why such cross-annota-
tion is prevalent. First, corpora are expensive to collect even without annotating them; projects tend to reuse collected
materials where they can. Second, with the advent of statistical methods in language engineering, corpus builders are
interested in having the widest possible range of features to train upon. Understanding how the annotations relate is es-
sential to developing better modelling techniques for our systems.
Although how annotations relate to time on signal is important in corpus annotation, it is not the only concern. Some
entities that must be modelled are timeless (dictionaries of lexical entries or prosodic tones, universal entities that are
targets of referring expressions). Others (sentences, chains of reference) are essentially structures built on top of other
annotations (in these cases, the words that make up an orthographic transcription) and may or may not have an implicit
timing, but if they do, derive their timings from the annotations on which they are based. Tree structures are common
in describing a coherent sets of tags, but where several distinct types of annotation are present on the same material
(syntax, discourse structure), the entire set may well not fit into a single tree. This is because different trees can draw on
different leaves (gestural units, words) and because even where they share the same leaves, they can draw on them in
different and overlapping ways (e.g.,disfluency structure and syntax in relation to words). As well as the data itself being
structured, data types may also exhibit structure (for instance, in a typology of gesture that provides more refined distinc-
tions about the meaning of a gesture that can be drawn upon as needed).
The best way to introduce the kind of data NXT can represent is by an example.

The picture, which is artificially constructed to keep it simple, contains a spoken sentence that has been coded with fairly
standard linguistic information, shown above the representation of the timeline, and gestural information, shown below
it. The lowest full layer of linguistic information is an orthographic transcription consisting of words marked with part-of-
speech tags (in this set, the tag PP$ stands for “personal pronoun”). Some words have some limited prosodic information
associated with them in the form of pitch accents, designated by their TOBI codes. Building upon the words is a syntactic

NXT Documentation: 4. Data

Page 10 of 94

structure — in this formalism, a tree — with a category giving the type of syntactic constituent (sentence, noun phrase,
verb phrase, and so on) and the lemma, or root form, of the word that is that constituent’s head. Prepositional phrases, or
PPs, additionally specify the preposition type. The syntactic constituents are not directly aligned to signal, but they inherit
timing information from the words below them. The very same syntactic constituents slot into a semantic structure that
describes the meaning of the utterance in terms of a semantic frame (in this case, a buying event) and the elements that
fill the roles in the frame (the agent, patient, and beneficiary). The last piece of linguistic information, a link between the
syntactic constituent “the man” and the personal pronoun “his”, shows that the former is the antecedent of the latter in a
coreference relationship.
Meanwhile, the gesture coding shows two timed gestures and their relationship to a static gesture ontology. In the onto-
logy, one type is below another if the former is a subtype of the latter. The first gesture, with the right hand, is a deictic,
or pointing, gesture where the target of the pointing is some toys. This gesture is divided into the usual phases of prepar-
ation, stroke, hold, and retraction. The second gesture, made with the left hand, is discursive, but the coder has chosen
not to qualify this type further. Gesture types could be represented on the gestures directly in the same way as parts of
speech are represented for words. However, linking into an ontology has the advantage of making clear the hierarchical
nature of the gesture tag set.
All of these kinds of information are used frequently within their individual research communities. No previous software
allows them to be integrated in a way that expresses fully how they are related and makes the relationships easy to ac-
cess. And yet this integration is exactly what is required in order to understand this communicative act fully. No one really
believes that linguistic phenomena are independent; as the example demonstrates, deictic speech can only be decoded
using the accompanying gesture. Meanwhile, many linguistic phenomena are correlated. Speaker pauses and hearer
backchannel continuers tend to occur at major syntactic boundaries, an argument builds up using rhetorical relations that
together span a text, postural shifts often signal a desire to take a speaking turn, and so on. The NITE XML Toolkit sup-
ports representing the full temporal and structural relationships among different annotations both as a way of keeping all
of the annotations together and to allow these relationships to be explored, since understanding them should help our
research.
Although the example shows a particular data structure that necessarily makes choices about for instance, how to rep-
resent coreferential relationships and what gestures to include in a taxonomy, NXT deliberately does not prescribe any
particular arrangement. Instead, it is designed to be theory-neutral. NXT allows users to define their annotations and how
they relate to each other, within constraints imposed by its internal data representation, the NITE Object Model. Notice
that in the example, although the overall graph is not a tree, it contains trees as prominent components. The NITE Object
Model treats annotations as nodes in a set of intersecting trees. Each node in the model must have at most a single set of
children, but might have several parents, defining its placement in different trees. Each tree has an ordering for the nodes
that it contains, but there is no order for the set of annotations overall. In addition to the intersecting tree structure, each
node can have out-of-tree links, called "pointers", to other nodes. In the NITE Object Model, pointers can introduce cycles
into the data structure, but parent-child relationships cannot. This makes it technically possible to represent any graph
structure in the model, but at a high processing cost for operations involving pointers.

4.1 The NITE Object Model
The NITE Object Model consists of a general graph structure, and then some properties imposed on top of that graph
structure that make using that structure more computationally tractable whilst still expressing the sorts of relationships
that are prevalent among annotations.
The NITE Object Model is a graph where the nodes are required to have a simple type and may additionally have attribute-
value pairs elaborating on the simple type, timings, children that the node structurally dominates, textual content, pointers
relating the node to other nodes, and external pointers relating the node to external data not represented in the NITE
Object Model. Any individual node may have either children or textual content, but not both.
The simple type is a string.
An attribute is identified by a simple label string and takes a value that conforms to one of three types: a string, a number,
or an enumeration. The simple type of the element determines what attributes it can contain. For any element, the simple
type plus the attribute-value pairs defined for the element represent its full type.
Timing information can be present, and is represented by reserved start and end attributes containing numbers that rep-
resent offsets from the start of the synchronized signals.
The children are represented by an (ordered) list of other nodes.
The textual content is a string. For nodes that have children instead of textual content, some NXT-based tools use an
informal convention that the textual content of the node is equivalent to textual content of its descendants, concatenated
in order and whitespace-separated.

NXT Documentation: 4. Data

Page 11 of 94

The pointers are represented by a list of role and filler pairs. A role is a simple label string that has an expected arity, or
number of nodes, expected to fill the role: one, or one-or-more. A role is filled by a set of nodes with the expected arity.
We sometimes use the term features for these pointers.
The external pointers are also represented by a list of role and filler pairs. A role is again a simple label string with an
expected arity of one or one-or-more. The role of an external pointer is filled by a string that specifies a datum in the ex-
ternal reference format, with the details of how the referencing works left to the application program. This can be useful,
for instance, in tailored applications that need to cooperate with existing tools that display data in the other format.
The object model also imposes some properties on the parent-child relationships within this general graph structure.
Firstly, the parent-child relationships in this graph must be acyclic, so that its transitive closure can be interpreted as a
dominance relation. Secondly, there must not be more than one path between any two elements. Because of these con-
straints, the parent-child graph (which, unlike a tree, allows children to have multiple parents) decomposes into a collec-
tion of intersecting tree-like structures, called hierarchies. Each hierarchy has its own structural ordering (similar to an
ordered tree), but these orderings must be consistent where hierarchies intersect.
If an element has timing information, the element's start time must be less than or equal to its end time. In addition, if ele-
ments in a dominance relation both have timing information, the time interval associated with the ancestor must include
that of the descendant. The times of elements need not be consistent with any of the structural orderings. Timing inform-
ation can thus be used to define an additional partial ordering on the graph, which is not restricted to a single hierarchy.
In the object model, there are no structural or timing constraints imposed on nodes based on the pointers between them.
The pointers merely provide additional, arbitrary graph structure over the top of the intersecting hierarchy model.

4.2 The NITE Data Set Model
Our object model is simply an abstract graph structure with a number of properties enforced on it that govern orderings.
However, it can be difficult for data set designers to think of their data in terms this abstract, rather than the more usual
concepts such as corpus, signal, and annotation. For this reason, we provide a data set model in these familiar terms that
can easily be expressed using our object model and from whose structure the essential properties we require regarding
orderings and acyclicity fall out. Data set designers use this level of the model to describe their designs, and by providing
metadata that expresses the design formally, make it possible to validate the overall structure of any specific data set
against their intended design.
Here we describe the main entities and relationships that occur in our data set model.

Data Set Model Concepts
Observation

An observation is the data collected for one interaction — one dialogue or small group discussion, for example.

Corpus

A corpus is a set of observations that have the same basic structure and together are designed to address some re-
search need. For each simple data type, metadata for the corpus determines what attribute-value pairs can be used
to refine the type, whether or not elements of that type have timing information and/or children, and what features
can be present for them.

Agent and Interaction

An agent is one interactant in an observation. Agents can be human or artificial. We provide the concept of agent
so that signals and annotations can be identified as recording or describing the behaviour of a single agent or of the
interacting group as a whole. As an example, individual agents speak, but it takes two of them to have a handshake,
and possibly the entire set to perform a quadrille. Any signal or annotation involving more than an individual agent
counts as belonging to the interaction even if it involves a subset of the agents present.

Signal

A signal is the output from one sensor used to record an observation: for example, an audio or video file or blood
pressure data. An observation may be recorded using more than one signal, but these are assumed to be synchron-
ized, so that timestamps refer to the same time on all of them. This can be achieved through pre-editing. Individual

NXT Documentation: 4. Data

Page 12 of 94

signals can capture either one agent (for instance, a lapel microphone or a close-up camera) or the interaction among
the agents (for instance, a far-field microphone or overhead camera).

Layer

A layer is a set of nodes that together span an observation in some way, containing all of the annotations for a par-
ticular agent or for the interaction as a whole that are either of the same type or drawn from a set of related types.
Which data types belong together in a layer is defined by the corpus metadata. For instance, the TEI defines a set of
tags for representing words, silences, noises, and a few other phenomena, which together span a text and make up
the orthographic transcription. In this treatment, these tags would form a layer in our data set model.

Time-aligned layer

A time-aligned layer is a layer that contains nodes timed directly against signal.

Structural layer

A structural layer is a layer where the nodes have children. The children of a structural layer are constrained to be
drawn from a single layer, which, in order to allow recursive structures, can be itself. Ordinarily nodes in this layer will
inherit timing information from their children if their children are timed, but this inheritance can be blocked.

Featural layer

A featural layer is a layer where the nodes point to other nodes, but do not contain children or timing information. A
featural layer draws together other nodes into clusters that represent phenomena that do not adhere to our timing
relationships. For instance, a featural layer might contain annotations that pair deictic gestures with deictic pronouns.
Since deictic pronouns and their accompanying gestures can lag each other by arbitrary amounts, there is no sense
in which the deictic pair spans from the start of one to the end of the other.

External reference layer

External reference layers give a mechanism for pointing from an NXT data graph into some data external to NXT that
is not in NXT's data format. In an external reference layer, the nodes point both to other NXT nodes and specify a
reference to external data. For instance, an external reference layer might contain annotations that pair transcribed
words with references in an ontology represented in OWL.

Coding

A coding is a sequence of one or more layers that describe an observation, all either for the same agent or for the
interaction as a whole, where each layer’s children are taken from the next layer in the sequence, ending either in
a layer with no children or in a layer whose children are in the top layer of another coding. Codings defined in this
way consist of tree structures, and the relations among codings allow the intersecting hierarchies of the NITE Object
Model. Since most coherent annotations applied to linguistic data fit into tree structures, for many corpora, the cod-
ings will correspond to what can be thought of loosely as types of annotation.

Corpus Resource

A corpus resource is a sequence of one of more layers that provide reference data to which coding nodes can point.
A corpus resource might be used, for instance, to represent the objects in the universe to which references refer,
the lexical entries that correspond to spoken word tokens, or an ontology of types for a linguistic phenomena that
provides more information than the basic strings given in a node's simple type. The nodes in a corpus resource will
not have timing information. For backwards compatibility, NXT corpora may describe individual corpus resources as
object sets or ontologies, where object sets are expected to form flat lists and ontologies may have tree structure.

Code

A code is an individual data item, corresponding to one node in the NITE Object Model. The metadata declaration
for codes of a specific type defines the attribute-value pairs that are allowed for that type. If the code relates to other
codes using pointers, the declaration specifies by role in which layer the target of the pointer must be found. Further
restrictions on the types allowed as children for any given code arise from the layer in which the code is placed.

NXT Documentation: 4. Data

Page 13 of 94

Together, these definitions preserve the ordering properties that we desire; intuitively, time-aligned and structural layers
are ordered, and timings can percolate up structural layers from a time-aligned layer at the base. The layer structure with-
in a coding prohibits cycles.
The structure of any particular data set is declared in these terms in the metadata file for the corpus and imposed by it;
for instance, if you validate a corpus against the metadata, any nodes that violate the layering constraints declared in
the metadata will be flagged. However, technically speaking, the NITE Object Model itself is perfectly happy to load and
work with data that violates the layer model as long as the data graph itself contains no cycles. A number of previous
corpora have violated the layering model deliberately in order to avoid what the designers see as too rigid constraints
(see 'Skipping Layers' p.32). We don't recommend this because violations can have unintended consequences unless
the designers understand how NXT's loading, validation, and serialization work, and may not continue to have the same
effects as NXT development continues.

4.3 Data Storage
NXT corpora are serialized, or saved to disk, into many different XML files in which the structure of the data graph in the
NITE Object Model is expressed partly using the XML structure of the individual files and partly using links between
files.

4.3.1 Namespacing
NXT is designed to allow data to be divided into namespaces, so that different sites can contribute different annotations,
possibly even for the same phenomena, without worrying about naming conflicts. Any code or attribute in a NITE Object
Model can have a name that is in a namespace, by using an XML namespace for the XML element or attribute corres-
ponding to the NOM code or attribute. However, see NXT bug 1633983 for a description of a bug in how the query parser
handles namespaced data.
The nite: namespace, "http://nite.sourceforge.net/", is intended for elements and attributes that have a special meaning
for NXT processing, and is used for them by default. This covers, for instance, the ids used to realize out-of-file links and
the start and end times that relate data nodes to signal. Although use of the nite: namespace makes for a clearer data
set design, nothing in the implementation relies on it; the names of all the elements and attributes intended for the nite:
namespace can be changed by declaring an alternative in the metadata file, and they do not have to be in the nite:
namespace.
In addition the nite: namespace, corpora that choose XLink style links (see) make use of the xlink: namespace,
http://www.w3.org/1999/xlink.

As for any other XML, NXT files that make use a namespace must declare the namespace. This includes the metadata
file. One way of doing this is to add the declaration as an attribute on the document (root) element of the file. For instance,
assuming the default choices of nite:root for the root element name and nite:id for identifiers, the declaration for
the nite: namespace might look like this:

<nite:root nite:id="stream1" xmlns:nite="http://nite.sourceforge.net/">
...
</nite:root>

For more information about namespacing, see .

4.3.2 Coding Files
The data set model places codes strictly in layers, with codings made up of layers that draw children from each other in
strict sequence. This is so that within-coding parent-child relationships can be represented using the structure of the XML
storage file itself. For a single observation, each coding is stored as a single XML file. The top of each XML tree is a root
element that does not correspond to any data node, but merely serves as a container for XML elements that correspond
to the nodes in the top layer of the coding being represented. Then the within-coding children of a node will be represen-
ted as XML children of that element, and so on. Within a layer, represented as all elements of a particular depth from the
XML file root (or set of depths, in the case of recursive layers), the structural order of the nodes will be the same as the
order of elements in the XML file.

4.3.3 Links
The structure of a coding file suffices for storing information about parent-child relationships within a single coding.
However, nodes at the top and bottom layers of a coding may have parent-child relationships with nodes outside the cod-

NXT Documentation: 4. Data

Page 14 of 94

ing, and any node in the coding may be related by pointer to nodes that are either inside or outside the coding. In addition,
nodes in external reference layers may be related to external data stored in files that are not in XML format. These rela-
tionships are expressed in the XML using links. NXT relies on having two reserved XML element types for representing
links, one for children and one for pointers, including external reference pointers. The XML element types are, by default,
nite:child and nite:pointer, but they can be changed in the section of the metadata file that declares reserved
elements (see 'Reserved Elements and Attributes' p.17). If a NOM node has an out-of-coding child or a pointer, then the
XML element that corresponds to it will represent this relationship by containing an XML child of the appropriate type.
Links can be represented in either LTXML1 style or using XLink, but the choice of link style must be uniform throughout a
corpus. The choice is specified on the <corpus> declaration within the metadata file (see 'Top-level corpus description'
p.16). NXT can be used to convert a corpus from LTXML1 link style to XLink style (see).
With either link style, the document (XML file) for a reference must be specified without any path information, as if it were
a relative URI to the current directory. NXT uses information from the metadata file about where to find files to decode the
links. This creates the limitation for external XML processes that use the links that either all the XML files must be in one
directory or the external process must do its own path resolution.
Also, with either link style, NXT can read and write ranges in order to cut down storage space. A range can be used to
represent a complete sequence of elements drawn in order from the data, and references the sequence by naming the
first and last element. Ranges must be well-formed, meaning that they must begin and end with elements from the same
layer, and in a recursive layer, from elements at the same level in the layer. To make it easier to use external XML pro-
cessing that can't handle ranges, NXT can be used to convert a corpus that uses ranges into one that instead references
every element individually (see).

4.3.3.1 LTXML1 Style Links
In LTXML1 style, pointers and children will have an (un-name-spaced) href attribute that specifies the target element.

The following is an example in the LTXML1 style of an NXT pointer link (using the default nite:pointer element) that
refers to one element.

<nite:pointer role="foo" href="q4nc4.g.timed-units.xml#id('word_1')"/>

The following is an example in the XLink style of an NXT child link (using the default nite:child element) that refers to
a range of elements.

<nite:child href="q4nc4.g.timed-units.xml#id('word_1')..id('word_5')"/>

4.3.3.2 XLink Style Links
When using the XLink style, the target element should conform to the XLink standard for describing links between re-
sources , and use the XPointer framework with the XPointer xpointer() Scheme to specify the URI. NXT only implements
a small subset of these standards, and so requires a very particular link syntax. NXT elements that express links in this
style must include the xlink:type attribute with the value simple, and specify the URI in the xlink:href attribute.
The xpointer reference must either refer to a single element within a document by id or by picking out the range of nodes
between two nodes using the range-to function with the endpoints specified by id.

The following is an example in the XLink style of an NXT pointer link (using the default nite:pointer element) that
refers to one element.

<nite:pointer role="foo" xlink:href="o1.words.xml#xpointer(id('w_1'))"
xlink:type="simple"/>

The following is an example in the XLink style of an NXT child link (using the default nite:child element) that refers to
a range of elements.

<nite:child xlink:href="o1.words.xml#xpointer(id('w_1')/range-to(id('w_5')))"
xlink:type="simple"/>

4.3.4 Data And Signal File Naming
The actual names used for data and signal files in an NXT corpus depend on the codings and signals defined for it. Rather
than containing a complete catalog mapping individual codings and signals to individual files on disk, NXT assumes con-
sistent naming across a corpus. It constructs the names for a file from pieces of information in the data set model (see

NXT Documentation: 4. Data

Page 15 of 94

'NITE Data Set Model' p.12). Both these pieces of filenames and the paths to directories containing the various kinds of
files are specified in the metadata file (see 'Metadata' p.16).

4.3.4.1 Signal Files
For signal files recording interaction, the name of the file is found by concatenating the name of the observation, the
name of the signal, and the extension declared for the signal, using dots as separators. For instance, the overhead
video, an AVI with extension avi, for observation o1 would be stored in file o1.overhead.avi.

For signal files recording individuals, the filename will additionally have the agent name after the signal name.
For instance, the closeup video, an AVI with extension avi, for agent A in observation o1 would be stored in file
o1.A.closeup.avi.

4.3.4.2 Coding Files
For coding files representing interaction behaviour, the name of the XML file is found by concatenating the name of the
observation, the name of the coding, and the extension xml, using dots as separators. For instance, the games cod-
ing for observation o1 would be stored in file o1.games.xml.

For coding files representing agent behaviour, the name of the XML file will additionally have the agent name after
the observation name. For instance, the words coding for agent giver in observation o1 would be stored in file
o1.giver.moves.xml.

4.3.4.3 Corpus Resources and Ontologies
Corpus resources and ontologies are for the entire corpus, not one per observation. The name of the XML file is found by
concatenating the name of the corpus resource or onotology and the extension xml.

4.4 Metadata
Because NXT does not prescribe any particular data representation, in order to load a corpus it requires metadata de-
claring what observations, codings, signals, layers, codes, and so on come with a particular corpus, and where to find
them on disk. This metadata is expressed in a single file, which is also in XML format. Each of the example data set ex-
tracts comes with example metadata that can be used as a model. The DTD and schema for NXT metadata can be found
in the lib/dtd and lib/schema directories of the NXT distribution, respectively.

4.4.1 Preliminaries

4.4.1.1 Attribute definitions
A number of sections of the metadata (<code>, <ontology>, <object-set>) rely on the same basic mechanism for
defining attributes. Attributes can have three different types: string, meaning free text; number, where any kind of nu-
meric value is permitted; or enumerated, where only values listed in the enclosed value elements are permitted. They
are defined using an <attribute> tag where the name attribute gives the name of the attribute and the value-type
attribute, the type. For enumerated attributes, the attribute declaration must also include the enumerated values within
<value> tags. For instance,

<attribute name="affiliation" value-type="string"/>

defined an attribute named "affiliation" that can have any string value, whereas

<attribute name="gender" value-type="enumerated">
<value>male</value>
<value>female</value>

</attribute>

defines an attribute named "gender" that can have two possible values, "male" and "female".

4.4.2 Top-level corpus description
The root element of a metadata file is corpus and here's an example of what it looks like:

NXT Documentation: 4. Data

Page 16 of 94

<corpus description="Map Task Corpus" id="maptask"
links="ltxml1" type="standoff" resource_file="resource.xml">
...

</corpus>

The important attributes of the corpus element are links and type. The type attribute should have the value ="stan-
doff". The previous use of simple corpora is deprecated. The links attribute defines the syntax of the standoff links
between the files. It can be one of: ="ltxml1" or xpointer. See 'Links' p.14 for an explanation of these two link styles.
The resource attribute is optional: if it is present it specifies a resource file which will be parsed by NXT (from versions
1.4.1 onwards). Resource files provide a more flexible way to manage a large NXT corpus, particularly where many an-
notators and automatic processes could provide competing annotations for the same things. See 'Resource Files' p.26 for
an explanation of resource files and their format.

4.4.3 Reserved Elements and Attributes (optional)
There are a number of elements and attributes that are special, or reserved, in NXT because they do not (or do not
just) hold data but are used in NXT processing, for instance, in order to identify the start and end times of some timed
annotation. The <reserved-elements> and <reserved-attributes> sections of the metadata-file can be used to
override their default values. They contain as children declarations for each element or attribute separately; each child
declaration uses a different element name (see table), with the name attribute specifying the name to use for that element
or attribute in the NXT corpus being described. If the element in the metadata for declaring the name to use for a particular
element or attribute is missing, then NXT will use the default value for that attribute. The <reserved-attributes> and
<reserved-attributes> sections of the metadata-file can be omitted entirely if no declarations are required for the
corpus being described.

Caution:

At present, off-line data validation can not fully handle alternative names (see 'Data validation' p.28).

4.4.3.1 Reserved Attributes (optional)
The following table shows each of the reserved attributes along with the name of the element in the metadata file used to
declare its name and the default value.

Reserved Attributes
attribute metadata tag name default value
Root / stream element name stream nite:root
Element identifier identifier nite:id
Element start time starttime nite:start
Element end time endtime nite:end
Agent agentname agent
Observation observationname -
Comment commentname comment
Key Stroke keystroke keystroke
Resource resourcename -

For instance, a metadata declaration that changes just the names of the id, start, and end time attributes might look like
this:

<reserved-attributes>
<identifier name="identifier"/>
<starttime name="starttime"/>
<endtime name="endtime"/>

</reserved-attributes>

They are used in NXT processing as follows.

NXT Documentation: 4. Data

Page 17 of 94

Reserved Attribute Meanings
Stream

The stream attribute occurs at the root elements of all XML data files in a corpus apart from ontology files and corpus
resources, and gives a unique identifier for the XML document in the file. This attribute does not form part of the data
represented in the NITE Object Model, but is required for serialization.

Identifier

Identifiers are required on all elements in an NXT corpus, and are used by NXT to resolve out-of-file links when load-
ing and to maintain the correspondence between the data and the display in GUI tools.

Start and End Times

Start and end times may appear on time-aligned elements. They give the offset from the beginning of a signal (or set
of synchronized signals) in seconds.

Agent and Observation

These reserved attributes describe not attributes that should occur in the XML data files, but attributes that can be
added automatically as data is loaded, for access in the NITE Object Model. Normally, corpora do not explictly rep-
resent the name of the observation which an annotation describes, or the name of the agent if it is an annotation
for an individual, since this information is represented by where in the set of XML files the data is stored. It would
take a great deal of space to stick this information on every data element, but it is useful to have it in the NOM, for
instance, so that queries can filter results based on it. The agentname and observationname declarations specify
the names to use for these attributes in the NOM. The attributes will be added at load time to every element that
doesn't already have an attribute with the same name.

Comment

The comment attribute gives space to store an arbitrary string with any data element in the corpus. It is typically used
for temporary information to do with data management or to represent the cause of uncertainty about an annotation.

Keystroke

Any element can have an associated keystroke. This is normally used to represent keyboard shortcuts for elements
in an ontology, though it can be used for other purposes. The value is simply a string, and what application programs
do with the string (if anything) is up to them.

Resource

If the metadata refers to a resource file, this attribute contains the ID of the resource this element is associated
with, if any.

4.4.3.2 Reserved Elements (optional)
The following table shows each of the reserved elements along with the name of the element in the metadata file used to
declare its name and the default value.

Reserved Elements
element metadata tag name default value
Pointer pointername nite:pointer
Child child nite:child
Stream element stream nite:root

For instance, a metadata declaration covering just the names of pointer elements might look like this:

NXT Documentation: 4. Data

Page 18 of 94

<reserved-elements>
<pointername name="mypointer"/>

</reserved-elements>

4.4.3.3 Example
Changing the reserved element and attribute names from the default affects the representation that NXT expects within
the individual XML data files. For instance, suppose we include the following in the metadata file:

<reserved-attributes>
<stream name="stream"/>
<identifier name="identifier"/>
<starttime name="starttime"/>
<endtime name="endtime"/>
<agentname name="who"/>
<observationname name="obs"/>
<commentname name="mycomment"/>
<keystroke name="mykey"/>

</reserved-attributes>
<reserved-elements>

<pointername name="mypointer"/>
<child name="mynamespace:child"/>
<stream name="stream"/>

</reserved-elements>

Further suppose that the metadata file specifies the use of ltxml1-style links and goes on to define a coding file containing
one time-aligned layer, with one code, <word, that declares no further attributes but can contain syllables as children, and
can point to syntactic constituents using the "antecedent" role. Then the full XML file representing those words might look
like this:

<stream>
<word identifier="word_1" starttime="1.3" endtime="1.5"

<mypointer role="antecedent" href="obs1.syntax.xml#ante_2"/>
<mynamespace:child href="obs1.syllables.xml#syllable_1"/>

</word>
...
</stream>

4.4.4 CVS Details (optional, beta)
Many projects keep their annotations in a CVS repository. Concurrent version control (see) allows different people to
edit the same document collaboratively, maintaining information about who has done what to what file when. One NXT
contributor is adding functionality to allow NXT GUIs to work directly from a CVS repository rather than requiring the an-
notator to check out data from CVS and then commit changes as additional steps. The cvsinfo section of the metadata
declares where to find the CVS repository for these purposes. It has three attributes, all of which are required: protocol
(one of pserver, ext, local, sspi); server (the machine name on which the CVS server is hosted); and module
(the top level directory within the CVS repository where the corpus is found). For instance,

<cvsinfo protocol="pserver" server="cvs.inf.ed.ac.uk" module="/disk/cvs/ami"/>

4.4.5 Independent Variables on Observations

4.4.6 Agents (optional)
A corpus is a set of observations of language behaviour that are all of the same basic genre, all of which conform to the
same declared data format. For each corpus, there will be a set number of agents, or individuals (whether human or artifi-
cial) whose behaviour is being observed. The agents section of the metadata contains agent declarations for each one.
Each agent declaration must contain a name attribute, which can be any string that does not contain whitespace. The
agent name will be used to name data and signal files. If the reserved attribute agentname is declared (see 'Reserved
Attributes' p.17, it will also be available as an attribute on all agent annotations during queries. Agent declarations may

NXT Documentation: 4. Data

Page 19 of 94

also contain a description, which can be any string, and is intended to be a short, human-readable description. Its use
is application-specific.
Note that this strategy for naming agents gives uniformity throughout the corpus; every observation in a corpus will use
the same agent names. That is, the name of an agent expresses its role in the language interaction being observed.
Typical agent names are e.g. system and user for human-computer dialogue. For corpora without discernible roles, the
labelling is often arbitrary, using letters to designate individuals, or based on seating. NXT deliberately places personal
information about the individuals that fill the agent roles for specific observations in corpus resources, not the metadata,
so that it is accessible from the query language.
Usually, it is obvious how many agents to use for a corpus; e.g., two for dialogue, five for five-person discussion. However,
there are a few non-obvious cases.
For corpora of discussions where the size varies but everything else is the same, in order to treat all observations in the
same metadata file, you must declare the largest number of agents required by any observation so that one metadata file
can be used throughout. In this case, it will be impossible to tell whether an agent speaks no words because they were
absent or because they were silent without encoding this information in a corpus resource.
For monologue and written text, it is possible either to declare the corpus as having one agent or as having no agents,
treating every annotation as a property of the interaction. The only difference is in how the data files will be named.

4.4.6.1 Example
This example, used by the Map Task Corpus, declares two agents, the route giver and the route follower.

<agents>
<agent name="g" description="giver"/>
<agent name="f" description="follower"/>

</agents>

4.4.7 Signals (optional)
Most (but not all) corpora come with either a single signal for each observation, or a set of signals that together record the
observation from different angles. In a corpus, the usual aim is to capture all observations with the same recording set-up,
resulting in the same set of recordings for all of them. This section of the metadata declares what signals to expect for
the observations in the corpus and where they reside on disk. There is an explanation of how filenames are concatenated
from parts in ' Data And Signal File Naming' p.15. Filenames are case-sensitive.
At the top level of this section, the signals declaration uses the path attribute to specify the initial part of the path to
the directory containing signals. If the path is relative, it is calculated relative to the location of the metadata file, not to
the directory from which the java application is started. The default path is the current directory. The signals declara-
tion can also declare a pathmodifier, which concatenates additional material to the end of the declared path. For any
given observation, the additional material will be the result of replacing any instances of the string observation with the
name of that observation. This allows the signals for a corpus to be broken down into subdirectories for each observation
separately.
Below the signals tag, the metadata is divided into two sections, agent-signals and interaction-signals, for
agent and interaction signals, respectively.
Within these sections, each type of signal for a corpus has its own signal declaration, whch takes an extension giving
the file extension; name, which is used as part of the filename and should not contain whitespace; format, which is a
human-readable description of the file format, and type, which should be ="audio" or video; and again a pathmod-
ifier, treated in the same way as the pathmodifier on the signals declaration, and appended to the path after it. Of
these attributes, extension and name are required, and the rest are optional.

Occasionally the recording setup will not be entirely uniform over a corpus, with individual signals missing or individual
observations having one signal or another from the setup, but not both. In these cases, you must over-declare the set of
signals as if the corpus were uniform and treat these signals as missing. The main ramification of this in software is that
GUIs will give users the choice of playing signals that turn out not to be available unless they check for existence first.

4.4.7.1 Example
Assume that there is an observation named o1 and agents g and f. Then this declaration:

NXT Documentation: 4. Data

Page 20 of 94

<signals path="../signals/">
<agent-signals>

<signal extension="au" format="mono au"
name="audio" type="audio"/>

</agent-signals>
<interaction-signals>

<signal extension="avi" format="stereo avi"
name="interaction-video" type="video"/>

</interaction-signals>
</signals>

will cause NXT to expect to find the following media files at the following paths:
../signals/o1.g.audio.au
../signals/o1.f.audio.au
../signals/o1.interaction-video.avi
If we were to add the pathmodifier observation to the signals tag, NXT would look for the signals at, e.g., ../sig-
nals/o1/o1.interaction-video.avi. If we then also added the pathmodifier video for the interaction-video, leav-
ing the other signal with no additional pathmodifier, i.e. declaring as

<signals path="../signals/" pathmodifier="observation">
<agent-signals>

<signal extension="au" format="mono au"
name="audio" type="audio"/>

</agent-signals>
<interaction-signals>

<signal extension="avi" format="stereo avi"
name="interaction-video" type="video"
pathmodifier="video"/>

</interaction-signals>
</signals>

NXT would look for the signals as follows.
../signals/o1/o1.g.audio.au
../signals/o1/o1.f.audio.au
../signals/o1/video/o1.interaction-video.avi

4.4.8 Corpus Resources (optional)
A corpus resource is a set of elements that are globally relevant in some way to an entire corpus. They are not as strictly
specified as ontologies or object sets (below). They will probably eventually replace the use of those things. Typically
these will be files that come from the original application and can be used almost without alteration. You may specify the
exact hierarchical breakdown of such a file, but typically there will just be one recursive layer (pointing to itself) that spe-
cifies all the codes permissible. Here is an example where the resource describes participants in a meeting corpus:
<corpus-resources path=".">

<corpus-resource-file name="speakers" description="meeting speakers">
<structural-layer name="speaker-layer"

recursive-draws-children-from="speaker-layer">
<code name="speaker">

<attribute name="id" value-type="string"/>
<attribute name="gender" value-type="enumerated">

<value>male</value>
<value>female</value>
</attribute>

</code>
<code name="language">

<attribute name="name" value-type="string"/>
<attribute name="region" value-type="string"/>

</code>

NXT Documentation: 4. Data

Page 21 of 94

<code name="age" text-content="true"/>
</structural-layer>
</corpus-resource-file>

</corpus-resources>

The path attribute on the corpus resources element tells NITE where to look for resources for this corpus. A corpus
resource has a name attribute which is unique in the metadata file. Combined with the name attribute of an individual re-
source, we get the filename. The name attribute can also be used to refer to this object set from a 'codings' p.23 layer.

The contents of an individual corpus resource are defined in exactly the same manner as 'codings' p.23 layers within cod-
ings.

4.4.9 Ontologies (optional)
An ontology is a tree of elements that makes use of the parent/child structure to specify specializations of a data type. In
the tree, the root is an element naming some simple data type that is used by some annotations. In an ontology, if one
type is a child of another, that means that the former is a specialization of the latter. We have defined ontologies to make
it simpler to assign a basic type to an annotation in the first instance, later refining the type. Here's an example of an
ontology definition:
<ontologies path="../xml/MockCorpus">

<ontology description="gesture ontology" name="gtypes"
element-name="gtype" attribute-name="type"/>

</ontologies>
The path attribute on the ontologies element tells NITE where to look for ontologies for this corpus. An ontology has a
name attribute which is unique in the metadata file and is used so that the ontology can be pointed into (e.g. by a coding
layer - see below). It also has an attribute element-name: ontologies are a hierarchy elements with a single element
name: this defines the element name. Thirdly, there is an attribute attribute-name. This names the privileged attribute
on the elements in the ontology: the attributes that define the type names.
The above definition in the metadata could lead to these contents of the file gtypes.xml - a simple gesture-type hierarchy.

<gtype nite:id="g_1" type="gesture" xmlns:nite="http://nite.sourceforge.net/">
<gtype nite:id="g_2" type="discursive">

<gtype nite:id="g_3" type="baton-like"/>
<gtype nite:id="g_4" type="ideographic"/>

</gtype>
<gtype nite:id="g_5" type="topographic">

<gtype nite:id="g_6" type="deictic"/>
<gtype nite:id="g_7" type="physiographic">

<gtype nite:id="g_8" type="iconographic"/>
<gtype nite:id="g_9" type="kinetographic"/>

</gtype>
</gtype>

</gtype>

An ontology can use any number of additional, un-privileged attributes, as long as they are declared in the metadata for
the ontology using an <attribute> tag. For example, to extend the ontology above with a new attribute, foo, with pos-
sible values bar and baz, the declaration would be as follows:

<ontology description="gesture ontology" name="gtypes"
element-name="gtype" attribute-name="type">
<attribute name="foo" type="enumerated">

<value>bar</value>
<value>baz</value>

</attribute>
</ontology>

4.4.10 Object Sets (optional)
An object is an element that represents something in the universe to which an annotation might wish to point. An object
might be used, for instance, to represent the referent of a referring expression or the lexical entry corresponding to a word

NXT Documentation: 4. Data

Page 22 of 94

token spoken by one of the agents. When an element is used to represent an object, it will have a data type and may
have features, but no timing or children. An object set is a set of objects of the same or related data types. Object sets
have no inherent order. Here is a possible definition of an object set - imagine we want to collect a set of things that are
referred to in a corpus like telephone numbers and town names:
<object-sets path="/home/jonathan/objects/">

<object-set-file name="real-world-entities" description="">
<code name="telephone-number">

<attribute name="number" value-type="string"/>
</code>
<code name="town">

<attribute name="name" value-type="string"/>
</code>

</object-set-file>
</object-sets>

The path attribute on the object-sets element tells NITE where to look for object sets on disk for this corpus. Com-
bined with the name attribute of an individual object set we get the filename. The name attribute is also used to refer to
this object set from a coding layer (see below).
The code elements describe the element names that can appear in the object set, and each of these can have an arbitrary
number of attributes. The above spec describes an object set in file /home/jonathan/objects/real-world-entities.xml which
could contain:

<nite:root nite:id="root_1">
<town nite:id="town3" name="Durham"/>
<telephone-number nite:id="num1" number="0141 651 71023"/>
<town nite:id="town4" name="Edinburgh"/>
<town nite:id="town1" name="Oslo"/>

</nite:root>

where the contents are unordered and can occur any number of times.

4.4.11 Codings and Layers
Here we define the annotations we can make on the data in the corpus. Annotations are specified using codings and
layers, and we start with an example.

<codings path="/home/jonathan/MockCorpus">
<interaction-codings>

<coding-file name="prosody" path="/home/MockCorpus/prosody">
<structural-layer name="prosody-layer"

draws-children-from="words-layer">
<code name="accent">

<attribute name="tobi" value-type="string"/>
</code>

</structural-layer>
</coding-file>
<coding-file name="words">

<time-aligned-layer name="words-layer">
<code name="word" text-content="true">

<attribute name="orth" value-type="string"/>
<attribute name="pos" value-type="enumerated">

<value>CC</value>
<value>CD</value>
<value>DT</value>

</attribute>
<pointer number="1" role="ANTECEDENT"

target="phrase-layer"/>
</code>

</time-aligned-layer>
</coding-file>

NXT Documentation: 4. Data

Page 23 of 94

</interaction-codings>
</codings>

First of all, the codings element has a path attribute which (as usual) specifies the directory in which codings will be
loaded from and saved to by default. Note that any coding-file can override this default by specifying its own path
attribute (from release 1.3.0 on). Codings are divided into agent-codings and interaction-codings in exactly the
way that signals are (we show only interaction codings here). Each coding file will represent one entity on disk per
observation (and per agent in the case of agent codings).
The second observation is that codings are divided into layers. Layers contain code elements which define the valid ele-
ments in a layer. The syntax and semantics of these code elements is exactly as described for 'object sets' p.22.

From 25/04/2006 Layers can point to each other using the draws-children-from attribute and the name of another
layer. If your build is older, use the now-deprecated points-to attribute.

For recursive layers like syntax, use the attribute recursive="true" on the layer to mean that elements in the layer
can point to themselves.
The attribute recursive-draws-children-from=layer-name means that elements in the layer can recurse but
they must "bottom out" by pointing to an element in the named layer. With builds pre 25/04/2006, use the now-deprecated
recursive-points-to attribute.

Layers are further described by their four types which are all described in detail in 'layer definition' p.13.

Layer types
Time-aligned layer

elements are directly time-stamped to signal.

Structural layer

elements can inherit times from any time-aligned layer they dominate. Times are not serialized with these elements
by default. Structural layers can be prevented from inheriting times from their children. This is important as it is now
permitted that parents can have temporally overlapping children so long as the times are not inherited. In order to
make use fof this, use the attribute inherits-time="false" on the structural-layer element. Allowing par-
ents to inherit time when their children can overlap temporally may result in unexpected results from the search en-
gine, particularly where precedence operators are used.

Featural layer

Elements can have no time stamps and cannot dominate any other elements - they can only use pointers.

External reference layer

An external reference layer is one which contains a set of standard NITE elements each of has a standard
nite:pointer to an NXT object, and an external pointer to some part of a data structure not represented in NXT
format. The idea is that when an application program encounters such an external element, it can start up an external
program with some appropriate arguments, and highlight the appropriate element in its own data structure.

On disk, the above metadata fragment could describe the file /home/jonathan/MockCorpus/o1.prosody.xml for
observation o1:

<nite:root nite:id="root1">
<accent nite:id="acc1" tobi="high">

<nite:child href="o1.words.xml#w_6"/>
<nite:child href="o1.words.xml#w_7"/>

</accent>
<accent nite:id="acc1" tobi="low">

<nite:child href="o1.words.xml#w_19"/>
<nite:child href="o1.words.xml#w_20"/>

</accent>
</nite:root>

NXT Documentation: 4. Data

Page 24 of 94

A note on effective content models: the DTD content model equivalent of this layer definition

<structural-layer name="prosody-layer" draws-children-from="words-layer">
<code name="high"/>
<code name="low"/>

</structural-layer>

Would be (high|low)*. However, if a code has the attribute text-content set to the value ="true" (as for the ele-
ment word 'codings example' p.23) the content model for this element is overridden and it can contain only text. This is
the only way to allow textual content in your corpus. Mixed content is not allowed anywhere.
A metadata fragment looks like this:
<coding-file name="external" path="external">

<external-reference-layer element-name="prop"
external-pointer-role="owl_pointer" content-type="text/owl"

layer-type="featural" name="prop-layer" program="protege">
<pointer number="1" role="da" target="words-layer"/>
<argument default="owl_file_1.owl" name="owl_file"/>
<argument default="arg_value" name="further_arg"/>

</external-reference-layer>
</coding-file>

The corresponding data looks like this:

<propara>
<nite:external_pointer role="owl_pointer" href="owlid42"/>
<nite:child href="IS1008a.A.words.xml#id(IS1008a.A.words0)"/>

</propara>

In the metadata fragment, you can choose to explicitly name the program that is called using the program attribute, or
you can specify the content-type of the external file using a content-type attribute (not shown in the metadata frag-
ment). Both are treated as String values and not interpreted directly by NXT.

4.4.12 Callable Programs (optional)
To help with housekeeping it's useful to know what programs have been written for the corpus and how to call them. This
also allows NXT's top level interface list the programs and run them. Each callable-program contains a list of required
arguments. for example, a program described thus:

<callable-programs>
<callable-program name="SwitchboardAnimacy" description="animacy checker">

<required-argument name="corpus" type="corpus"/>
<required-argument name="prefix" default=""/>
<required-argument name="observation" type="observation"/>

</callable-program>
</callable-programs>

Would be called java SwitchboardAnimacy -corpus metadata-path -prefix -observation obs-name.
The type attribute can take one of two values: ="corpus" meaning that the expected argument is the metadata file-
name and observation meaning the argument is an observation name. Arguments can also have default values. Note
also that the argument name or the default values can be empty strings.

4.4.13 Observations
Each observation in a corpus must have a unique name which is used in filenames. This is declared in a list of observa-
tions using the name attribute, for instance, like this:

<observations>
<observation name="q4nc4"/>
<observation name="q3nc8"/>

</observations>

NXT Documentation: 4. Data

Page 25 of 94

NXT currently includes the option of declaring two additional types of information for each observation: its categorization
according to the observation variables that divide the corpus into subsets, and some very limited data management in-
formation about the state of coding for the observation. We expect in future to rethink our approach to data management
which will probaby mean removing this facility from the metadata.
It has been pointed out that one might expect observations to have information mapping from agent (roles) to personal
information about the individuals filling them in that observation (age, dialect, etc.). We don't propose a specific set of
kinds of information one might wish to retain, because in our experience different projects have different needs (but see,
for instance, the ISLE/IMDI metadata initiative). We also don't provide a specific way of storing it. This is partly because
some of the information that projects retain falls under data protection and some of it doesn't, so there are issues about
how it should be designed. At the moment, the best one can do is define a set of variables that together give the in-
formation one is looking for. We intend further improvements that will allow the corpus designer to specify a structure for
the information and will allow private information to be kept in a separate file that is linked to from the metadata. Currently,
the query language doesn't give access to the metadata about an observation, which means that it is only useful for de-
ciding programmatically which observations to load as a filter on the entire corpus set, not for any finer-grained filtering.
This also is something we hope to look at. Meanwhile, given these shortcomings, sometimes the best option is to store
any detailed information in a separate file of one's own design and build variables that link agent roles to individuals in the
separate file by idref.

4.5 Dependency Structures
Resource files are an adjunct to metadata files that provide more flexible support for large cross-annotated corpora. A
resource is loosely a set of files that instantiate a particular coding in the metadata file. For example, if both fred and
doris have taken part in manual dialogue-act annotation, and an automatic process has also been run to derive dialogue
acts for all or part of the corpus, all three would have their own resource in the resource file (see example below).
Resource files should also specify dependencies between resources. This helps to ensure that coherent groups of an-
notations are loaded together. For example, an automatic dialogue act resource that was run over manual transcription
must specify a different word-level dependency than a process run over ASR (automatic speech recognition) output.
Once a resource file is present for a corpus, loading multiple versions of the same coding becomes simpler, provided IDs
are unique within the corpus. New annotation elements can even be added to the corpus while this kind of reliability data
is loaded, because of the separation that resources afford us.
There is a simple API for creating resources programatically and it is hoped that a set of higher-level utilities will emerge
to make this process easier.

4.5.1 Resource File Syntax
The example resource file below illustrates most of the features provided by resource files.

<resources>
<resource-type coding="da-types">

<resource id="datypes" description="DA types" type="manual"
path="ontologies"/>

</resource-type>
<resource-type coding="dialog-act" default="true">

<virtual-resource id="da_gold">
<dependency observation="IS1008b" idref="da_doris"/>
<dependency observation=".*" idref="da_fred"/>
<dependency observation=".*" idref="da_doris"/>

</virtual-resource>
<resource id="da_doris" description="Dialogue acts manual version"

type="manual" annotator="Doris" path="dialogueActs/doris">
<dependency observation=".*" idref="AMIwordsref1"/>
<dependency observation=".*" idref="datypes"/>

</resource>
<resource id="da_fred" description="Dialogue acts manual version"

type="manual" annotator="Fred" path="/home/jonathan/fredDAs">
<dependency observation=".*" idref="AMIwordsref1"/>
<dependency observation=".*" idref="datypes"/>

NXT Documentation: 4. Data

Page 26 of 94

</resource>
<resource id="da_auto1" description="Automatic DAs over manual words"

type="automatic" path="automanda1">
<dependency observation=".*" idref="AMIwordsref1"/>
<dependency observation=".*" idref="datypes"/>

</resource>
<resource id="da_auto1" description="Automatic DAs over ASR"

type="automatic" path="autoasrda1">
<dependency observation=".*" idref="AMIwordsASRa1"/>
<dependency observation=".*" idref="datypes"/>

</resource>
</resource-type>

<resource-type coding="words">
<resource id="AMIwordsref1" description="manual transcription"

type="manual" annotator="various" path="manual">
</resource>
<resource id="AMIwordsASRa1" description="ASR transcription"

type="automatic" annotator="various" path="../auto/ASR_AS1_feb07">
</resource>

</resource-type>
</resources>

The resource file consists of a set of resource-type elements inside a containing resources element. Each
resource-type groups together a set of resources that instantiate the same coding in the metadata file. Note that the
word coding is used here, but a resource can also instantiate an ontology or similar corpus-level data file (see the da-
types resource group in the example above).

Paths in the resource file can be absolute, but if they are relative, they are relative to the location of the resource file
(which itself may be relative to the metadata file). It is important that each resource has a separate directory so that, for
example, each annnotator may code the same meeting in order to check inter-annotator agreement. All files will be ex-
pected to conform to the NXT naming conventions.
Each resource can have a list of dependencies. Virtual resources are described below, but for a resource element, de-
pendencies will be to particular instantiations of the codings they directly dominate and directly point to (there's no need
to list more remote descendents as dependencies).
Resources can be grouped into virtual-resources. These groups do not specify a path but instead exist solely to
group a particular set of real resources. If a gold standard coding exists for dialogue acts, as in the example above
(see the dialogue-act virtual resource called da-gold), it can specify by means of dependencies, how it is derived
from the set of manual dialogue-act annotations. So the da-gold resource derives its gold-standard data for observa-
tion IS1008b from Doris; for all other meetings that Fred has annotated, his annotation then takes precedence; and for
meetings that Fred has not annotated, we use Doris's annoatation. Note that regular expressions are matched using
Java's java.util.regex. Note that virtual resources will always have dependencies that point to resources in the same
resource-type group.
At most one resource inside each resource-type can be marked as the default which means it will be the one loaded in
the absence of any explicit overriding instruction. See the da-gold resource in the example above.

Finally, the notloadedwith attribute on a resource element may specify exactly one other resource which should nev-
er be loaded along with this one. This should not be required particularly often, but may be useful if you have clashing IDs
and need to avoid co-loads, or if it would just be confusing for users. If NXT is asked to load incompatible resources, it will
print a warning message.

4.5.2 Behaviour
Various rules are adhered to when loading files into NXT using a resource file:

• two versions of the same coding are never co-loaded unless there's an explicit request. To request multiple loads, use
the forceResourceLoad(resource_id) or forceAnnotatorCoding(annotator, coding_id) methods of
NOMWriteCorpus.

NXT Documentation: 4. Data

Page 27 of 94

• Whenever a particular resource is loaded, its dependents automatically become the preferred resource for their re-
spective codings. This is also true whenever a resource is the default in the resource file, or preferred / forced using an
API call.

• If elements in a high level coding are requested and some of its descendents are already loaded (or preferred), the
resources that depend (however indirectly) on the already-loaded resources will be preferred.

• Competing resources will be selected by applying these rules in order: choose manually forced resources from API
calls; choose manually preferred resources, or those dependent on forced or preferred resources, or dependent on
already-loaded resources; choose resources with their default attribute in the resource file set to ="true"; choose
virtual resources over ordinary resources.

• If there are multiple choices for which resource to load for a coding, and no single resource is derived using the al-
gorithm above, the user will be asked to select a resource. Users can avoid these questions by selecting a coherent set
of defaults in the resource file, or via API calls.

The only way to override this behaviour is to set the Java property NXT_RESOURCES_ALWAYS_ASK to true. This forces
a user decision for every coding to be loaded (unless only one resource instantiates the coding).

4.5.3 Validation
Resource files are validated when they are loaded. To avoid confusion, it is advised but not enforced that paths to data
locations should be specified only in the resource file if it is present, rather than allowing a mix of metadata and resource
file paths. It is also expected that if a resource file is present it should be complete in terms of its coverage of metadata
codings. Warnings will be also be issued when coding attributes don't match valid elements in the metadata file.

Resource files can affect data validation as they allow a particular resource to refer to multiple resources that instantiate
the same coding. For example, an alignment element can refer to a word in the reference transcription as well as a word
from the ASR version of the transcript. Before resource files were introduced such an alignment would require the ASR
and reference word elements to have different types. The disadvantage of using resources in this way is that such data
cannot be validated without extra effort.

4.6 Data validation
In any framework, it is a good idea to test data sets to ensure that they are valid against the constraints of that framework's
data representation. NXT's metadata file format and use of stand-off annotation to split a data set into a large number of
files makes this somewhat trickier than for other XML data. For this reason, NXT comes with a method for validating data
sets against their metadata files. NXT validation tests not just the validity of individual XML files from a data set, but also
the validity of links between files. We explain how to validate NXT-format data and then describe a utility that helps with
the process. In addition to the "off-line" validation described in the section, the methods for loading and editing data in the
NITE Object Model perform some validation as they go along; see 'The NITE Object Model' p.11.

4.6.1 Limitations in the validation process
NXT's off-line validation relies on schema validation using a schema that unduly restricts the data format; the metadata
format allows a number of options to be configured about the representation for a particular corpus, but the validation can
only handle the default values. At present, the undue restrictions are as follows:

• All stream elements (XML file document roots) must be named nite:root.

• All ID, Start and End time attributes must use the NITE default names: nite:id, nite:start and nite:end.

NXT Documentation: 4. Data

Page 28 of 94

• All children and pointers must use XLink / XPointer style links, and ranges cannot be used. These are both handled
automatically when PrepareSchemaValidation is used.

• Annotations referring to elements of the same type from different resources cannot be validated without extra effort.
This kind of annotation can be used for alignment of reference to automatic transcription etc.

In addition, even though the metadata file specifies which elements can occur at the first level under the stream element
by constraining the tags that can occur in the file's top layer, the validation process currently fails to check this information,
and will allow any elements at this level as long as those elements are valid and allowed somewhere in the data file.
If your data does not use XLink /XPointer style links but it will load into NXT already, you can use NXT itself to change the
link style. The program PrepareSchemaValidation.java will load the corpus and save it in the correct link style, as
well as carrying out a few more of the required validation steps. It is in the samples directory of the NXT distribution.

4.6.2 Preliminaries - setting up for schema validation
Before you begin, you need to be set up to perform schema validation using one of the many different methods available.

4.6.2.1 Using Xalan
Schema validation comes as a command line utility from Apache in the samples for Xalan. Although NXT redistributes
Xalan, the redistribution does not include the samples, which are in xalansamples.jar.

To run schema validation, make sure xalansamples.jar and xalan.jar are both on your classpath, and run

java Validate metadata-file

This works for either schema or DTD validation.

4.6.2.2 Using XSV
XSV from is another common choice of validator. To run it, use

xsv filename schema

Alternatively, you can add the following attributes to the root element of the file you wish to validate
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="schema"

to name the schema in the document itself.

4.6.3 The validation process
There are a number of steps in validating an NXT corpus.

4.6.3.1 Validating the metadata file
To validate the metadata file, run it through any ordinary XML validation process, such as the schema validation described
in You can choose whether to validate the metadata file against a DTD or a schema, whichever you find more conveni-
ent. The correct DTD and schema can be found in the NXT distribution in lib/dtd/meta-standoff.dtd and lib/
schema/meta-standoff.xsd, respectively.

4.6.3.2 Generating a schema from an NXT metadata file
The stylesheet for generating a schema from an NXT metadata file is in the NXT distribution in the lib directory. It is
called generate-schema.xsl.

You can use any stylesheet processor you wish to generate the schema. Since xalan is redistributed with NXT, assuming
you have set $NXT to be the root directory of your NXT distribution, one possible call is

java -cp "$NXT/lib/xalan.jar" org.apache.xalan.xslt.Process -in metadata
-xsl generate-schema.xsl -out extension.xsd

NXT Documentation: 4. Data

Page 29 of 94

This creates a schema file called extension.xsd that relies on two static schema files that are in the lib directory of
the NXT distribution: typelib.xsd and xlink.xsd. Put these three files in the same directory.

4.6.3.3 Validating the individual XML files in the corpus
The next step is to validate each of the individual XML files in the corpus.

4.6.3.4 Validating the out-of-file links
To validate an NXT corpus you must check not just the individual XML data files, but also the child and pointer relation-
ships represented by out-of-file links. We do this by transforming each XML data file so that instead of containing an XML
element that represents a link to an out-of-file child or pointer target, the file contains the target element itself, and val-
idating the resulting files. The schema you have generated is set up so that it can validate either the actual XML files in
the corpus or the files that result from this transformation. The stylesheet knit.xsl from the lib directory of the NXT
distribution does the correct transformation; for more information about knitting, see 'Knitting and Unknitting NXT Data
Files' p.76.

4.7 Data Set Design
Because NXT does not itself commit the user to any particular data representation as long as it is expressed in terms of
the NITE Object Model, it requires users to design their data sets by expressing formally what the annotations contain
and how the annotation relate to each other. For complex data sets with many different kinds of annotations, there can be
many different possible arrangements, and it can be difficult to choose among them, particularly for novice users. In this
section, we comment on the design choices NXT presents.

4.7.1 Children versus Pointers
Often in NXT data sets, there is a choice between whether to represent a relationship between two nodes as that of parent
and child or using a pointer.
In general, prefer parent-child relationships except where that violates the constraints of the NITE Object Model by intro-
ducing cycles into the graph structure. If necessary, turn off time percolation within a tree to have parent-child relation-
ships make sense. Trees are both faster to process and easier to access within the query language; the hat operator (^)
calculates ancestorhood at any distance, but the pointer operator (>) is for one level at a time. The one exception is cases
where using a pointer seems to fit the semantics of the relationship more naturally and where querying will not require
tracing through arbitrary numbers of nodes.

4.7.2 Possible Tag Set Representations
A tag set is a list of types for some annotation. For instance, for a dialogue act annotation, two typical tags in the set
would be question and statement. Dialogue acts would typically be represented as a single layer of nodes that draw
their children from a transcription layer, but this still leaves the question of how to represent their tag. There are three
possibilities:

• defining a different code in the layer for each tag and using this code, or "node type";

• having one code but using an attribute defined using an enumerated attribute value list containing the tags;

• or having one code that points into a separate ontology or other kind of corpus resource that contains nodes that them-
selves represent the tags.

The first option might seem the most natural, but it is cumbersome in the query language because in searches over
more than one tag, each possible tag must be given in a disjunction for matching the node type (e.g., ($d question
| statement)). A further advantage of the other two representations is that NXT's query language provides reg-
ular expression matching over attribute values; that is, if the tag set includes two kinds of questions, yn-question
and wh-question and the tags are given as attribute values on some node, then expressions such as ($d@tag ~
/.*question/) will match them both.

NXT Documentation: 4. Data

Page 30 of 94

Of the other two representations, the simpler choice of using an enumerated attribute value makes queries more
succinct (e.g., ($s dialogueact):($s@type=="question") rather than ($s dialogueact)($t da-
type):($s>"type"$t):($t@name=="question")). However, historically the configurable annotation tools could
only be set up using ontologies, forcing their use for data created using these tools. The discourse segmentation and dis-
course entity tools were changed in NXT version 1.4.0 to allow either method, and the signal labeller is expected to follow
suit shortly. For new corpora, using an ontology retains two advantages. The first is the ability to swap in different versions
without having to change the data itself, for instance, to rename the tags or change the structure of the ontology. The
second is for tag sets where the designers wish to encode more information than can be packed clearly into one string
for use with regular expression matching --- the nodes in an ontology can contain as many attributes as are required to
describe a tag or pointers to and from other data structures, and can themselves form a tree structure instead of a flat
list. The latter is useful for testing tags by "supertype"; for instance, if all initiating dialogue act tags are grouped together
under one node in the ontology, whether or not an act is an initiation can be tested e.g. by ($d dialogueact)($t
da-type)($s da-type):($d >"type" $t) && ($s ^ $t) && ($s@name=="initiation") .

4.7.3 Orthography as Textual Content versus as an String Attribute
Ordinarily, orthography is represented using the textual content of a node. Alternatively, orthography can be represented
in a user-defined string attribute.
There are several advantages to representing orthography as textual content. The first is for processing outside NXT ---
since textual content is a common representation, there are a number of XML tools that expect to find orthography there
already. The second is that the configurable tools also expect this, and so they will work for data represented this way
without the need to modify how they render transcription by writing delegate methods specifically for the corpus. However,
using the textual content is not always practicable. This is because in the NITE Object Model, nodes can have either
textual content or a set of children, but not both. Although different, rival orthographies for the same signal can be ac-
commodated easily using different, rival transcription layers, complex orthographic encodings which require orthography
at different levels in the same tree cannot. As an example, consider cases where a word was said in a reduced form (e.g.,
"gonna"), but it is felt necessary to break this down further into its component words ("going" and "to"). If this is to be
represented as one element decomposed into two, the top one cannot have textual content, and therefore orthography
must be represented using a string attribute.
The reason why NITE Object Model nodes cannot have both textual content and children is to make it clear how to tra-
verse trees within it. If a node had both, we would not know whether the textual content should come before the children,
after them, or somewhere in the middle. The reason it was included was because it was considered useful to treat the or-
thography as special within the data representation. One might, for instance, consider the textual content of a node to be a
concatenation of the textual content of its children in order using some appropriate separator. We are currently discussing
whether the NITE Object Model ought to perform this operation in future versions, or whether we ought to deprecate the
use of textual content altogether in favour of string attributes that concatenate except where overridden at a higher level
in the tree.

4.7.4 Use of Namespaces
Ordinarily, we would recommend the use of namespaces throughout a data set, particularly where a corpus is expected to
attract many different annotations from different contributors. However, NXT's query language processor has historically
contained a bug which means that it is unable to parse types and attribute names that contain namespaces. This is not a
problem for default use of the nite namespace because the query language exposes the namespaced attributes using
functions (e.g., ID($x) for $x@nite:id, but it is for user-defined uses of namespacing. We expect this problem to be
resolved at some point in the future (after version 1.3.7) but not as a high priority.

4.7.5 Division into Files for Storage
The set of intersecting trees in a set of annotations constrains how the data will be stored, since each tree must be stored
in a different file (or set of files, in the case of agent annotations). However, it does not fully specify the division into files,
since NXT has both in-file and out-of-file representations for parent-child relationships. Data set designers can choose to
store an entire tree in one file (or set of files) or to split the tree into several files, specifying which layers go in each.
Dividing a tree into several files can have several benefits. The first is that since NXT lazy loads one file at a time as
it needs it, it can mean less data gets loaded over all, making the processing quicker and less memory-intensive. The
second is that each file is simpler, making it easier to process as plain old XML, especially the base layers, since these
have no out-of-file child links. The third is that during corpus creation, assuming some basic ground rules about building
layers up from the bottom, each file can be edited independently. However, dividing a tree into several files also has some
drawbacks --- the data takes more space on disk it parent-child relationships are represented as out-of-file links rather
than using the structure of the XML file, and there is a processing overhead involved in the operation of loading each file.

NXT Documentation: 4. Data

Page 31 of 94

A good general rule of thumb is to consider whether use of one layer means that the other layer will also be needed. Un-
less most users will always want the two layers together, both inside and outside NXT, then store them in different files.

4.7.6 Skipping Layers
Sometimes, the layering model imposed by NXT metadata is more rigid than a corpus designer would like. It can be useful
to allow some nodes in a layer to draw children not from the declared next layer, but from the layer directly below it, skip-
ping a layer completely. This can be the case when the middle layer contains some phenomenon that covers only some
of the lowest level nodes. For instance, suppose one intends a corpus with dialogue act annotation and some kind of
referring expression markup, both over the top of words. Referring expressions are within acts, so it would be possible to
have them between acts and words in one tree, if the layer structure allowed acts to mix words and referring expressions
as children.
Some NXT corpora have simply violated the layer model in this way, and at present, for the most part it still works;
however, because NXT by default uses "lazy loading" to avoid loading data files when it knows they are not needed, users
of these corpora must turn lazy loading off - a major cost for memory and processing time that is untenable for larger data
sets - or else consider for each data use whether lazy loading is safe in that instance. In addition, relying on NXT's current
behaviour in this regard may be risky as the software develops. There are several other options.
The first is to separate out the middle and top layers into separate trees, making them both draw children from the bottom
layer, but independently. (This has the side effect of serializing them into different files.) Then nodes in the top layer are
no longer parents of nodes in the middle layer, but they can be related to each other via the nodes from the bottom layer
that they both contain.
The second is to wrap all of the unannotated node spans from the bottom layer with a new node type in the middle layer,
and have the top layer draw children from the bottom layer indirectly via these new nodes. The additional nodes would
take some storage space and memory. The one thing that might trip corpus users up about this arrangement is if they use
distance-limited ancestorhood in queries, since they would be likely to forget the nodes are there.
The third is to declare the top and middle layers together as one recursive layer, which means as a side effect that they
must be serialized to the same file. This method behaves entirely as desired, but prevents NXT from validating the data
correctly, since NXT allows any node type from a recursive layer to contain any other node type from the layer as a child.

4.8 Data Builds
This section explains how to use the Build utility of NXT to produce packaged-up versions of your corpus in a way that
other users can unpack and use. You can specify which annotations and observations are included, and an appropriate
metadata file will be produced to go along with the data you select.
To specify a data build for an NXT corpus you need to follow these steps:

• Write a build specification file conforming to the simple DTD file in your distribution (see lib/dtd/build.dtd)

• With NXT and its various lib jar files on your CLASSPATH, run

java net.sourceforge.nite.util.Build yourfile

This creates an ant file to actually do the build. You will also be told what command to issue...

• Run ant -f your_antfile to produce a data file (you'll be told what the data file is called).

4.8.1 Examples and explanation of format
First, here's a valid build specification. The resulting ant file extracts a set of words and abstractive summaries from all
observations matching the regular expression Bed00*. We take the standard words from the corpus, but for the abstract-
ive summary, we decide we want to use the files from the annotator sashby.

<build metadata="Data/ICSI/NXT-format/Main/ICSI-metadata.xml"
description="ICSI extract" name="jonICSI"
type="gold" corpus_resources="off" ontologies="on" object_sets="off">

NXT Documentation: 4. Data

Page 32 of 94

<extras dir="/home/jonathan/configuration" includes="*.html" dir="config"/>
<coding-file name="words"/>
<coding-file name="abssumm" annotator="sashby"/>
<observation name="Bed00*"/>

</build>

There are two types of build: gold and multi-coder. The first of these is for builds where we want only one set of XML
files for each coding and for that set to be treated as the gold-standard. Note that in the example above we actually chose
a specific annotator's abstractive summary: in the resultant build, that annotator's abstractive summaries will replace any
existing 'gold-standard' abstractive summaries. Multi-coder builds result in corpora which may have gold-standard cod-
ings, but can also have all the different annotators' data included. There's an example below.
Output of any of the corpus-wide information can be toggled on or off, using attributes of the same name: cor-
pus_resources; ontologies; object_sets. They are all output by default. Arbitrary extras can also be included in
the build. These are essentially specs that are passed straight through to ant.

<build metadata="Data/ICSI/NXT-format/Main/ICSI-metadata.xml"
description="ICSI multi-coder extract" name="jonICSImulti"
type="multi_coder">

<coding-file name="words"/>
<coding-file name="abssumm"/>
<coding-file name="extsumm" resource="autoextract1"/>
<observation name="Bmr*"/>

</build>

This requests the words and abstractive summary codings as before, but for a different set of observations. This time we'll
end up with the gold-standard words (since that's all there is in our corpus), but the entire tree of abstractive summaries
including any 'gold-standard' files plus subdirectories of all the annotators' abstractive summaries. Note that if an annot-
ator is named in multi-coder mode, only that annotator's data is included but it is not raised to the gold-standard location.
Finally (from NXT release 1.4.2; CVS date 14/09/2007), note the extra coding-file extsumm which has an associated
resource attribute. This attribute will have an efect on the build if there's a resource file referred to in the metadata file
and it contains a resource for extractive summaries called ="autoextract1". In that case, the resource file will be in-
cluded in the build, and the selected resource is the one used for extractive summaries. You can have multiple instances
of the same coding-file to include multiple competing resources.
One extra element allowed is a default-annotator element before any of the coding-file elements: the name at-
tribute of will be the name of the annotator that is used by default (where not overriden by an annotator element on a
coding-file element).

Note:

In any circumstance where a specific annotator's data has been requested, but there is none present, the 'gold-stand-
ard' data (if present) will be used instead.

NXT Documentation: 4. Data

Page 33 of 94

5 The NXT Query Language (NQL)

NXT has its own query language: the NXT Query Language, or NQL,. In this section, we describe NQL, list its operators,
and give example queries.

5.1 General structure of a simple query
NQL queries describe n-tuples of nodes, possibly constrained by type, and a set of conditions that expresses further con-
straints, for instance, on the attributes that a node contains or how two nodes relate to each other. If an n-tuple of nodes
with the required types satisfies the conditions expressed in the query, it is said to be a match.
Syntactically, a query consists of two parts separated by a colon (:). The first part declares the variables for the query,
and the second part expresses the conditions.

Example showing general query structure
($a)($b word): $a ^ $b This query matched pairs (2-tuples) of nodes in which the first, bound to $a, can be

any type and the second, bound to $b must be of type word, and where the first dom-
inates the second. In this example ($a)($b word) is the declaration part and the
dominance relation $a ^ $b is the only condition.

Formal definition:
query := declarations : match_condition

5.1.1 Declaration part
The declaration part of the query must contain a variable declaration for every variable mentioned in the conditions. Each
variable declaration is enclosed in parentheses. The components of a variable declaration are separated by whitespace.
The first component is an optional quantifier; the possible quantifiers are forall and exists, which have their usual
logical meanings. The second component is the name of the variable. A variable name is a $ character followed by an
arbitrary number of letters and digits, which can include underscore (_) and language-specific characters. The final com-
ponent is an optional type restriction. This is either a simple string expressing the type of a node in the NOM or a disjunc-
tion of these types separated using the pipe symbol (|).

Example declaration parts
($a) The query matches singletons (1-tuples) in which $a is be bound to nodes of

any type for which the conditions are true.

Tip:

An empty type definition may slow down query processing drastically.

NXT Documentation: 5. The NXT Query Language (NQL)

Page 34 of 94

($a word)($b sentence) The query matches pairs (2-tuples) in which $a is bound to nodes of type
word and $b is bound to nodes of type sentence for which the conditions are
true.

($a word)($b word) The query matches pairs (2-tuples) in which $a is bound to nodes of type
word and $b is bound to nodes of type word for which the conditions are
true.

Caution:

In a pair, both variables might be bound to the same node.

($a word | phrase | sentence) The query matches singletons (1-tuples) in which $a is bound to nodes of
type word, phrase, or sentence for which the conditions are true.

($b sentence)(forall $a word) The query matches singletons (1-tuples) in which $b is bound to any node
that has type sentence for which the conditions are true for every possible
way of binding $a to individual nodes that have type word.

Formal definition:
declarations := declarations var_declaration
declarations := var_declaration
var_declaration := (variable)
var_declaration := (variable typedeclaration)
typedeclaration := types
typedeclaration := type
types := types | type

5.1.2 Condition part
The condition part is a Boolean expression over property tests, structural relations, and temporal relations. Parentheses
are only needed if a lower precedence relation should be executed first. The strongest binding operator is negation (!).
The operators are listed in the order of their precedence below:

• Negation: not or !

• Conjunction: and or & or &&

• Disjunction: or or | or ||

• Implication: ->

For convenience, there are a number of syntactic literals for each operator. The different forms for the same operator are
completely synomynous. The implication operator -> is the weakest binding operator and, again, is provided for conveni-
ence; $a -> $b is logically equivalent to !a | b.

Formal definition:
match_condition :=
match_condition := (match_condition)
match_condition := ! match_condition
var_declaration := match_condition & match_condition
var_declaration := match_condition | match_condition
var_declaration := match_condition -> match_condition
var_declaration := property_test

NXT Documentation: 5. The NXT Query Language (NQL)

Page 35 of 94

var_declaration := structural_relation
var_declaration := time_relation

Tip:

The condition part may be empty, in which case the query always evaluates to true.

5.2 Property tests
A property test either tests for the existence of some property or compares the values of two properties.

5.2.1 Simple and functional property expressions
A property may be an attribute value, a constant, or the result of a function applied to an element.
The query language contains a number of functions that take elements and return some property of the element. These
functions have to do with properties that are special in NXT: timing, identification, and textual content. Function names
can be given in upper or lower case, and the operators = and == are synonymous. Where the data storage format for a
corpus stores these properties as XML attributes, they can also be queried using the form variable @attribute. The func-
tional form is preferred because it is the same across all data sets and leaves the user in no doubt that these are the
attributes holding the special properties.
The functions are as follows:

Query functions
TEXT($w) Returns the text contained by the element matched by $w.

ID($w) Returns the unique identifier of the element matched by $w.

TIMED($w) Returns true if the element matched by $w has start and end times, and false otherwise.

START($w) Returns the start time of the element matched by $w.

END($a) Returns the end time of the element matched by $w.

DURATION($a) Returns the duration of the element matched by $w (that is, the end time minus the start time).

CENTER($a) Returns the temporal center of the element matched by $w (that is, the end time minus the start
time, divided by 2).

Formal definition:
property := " number_or_string "
property := variable @ attribute
property := TEXT(variable)
property := ID(variable)
property := TIMED(variable)
property := START(variable)
property := END(variable)
property := DURATION(variable)
property := CENTER(variable)

Note:

Numbers and string values must be placed in quotes. Placing a number in quotes does not mean it will be treated as a
string. Either single or double quotes can be used, but if you are passing a query as an argument at the command line,
your choice must be compatible with your choice of quotes for the shell.

NXT Documentation: 5. The NXT Query Language (NQL)

Page 36 of 94

5.2.2 Property existence tests
Property existence tests check for the existence of some property.

Node property tests
$w@pos True if and only if the element matched by $a has a pos attribute.

TIMED($a) True if and only if the element matched by $a is timed, either because it has both start and end times or
because it inherits them from their children.

START($a) True if and only if the element matched by $a has a start time, either in its own right or by inheritance
from its children.

END($a) True if and only if the element matched by $a has an end time, either in its own right or by inheritance
from its children.

TEXT($a) True if and only if the element matched by $a contains text.

It is actually possible to test for the existence of any property, but the other possible existence tests are not useful; ids,
string, and numbers always exist, and duration and center properties exist for elements that are timed.

Formal definition:
property_test := variable @ attribute
property_test := TIMED(variable)
property_test := START(variable)
property_test := END(variable)
property_test := TEXT(variable)

5.2.3 String and number comparisons using==, !=, <=, <, >, and >=
The next set of property tests compare the equality and order of two values. Property expressions are weakly typed. The
value resulting from an expression will be interpreted as a floating-point number when possible. If it cannot be converted
into a number or if the value is compared to a pattern given by a regular expression, the value will be treated as a string.
A number is always unequal to a string. Strings are themselves alphabetically ordered, and are case-sensitive. Strings
starting with upper case letters are less than strings with upper case letters. As a result, "2" == "2.0" is true, while
"Two" == "two" is false.

Equality and order tests
($x): $x@cat=="NP" Matches elements with a category attribute containing the string value

"NP".

($x)($y): $x@cat==$y@cat Matches pairs of elements with the same cat attribute (including the
pair where $x and $y are bound to the same element).

($x)($y): $x@cat==$y@cat & $x!= $y Matches pairs of elements with the same cat attribute (excluding the
pair where $x and $y are bound to the same element).

Tip:

= and == are synonymous.

Formal definition:
property_test := property == property
property_test := property != property
property_test := property < property
property_test := property > property
property_test := property <= property
property_test := property >= property

NXT Documentation: 5. The NXT Query Language (NQL)

Page 37 of 94

5.2.4 Regular expression comparisons
The final set of property tests compare string values against regular expressions. Regular expressions are enclosed by
slashes (/). NXT's regular expression implementation uses Java regular expressions underneath, so it is not possible to
give a definitive syntax for the patterns here, instead, see the Java 1.5 Regular Expression Documentation or equivalent
documentation for your Java version.

Regular expression examples
($a): text($a) ~ /th.*/ Words starting with th. Dot (.) means any single character, and *

means 0 or more repetitions of whatever it follows.

($a): text($a) ~ /[dD](as|er)/ The words das and der, whether capitalized or not.

($a): text($a) ~ /.+([0-9A-Z])+.*/ Words which contain at least one uppercase letter or number at a
non-initial position. The plus (+) means 1 or more repetitions of
whatever it follows, and the square brackets ([])specify a character
class.

($a): text($a) ~ /\.*/ A possibly empty sequence of dots, where in contrast /.*/ matches
every word (assuming it contains text). The backslash (\) means the
dot (.) is interpreted literally.

Note:

Your regular expression must match the entire string, not some substring contained in it. /x/ in NQL notation means
/^x$/ in the Perl notation.

Formal definition:
property_test := property ~ / pattern /
property_test := property !~ / pattern /

5.3 Comments
Comments are allowed in the form of line comments and block comments. Line comments start with the symbol // and
include the remainder of the current line. Block comments begin with /* and end with */, and may extend over multiple
lines.

Comment examples
($a) // all elements line comment: all elements

($a)($b word): /*$a@pos="NN" & */ $a ^ $b only ($a)($b word): $a ^ $b will be processed

5.4 Structural relations
5.4.1 Identity
The simplest structural relation asserts the identity or non-identity of two elements. Since the default evaluation strategy
allows different variables to be bound to the same element, the != operator is sometimes necessary to exclude unwanted
results. The == operator is less useful and was mainly added for the sake of symmetry.

structural_relation := variable == variable
structural_relation := variable =! variable

5.4.2 Dominance

NXT Documentation: 5. The NXT Query Language (NQL)

Page 38 of 94

The basic structural relation is the dominance relation ^. To describe that an element a dominates an element b the dom-
inance operator ^ is be used. In other words a is an ancestor of b.

structural_relation := variable ^ variable
structural_relation := variable ^ distance variable

Note:

The expression a^a is always true! Use the non-identity operator to exclude these special case.

5.4.3 Precedence
Two elements are in a precedence relation if they have a common ancestor element, which can be a normal element or
the root element of a layer. An element $x precedes another element $y if some ancestor of $x (or $x itself) is a preced-
ing sibling of some ancesor of $y (or $y itself).

structural_relation := variable <> variable

Note:

The expression a<>a is always false!

Some examples:

Structural relations examples
($a)($b): $a ^ $b & $a != $b all combinations of two different elements in a dominance relation

($s syntax)($w word): $s ^1 $w all combinations of syntax and word elements, where the syntax element
dominates directly the word element

($a)($b): $a ^0 $b equal to $a == $b

($a)($b): $a ^-2 $b equal to $b ^2 $a

($a word)($b word): $a <> $b two words, $a precedes $b

5.5 Temporal relations
Temporal relations examples
Op., short Operator, lexical Definition

% overlaps.left (start($a) <= start($b)) and
(end($a) > start($b)) and
(end($a) <= end($b))

[[left.aligned.with start($a) == start($b)

]] right.aligned.with end($a) == end($b)

@ includes inclusion (start($a) <= start($b)) and
(end($a) >= end($b))

[] same.extent.as (start($a) == start($b)) and
(end($a) == end($b))

NXT Documentation: 5. The NXT Query Language (NQL)

Page 39 of 94

Op., short Operator, lexical Definition

overlaps.with (end($a) > start($b)) and
(end($b) > start($a))

][contact.with end($a) == start($b)

<< precedes end($a) <= start($b)

starts.earlier.than start($a) <= start($b)

starts.later.than start($a) >= start($b)

ends.earlier.than end($a) <= end($b)

ends.later.than end($a) >= end($b)

5.6 Quantifier
To express complex structural relations in some cases auxiliary elements are required, which should not be part of the
query result. Sometimes it is sufficient that one such element satisfies the match condition, sometimes all auxiliary ele-
ments must match.
The mathematical solution to this problem are the existential and universal quantifiers. In NQL variables can be existential
quantified or universal quantified. In both cases elments which are bound to a quantified variable are not part of the result.
The formal definition of 'Condition part' p.35 is now extended with quantifiers:

var_declaration := (exists variable)
var_declaration := (exists variable typedefinition)
var_declaration := (forall variable)
var_declaration := (forall variable typedefinition)

In queries with quantifiers the implication operator -> could be useful (see 'Condition part' p.35).

Some examples:

Quantifier Examples
($a)(exists $b): $a ^1 $b elements with children

($root)(forall $null): !$null ^1 $root root elements

5.7 Query results
The result of a query is a list of n-tuples of elements (or, more precisely, variable bindings) satisfying the match condition,
where n is the number of variables declared without quantifiers (cf. 'Quantifier' p.40). The query result is returned in the
form of an XML document (or, abstractely, a new tree structure adjoined to the corpus). Each query match corresponds
to a match element, with pointers representing variable bindings and the variable name given by the pointer's role.
An example result for a query involving variables $w and $p is:

<matchlist size="2">
<match n="1">

<nite:pointer role="w" xlink:href="..."/>
<nite:pointer role="p" xlink:href="..."/>

</match>
<match n="2">

<nite:pointer role="w" xlink:href="..."/>

NXT Documentation: 5. The NXT Query Language (NQL)

Page 40 of 94

<nite:pointer role="p" xlink:href="..."/>
</match>

</matchlist>

Note:

The matches are not ordered. The ordering of the results of two similar but not identical queries can be very different.

5.8 Complex queries
A complex query consists of a sequence of simple queries seperated by :: markers.

complex_query := complex_query :: query
complex_query := query

For a complex query, the leftmost query is evaluated first. Each query in the sequence operates on the result of the pre-
vious query. This means that for every match, the following query is evaluated with the variable bindings of the previous
queries. The fixed variable bindings may be used anywhere in the ensuing queries. This evaluation strategy produces a
hierarchically structured query result, where each match of the leftmost simple query includes a matchlist for the second
query, etc.
In the example
($w word): $w@orth ~ /S.*/ :: ($p phone): $w ^ $p

the query result has the following structure:

<matchlist size="2">
<match n="1">

<nite:pointer role="w" xlink:href="..."/>
<matchlist type="sub" size="2">

<match n="1">
<nite:pointer role="p" xlink:href="..."/>

</match>
<match n="2">

<nite:pointer role="p" xlink:href="..."/>
</match>

</matchlist>
</match>
<match n="2">

<nite:pointer role="w" xlink:href="..."/>
<matchlist type="sub" size="1">

<match n="1">
<nite:pointer role="p" xlink:href="..."/>

</match>
</matchlist>

</match>
</matchlist>

Note:

There are no empty submatches. If for a variable binding the following single query has no matches, the variable binding
will be removed from the result. So the number of matches for a complex query is less than or equal to the number of
matches for the first part.

5.9 Known Problems

NXT Documentation: 5. The NXT Query Language (NQL)

Page 41 of 94

At Feb 05, there are a number of known problems with the current querylanguage implementation.

5.9.1 Multiple observations and timings
There is a bug when querying over multiple observations - the implementation considers times in different observations to
be comparable, so that it's possible to get the result that an element in one observation is before some element in another.
This is easy to get around: query on one observation at a time, or declare the reserved attribute for observation names for
your corpus and add a test for the same observation as an extra query term - e.g.($f@obs = $g@obs), if the attribute
declared is obs.

5.9.2 Search GUI and forall
The search GUI (whether called stand-alone or from a search menu) can't display results if some subquery in a complex
query only has query matches that are bound with forall - e.g. ($f foo):($f@att="val")::(forall $g
bar):!($g ^ $f)

5.9.3 Immediate Precedence
The immediate precedence operator is missing. Immediate precedence is equivalent to ($f foo)($g foo)(forall
$h foo): ($f<<$g) && (($h=$f) || ($h=$g) || ($h<<$f) || ($g<<$h))
but, of course, this is cumbersome and can be too slow and memory-intensive for practical purposes, depending on the
data set. Some common uses of the operator are covered by the NGramCalc utility.Another work-around is to create one
XML tree from the NXT data thatrepresents the information required and query it using XPath. Export to LPath and tgrep2
would also be reasonable and are not difficult to implement. If you need to match on regular expressions of XML elements
in order to add markup, (so, for instance, saying "find syntactic constituents with one determiner, followed by one or more
adjectives, followed by one noun, and wrap a new tag around them"), but you can always use something like fsgmatch
(from the LTG; new release, currently in beta, is called lxtransduce) and then modify the metadata to match. Remember,
the data is just XML, amenable to all of the usual XML processing techniques.

5.9.4 Arithmetic
The arithmetic operators are missing.
At present, users who need them add new attributes to theirdata set and then carry on as normal. For instance, a re-
searcher looking at how often bar elements start in the 10 seconds after foo elements end might add an "adjusted
start" attribute to bar elements that take 10 secondsoff their official start times, and then use the query ($f foo)($b
bar):(START($b) > END($f)) && ($b@adjustedstart < END($foo))
This stylesheet, run on a specific individual coding in the context of the MONITOR project, is an example of how this can
be done. It just copies everything, adding new attributes to feedback gaze codes. We used this general technique on the
Switchboard data to get lengths for syntactic constituents, and on the Monitor data to get durations.
This method is inconvenient, particularly for the sort of exploratory study that wishes to consider several different time
relationships. We don't think it is worth adding special loading routines that addtemporary attributes for adjusted start
and end times, but we could include some utilities for command line searching based on adjustments passed in on the
command line. For instance, java CountWithTimeOffset -q '($t turn)($f feedback):($t # $f)' -t
feedback -d 50 could mean to count overlaps after feedback elements have been displaced 50 seconds forward. We
are considering whether this would be useful enough to supply.

5.9.5 Inability to handle namespacing
At present (Apr 05) the query language parser fails to handle namespacing properly, so any elements and attributes that
are namespaced will be difficult to work with. For the timing and id attributes, where the default names are in the nite:
namespace, this doesn'tmatter, since they are exposed to query via e.g. START($x), but namespacing other tags and
attributes would make working with them difficult until this is fixed.

5.9.6 Speed and Memory Use
NXT's query engine is slow and uses a great deal of memory. For instance, some of our more complicated syntactic quer-
ieson the Switchboard corpus take 10 seconds per dialogue, or over an hour and a half for the entire corpus.
This is partly a consequence of what it does - the query languageis solving a harder problem than languages that operate
on trees and/or are limited in their use of left and right context. It istrue that the current implementation is not fully optim-
ized, but this is not something we intend to look at in the immediate future. Our first choice strategy for addressing this

NXT Documentation: 5. The NXT Query Language (NQL)

Page 42 of 94

problem is to look at mapping NQL queries to XQuery for implementation, and addition of the missing operators, that way.
Meanwhile, most of NXT's users are not actually engaged in real-time processing, and find that if they develop queries
on a few observations using a GUI, they can then afford to run the queries at the command line in batch. The more they
are interested in sparse phenomena, the less suitable this strategy is. For some query-based analyses, it is also useful to
consider direct implementation using the NOM API, since the programmer can optimize for the analysis being performed.
Meanwhile, an hour and a half is OK for batch mode, but some of our queries areso common that we really want easy
access to the results. We can get this by indexing. Using indices rather than the more complex syntactic queries makes
querying roughly ten times faster. This will be even faster if one then selects not to load the syntax at all, which is pos-
sible if one doesn't need it for other parts of the subsequent query. You can choose not to load any part of the data by
commenting out the <coding-file> tag for it in your local copy of the metadata file, or after NXT 1.3.0, by enabling lazy
loading in your applications.
It's faster to use string equality than regular expression matching in the query language, and keep in mind the regular
expressions have to match the entire string they are compared against, not just a substring of it.
The very desperate can write special purpose applications to evaluate their queries, which is faster especially for queries
involving quantification. For instance,one user has adapted CountQueryResults to run part of the query he wants, but
instead of returning the results, then checks the equivalent of hisforall conditions using navigation in the NOM.

5.10 Helpful hints
We recommend refining queries using display.bat/.sh on a single dialogue (probably spot-checking on a couple
more, since observations vary), and running actual counts using the command line utilities. Build up queries term by term
- the syntax error messages aren't always very easy to understand. Missing dollar signs, quotation marks, and paren-
theses are the worst culprits. Get around the bookmark problems and the lack of parenthesis and quote matching in the
searchGUI by typing the query into something else that's handier (such as emacs) and pasting what you've written into
the query window. You canand should include comments in queries if they are at all complicated. Queries have to be ex-
pressed on one line to run them at the command line, but you shouldn't try to author them this way - instead, postprocess
a query developed in this more verbose style by taking out
Analysis of query results can be expedited by thinking carefully aboutthe battery of tools that are available: knit, LT-XML,
stylesheets, xmlperl, shell script loops, and so on. One interesting possibility is importing the query results into the data
set, which would be a fancier, hierarchically structured form of indexing. At May 2004, the metadata <coding-file>
declaration required to do this would be a little different for every query result, but we intend minor syntactic changes in
both the query result XML and what knit produces to make this declaration static.

5.11 Related documentation
The main documentation is the query language reference manual . Virtually the same information can be found on the
helpmenu of the search window (if you don't find it there, it's an installation problem). An older document with more con-
textual information can be found here.
At September 2006, we plan a revised version of the manual. The current version fails to give details about the operator
for finding out whether two elements are linked via a pointer with a role. ($a <"foo" $b) is true if $a points to $b using
the "foo" role; the role name can be omitted, but if it is specified it can only be given as a textual string, not as a regular
expression. The current version also fails to make clear that the regular expression examples given are only a subset of
the possibilities. The exact regular expression syntax depends on your version of Java, since it is implemented using the
java.util.regex package. Java 1.5 regular expression documentation can be found here .
Here are some worked examples for the Switchboard data sample and the Monitor data sample.
Computer scientists and people familiar with first order predicate calculus have tended to be happy with the reference
manual plus the examples; other people need more (so, for instance, don't know what implication is or what forall is
likely to mean) and we're still thinking about what we might be able to provide for them.
At Nov 2004, there are a few things described in the query documentation that haven't been implemented yet (and aren't
on the workplan for immediate development). This includes arithmetic operators and temporal fuzziness. We thought this
included versions of ^ and <> limited by distance, but users report that these (or some of these?) work. Also, some ver-
sions of the query documentation show ; instead of : as the separator between bindings and match conditions. The only
major bug we've run into (at Nov 2004) is that temporal operators will perform comparisons across observations, even
though time in different observations is meant to be independent. After NXT-1.2.6, 05 May 04, one can in the metadata

NXT Documentation: 5. The NXT Query Language (NQL)

Page 43 of 94

declare a reserved attribute to use for the observation name that will be added automatically for every element, providing
a work-around.
There's a nifty visual demo that runs on a toy corpus and might be useful for deciding whether this stuff is useful in the
first place.

NXT Documentation: 5. The NXT Query Language (NQL)

Page 44 of 94

6 Analysis
The fundamental tool for analysis in NXT is the NXT Query Language used through the command line tools. Query devel-
opment can very usefully be done using the GUI tools, but corpus-wide analysis will normally require command line tools.
Some helper tools exist for special cases like the study of reliability.

6.1 Command line tools for data analysis
This section describes the various command line utilities that are useful for searching a corpus using NXT's query lan-
guage. Command line examples below are given in the syntax for bash. It is possible to run NXT command line utilities
from the DOS command line without installing anything further on Windows, but many users will find it easier to install
cygwin, which comes with a bash that runs under Windows. The command line tools can be found in the XXXX directory
of the NXT source, and are useful code examples.

6.1.1 Preliminaries
Before using any of the utilities, you need to set your classpath and perhaps consider a few things about your local envir-
onment.

6.1.1.1 Setting the classpath
The command line utilities require the classpath environment variable to be set up so that the shell can find the software.
Assuming $NXT is set to the top level directory in which the software is installed, this can be done as follows (remove the
newlines):
if [$OSTYPE = 'cygwin']; the
n export CLASSPATH=".;$NXT/lib;$NXT/lib/nxt.jar;$NXT/lib/jdom.jar;

$NXT/lib/xalan.jar;$NXT/lib/xercesImpl.jar;$NXT/lib/xml-apis.jar;
$NXT/lib/jmanual.jar;$NXT/lib/jh.jar;$NXT/lib/helpset.jar;
$NXT/lib/poi.jar"

else
export CLASSPATH=".:$NXT/lib:$NXT/lib/nxt.jar:$NXT/lib/jdom.jar:

$NXT/lib/xalan.jar:$NXT/lib/xercesImpl.jar:$NXT/lib/xml-apis.jar:
$NXT/lib/jmanual.jar:$NXT/lib/jh.jar:$NXT/lib/helpset.jar:
$NXT/lib/poi.jar"

fi

This is not the full classpath that is needed for running NXT GUIs, but contains all of the methods used by the command
line tools.
It is possible instead to specify the classpath on each individual call to java using the -cp argument.

6.1.1.2 Shell interactions
You'll need to be careful to use single quotes at shell level and double quotes within queries - although we've found one
shell environment that requires the quotes the other way around. Getting the quoting to work correctly in a shell script is
difficult even for long-time Unix users. There is an example shell script that shows complex use of quoting in the sample
directory of the NXT distribution called "quoting-example.sh".
Don't forget that you can use redirection to divert warning and log messages:
java CountQueryResults -corpus swbd-metadata.xml -query '($n nt):' 2> logfile

Diverting to /dev/null gets rid of them without the need to save to a file.

6.1.1.3 Memory usage
It is possible to increase the amount of memory available to java for processing, and depending on the machine set up,
this may speed things up. This can be done by using flags to java, e.g.
java -Xincgc -Xms127m -Xmx512m -Xfuture CountQueryResults ...

but also as an edit to the java calls in any of the existing scripts. This is what they mean:

Java Arguments Controlling Memory Use

NXT Documentation: 6. Analysis

Page 45 of 94

-Xincgc

use incremental garbage collection to get back unused memory

-Xmssize

initial memory heap size

-Xmxsize

maximum memory heap size

The best choice of values will depend on your local environment.

6.1.2 Common Arguments
Where possible, the command line tools use the same argument structure. The common arguments are as follows.

Common Arguments for Command Line Tools
-corpus corpus

the path and filename specifying the location of the metadata file

-observation obs

the name of an observation. If this argument is not given, then the tools process all of the observations in the corpus

-query query

a query expressed in NXT's query language

-allatonce

an instruction to load all of the observations for a corpus at the same time. This can require a great deal of memory
and slow down processing, but is necessary if queries draw context from outside single observations.

6.1.3 SaveQueryResults
java SaveQueryResults-c corpus-q query-o observation-allatonce-f outputfilename-d direct-
oryname

SaveQueryResults saves the results of a query as an XML document whose structure corresponds to the one dis-
played in the search GUI and described in 'Query results' p.40. Saved query results can be knit with the corpus to useful
effect (see 'Knitting and Unknitting NXT Data Files' p.76) as well as subjected to external XML-based processing.
If no output filename is indicated, the output goes to System.out. (Note that this isn't very sensible to do unless running
-allatonce, because the output will just concatenate separate XML documents.) In this case, everything else that could
potentially be on System.out is redirected to System.err.

If outputfilename is given, output is stored in the directory directoryname. If running -allatonce or if an observation is
specified, the output ends up in the file outputfilename. Otherwise, it is stored is a set of files found by prefixing outputfile-
name by the name of the observation and a full stop (.).

Caution:

Under cygwin, -d takes Windows-style directory naming; e.g., -d "C:" not -d "/cygdrive/c". Using the latter will
create the unexpected locatio nC:/cygdrive/c.

In distributions before 05 May 2004 (1.2.6 or earlier), the default was -allatonce, and the flag -independent was used to
indicate that one observation should be processed at a time.

6.1.4 CountQueryResults

NXT Documentation: 6. Analysis

Page 46 of 94

java CountQueryResults-c corpus-q query-o observation-allatonce
CountQueryResults counts query results for an entire corpus, showing the number of matches but not the result tree.
In the case of complex queries, the counts reflect the number of top level matches (i.e., matches to the first query that
survive the filtering performed by the subsequent queries - matches to a subquery drop out if there are no matches for
the next query). Combine CountQueryResults with command line scripting, for instance, to fill in possible attribute values
from a nenumerated list.
When running -allatonce or on a named observation, the result is a bare count; otherwise, it is a table containing one
line per observation, with observation name, whitespace, and then the count.
In versions before NXT-1.2.6, CountQueryResults runs -allatonce and a separate utility, CountOneByOne, handles the
independent case.

6.1.5 MatchInContext
java MatchInContext-c corpus-q query-o observation-allatonce-context contextquery-textatt
textattribute

MatchInContext evaluates a query and prints any orthography corresponding to matches of the first variable in it, sending
the results to standard output. It was developed for a set of users familiar with tgrep. contextquery is a noptional additional
query expressing surrounding context to be show nfor matches. If it is present, for each main query match, the context
query will be evaluated, with the additional proviso that the match for the first variable of the main query must dominate
(be an ancestor of) the match for the first variable of the context query. If any such match for the context query is found,
then the orthography of the for the first variable of the first match found will be shown, and the orthography relating to the
main query will be given completely in upper case. Where the context query results in more than one match, a comment
is printed to this effect. The context query must not share variable names with the main query.
By default, the utility looks for orthography in the textual content of a node. If textattribute is given, the nit uses the value
of this attribute for the matched node instead. This is useful for corpora where orthography is stored in attributes and for
getting other kinds of information, such as part-of-speech tags.
Since not all nodes contain orthography, MatchInContext ca nproduce matches with no text or with context but no main
text. There is no clean way of knowing where to insert line breaks, speaker attributions, etc. in a general utility such as
this one; for better displays write a tailored tool.
In versions before NXT-1.2.6, MatchInContext means -allatonce and a separate utility, MatchInContextOneByOne,
handles the independent case.

6.1.6 NGramCalc: Calculating N-Gram Sequences
java NGramCalc-c corpus-q query-o observation-tag tagname-att attname-role rolename-n n

6.1.6.1 Background
An n-gram is a sequence of n states in a row drawn from an enumerated list of types. For instance, consider Parker's floor
state model (Journal of Personality and Social Psychology 1988). It marks spoke nturns in a group discussion according
to their participation i npairwise conversations. The floor states are newfloor (first to establish a new pairwise conversa-
tion), floor (in a pairwise conversation), broken (breaks a pairwise conversation), regai n(re-establishes a pairwise conver-
sation after a broken), and nonfloor (not in a pairwise conversation). The possible tri-grams of floor states are newfloor/
floor/broken, newfloor/floor/floor, regain/broken/ nonfloor, and so on. We usually think of n-grams as including all ways of
choosing a sequence of n types, but in some models, not all of them are possible; for instance, in Parker's model, the
bi-gram newfloor/newfloor can't happen. N-grams are frequently used i nengineering-oriented disciplines as background
information for statistical modelling, but they are sometimes used in linguistics and psychology as well. Computationalists
can easily calculate n-grams by extracting data from NXT into the format for another tool, but sometimes this is inconveni-
ent or the user who requires the n-grams may not have the correct skills to do it.

6.1.6.2 Operation
NGramCalc calculates n-grams from NXT format data and prints on standard output a table reflecting the frequencies of
the resulting n-grams for the given n. The default value for n is 1 (i.e., raw frequencies). NGramCalc uses as the set of
possible states the possible values of attribute for the node type tag; the attribute must be declared in the corpus metadata
as enumerated. NGramCalc then determines a sequence of nodes about which to report by finding matches to the first
variable of the given query and placing them in order of start time. If role is given, it then substitutes for these nodes the
nodes found by tracing the first pointer found that goes from the sequenced nodes with the given role. (This is useful if

NXT Documentation: 6. Analysis

Page 47 of 94

the data has been annotated using values stored in an external ontology or corpus resource.) At this point, the sequence
is assumed to contain nodes that contain the named attribute, and the value of this attribute is used as the node's state.
Tag is required, but query is itself optional; by default, it is the query matching all nodes of the type named i ntag. Gener-
ally, the query's first variable will be of the node type specified in tag, and canonically, the query will simply filter out some
nodes from the sequence. However, as long as a state can be calculated for each node in the sequence using the attrib-
ute specified, the utility will work. There is no -allatonce option; if no observation is specified, only one set of numbers
is reported but the utility loads only one observation at a time when calculating them.

6.1.6.3 Examples
java NGramCalc -c METADATA -t turn -a fs -n 3

will calculate trigrams of fs attributes of turns and output a tab-delimited table like

500 newfloor floor broke
n0 newfloor newfloor newfloor

Suppose that the way that the data is set up includes an additional attribute value that we wish to skip over when calcu-
lating the tri-grams, called "continued".
java NGramCalc -c METADATA -t turn -a fs -n 3 -q '($t turn):($t@fs != "continued")'

will do this. Entries for "continued" will still occur in the output table because it is a declared value, but will have zero in
the entries.

java NGramCalc -c METADATA -t gesture-type -a name -n 3 -q '($g gest):'
-r gest-target

will produce trigrams where the states are found by tracing the gest-target role from gest elements, which finds gesture-
type elements (canonically, part of some corpus resource), and further looking at the values of their name attributes. Note
that in this case, the tag type given in -t is what results from tracing the role from the query results, not the type returned
in the query.

6.1.7 FunctionQuery: Time ordered, tab-delimited output, with aggregate functions
java FunctionQuery-c corpus-q query-o observation-att attribute_or_aggregate

FunctionQuery is a utility for outputting tab-delimited data. It takes all elements resulting from the result of a query, as
long as they are timed, and put them in order of start time. Then it outputs one line per element containing the values of
the named attributes or aggregates with a tab character between each one.
The value of -atts must be a space-separated list of attribute and aggregate specifiers. If an attribute or aggregate does
not exist for some matched elements, a blank tab-stop will be output for the corresponding field.

6.1.7.1 Attribute Specifiers
Attribute values can be specified using the form var@attributename (e.g., $v@label, where label is the name of the at-
tribute). If the variable specifier (e.g., $v) is omitted, the attribute belonging to the first variable in the query (the "primary
variable") is returned. If the attribute specifier (e.g.. label) is omitted, the ntextual content for the node will be shown.
Nodes may have either direct textual content or children; in the case of children, the textual content shown will be the con-
catenated textual content of its descendants separated by spaces. For backwards compability with a norder utility called
SortedOutput, instead of specifying it in the list of attributes, -text can be used to place this textual content in the last
field, although this is not recommended.

6.1.7.2 Aggregate Specifiers
Aggregate functions are identified by a leading '@' character. The first argument to an aggregate function is always a query
to be evaluated in the context of the current result using the variable bindings from the main query. For instance, if $m has
bee nbound in the main query to nodes of type move, the context query ($w w):($m ^ $w) will find all w nodes descen-
ded from the move corresponding to the current return value, and the context query ($g gest):($m # $g), all gest
nodes that temporally overlap with it. The list of returned results for the context query are then used in the aggregation.
For the following functions, optional arguments are denoted by an equals sign followed by the default value of that argu-
ment. There are currently four aggregate functions included in FunctionQuery.

NXT Documentation: 6. Analysis

Page 48 of 94

Aggregate Functions
@count(conquery)

returns the number of results from evaluating conquery

@sum(conquery, attr)

returns the sum of the values of attr for all results of conquery. attr should be numerical attribute.

@extract(conquery, attr, n=0, last=n+1)

returns the attr attribute of the nth result of conquery evaluated in the context of query. If n is less than 0, extract
returns the attr attribute of the nth last result. If last is provided, the attr value of all results whose index is at least n
and less tha n last is returned. If last is less than 0, it will count back from the final result. If last equals zero, all items
between n and the end of the result list will be returned.

@overlapduration(conquery)

returns the length of time that the results of conquery overlap with the results of the main query. For some conquery
results, this number may exceed the duration of the main query result. For example, the duration of speech for all
participants over a period of time may exceed the duration of the time segment if there are multiple simultaneous
speakers. This can be avoided, for example, by using conquery to restrict matches to a specific agent.

6.1.7.3 Example
java FunctionQuery -c corpus -o observation -q '($m move)'

-atts type nite:start nite:end '@count(($w w):$w#$m)' '$m'
will output a sorted list of moves for the observation consisting of type attribute, start and end times, the count of w (words)
that overlap each move, and any text included in the move, or any children.

6.1.8 Indexing
java Index-c corpus-q query-o observation-t tag-r role

Index modifies a corpus by adding new nodes that index the results of a query so that they can be found quickly. If obser-
vation is omitted, all observations named in the metadata file are indexed in turn. One new node is created for each query
match. The new nodes have type tag, which defaults to "markable". If -r is omitted, the new node is made a parent of the
match for the first unquantified variable of the query. If -r is included, then the new node will instead use the role names
to point to the nodes in the n-tuple returned at the top level of the query, using the role names in the order given and the
variables in the order used in the query until one of the two lists is exhausted. Index does not remove existing tags of the
given type before operatio nso that an index can be built up gradually using several different queries.
Note that the same node can be indexed more than once, if the query returns n-tuples that involve the same node. The
tool does nothing to check whether this is the case even when creating indices that are parents of existing nodes, which
can lead to invalid data if you are not careful. Using roles, however, is always safe, as is using parents when the top level
of the given query matches only one unquantified variable.
Note that if you want one pointer for every named variable in a simple query, or you want tree-structured indices corres-
ponding to the results for complex queries, you can use SaveQueryResults and load the results as a coding. For cases
where you could use either, the main difference is that SaveQueryResults doesn't give control over the tag name and
roles.

6.1.8.1 Metadata requirements
The tool assumes that a suitable declaration for the new tag have already bee nadded into the metadata file. It is usual to
put it in a new coding, and it would be a bad idea to put in a layer that anything points to, since no work is done to attach
the indices to prospective parents or anything else besides what they index. If the indexing adds parents, then the type of
the coding file (interaction or agent) must match the type of the coding file that contains the matches to the first variable.
If an observation name is passed, it creates a index only for the one observation; if none is, it indexes each observation
in the metadata file by loading one at a time (that is, there is no equivalent to -allatonce operation).

The canonical metadata form for an index file, assuming roles are used, is an interaction coding declared as follows:

NXT Documentation: 6. Analysis

Page 49 of 94

<coding-file name="foo">
<featural-layer name="baz">

<code name="tag">
<pointer number="1" role="role1" target="LAYER_CONTAINING_MATCHES"/>
...

</code>
</featural-layer>

</coding-file>
The name of the coding file determines the filenames where the indices get stored. The name of the featural-layer is unim-
portant but must be unique. The tags for the indices must not already be used in some other part of the corpus, including
other indices.

6.1.8.2 Example of Indexing
To add indices that point to active sentences in the Switchboard data, add the following coding-file tag to the
metadata as an interaction-coding (i.e., as a sister to the other coding file declarations).

<coding-file name="sentences">
<featural-layer name="sentence-layer">

<code name="sentenceindex">
<pointer number="1" role="at"/>

</code>
</featural-layer>

</coding-file>

This specifies that the indices for sw2005 (for example) should go in sw2005.sentences.xml. Then, for example,

java Index -c swbd-metadata.xml -t active -q '($sent nt):($sent@cat=="S")'

After indexing,

($n nt)($i sentenceindex):($i >"at" $n)

gets the sentences.

6.2 Projecting Images Of Annotations
Sometimes even though an annotation layer draws children from some lower layer, it's useful to know what the closest
correspondence is between the segments in that layer and some different lower layer. For instance, consider having both
hand transcription and hand annotation for dialogue acts above it, and also ASR output with automatic dialogue act an-
notation on top of that. There is no relationship apart from timing between the hand and automatic dialogue acts, but to
find out how well the automatic process works, it's useful to know whether it segments the hand transcribed words the
same way, and with the same categories, as the hand annotation does.
ProjectImage is a tool that allows this comparison to be made. Given some source annotation that segments the data
by drawing children from a lower layer, and the name of a target annotation that is defined as drawing children from a
different lower layer, it creates the target annotation by adding annotations that are just like the source but with the other
children. A child is inside a target segment if its timing midpoint is after the start and before the end of the source segment.
If there are no such children, then the target element will be empty. ProjectImage adds a pointer from each target ele-
ment back to its source element so that it's easy to check categories etc.

Note:

ProjectImage was committed to CVS on 21/11/2006 and will be in all subsequent NXT builds.

• 'Compiling from Source' p.9 (or use a build if there is one post 21/11/06).

NXT Documentation: 6. Analysis

Page 50 of 94

• Edit your metadata file and prepare the ground. You need to decide what NXT element is being projected onto which
other. As an example we'll look at Named Entities on the AMI corpus: imagine we want to project manually generated
NEs onto ASR output to take a look at the result. You'll already have the manual NEs and ASR transcription declara-
tions in your metadata:
<coding-file name="ne" path="namedEntities">

<structural-layer draws-children-from="words-layer" name="ne-layer">
<code name="named-entity" text-content="false">

<pointer number="0" role="type" target="ne-types"/>
</code>

</structural-layer>
</coding-file>

<!-- ASR version of the words -->
<coding-file name="asr" path="ASR">

<time-aligned-layer name="asr-words-layer">
<code name="asrword" text-content="true"/>
<code name="asrsil"/>

</time-aligned-layer>
</coding-file>

and now you need to add the projection layer into the metadata file, remembering to add a pointer from the target to
source layer:

<!-- ASR Named entities -->
<coding-file name="ane" path="ASRnamedEntities">

<structural-layer draws-children-from="asr-words-layer" name="asr-ne-layer">
<code name="asr-named-entity" text-content="false">

<pointer number="0" role="source_element" target="ne-layer"/>
<pointer number="0" role="type" target="ne-types"/>

</code>
</structural-layer>

</coding-file>

• Using a standard NXT CLASSPATH or just using the -cp argument to the java command below like this: -cp lib/
nxt.jar:lib/xercesImpl.jar, run ProjectImage:

java net.sourceforge.nite.util.ProjectImage -c /path/to/AMI-metadata.xml
-o ES2008a -s named-entity -t asr-named-entity

The arguments to ProjectImage are:

◦ -c metadata file including definition for the target annotation

◦ -o Optional observation argument. If it's not there the projection will be done for the entire corpus

◦ -s source element name

◦ -t target element name

The output is a (set of) standard NXT files that can be loaded with the others. To get textual output, use FunctionQuery
on the target annotation resulting from running ProjectImage (see 'FunctionQuery' p.48).

6.2.1 Notes

NXT Documentation: 6. Analysis

Page 51 of 94

ProjectImage can be used to project any type of data segment onto a different child layer, and so has many uses bey-
ond the one described. The main restriction is that the segments must all use the same tag name. Although it might be
more natural to define the imaging in terms of a complete NXT layer, the user would have to specify at the command line
a complete mapping from source tags to target tags, which would be cumbersome. Moreover, many current segmentation
layers use single tags. In future NXT versions we may consider generalizing to remove this restriction.

6.3 Reliability Testing
This section contains documentation of the facility for loading multiply-annotated data that forms the core of NXT's support
for reliability tests, plus a worked example from the AMI project, kindly supplied by Vasilis Karaiskos. For more inform-
ation, see the JavaDoc corresponding to the NOM loading routine for multiply-annotated data, for CountQueryMulti,
and for MultiAnnotatorDisplay.

The facilities described on this page are new for NXT v 1.3.3.

6.3.1 Generic documentation
Many projects wish to know how well multiple human annotators agree on how to apply their coding manuals, and so they
have different human annotators read the same manual and code the same data. They then need to calculate some kind
of measurement statistic for the resulting agreement. This measurement can depend on the structure of the annotation
(agreement on straight categorization of existing segments being simpler to measure than annotations that require the
human to segment the data as well) as well as what field they are in, since statistical development for this form of meas-
urement is still in progress, and agreed practice varies from community to community.
NXT 1.3.3 and higher provides some help for this statistical measurement, in the form of a facility that can load the data
from multiple annotators into the same NOM (NXT's object model, or internal data representation, which can be used as
the basis for Java applications that traverse the NOM counting things or for query execution).
This facility works as follows. The metadata specifies a relative path from itself to directories at which all coding files con-
taining data can be found. (The data can either be all together, in which case the path is usually given on the <codings>
tag, or it can be in separate directories by type, in which case the path is specified on the individual <coding-file>
tags.) NXT assumes that if there is annotation available from multiple annotators, it will be found not in the specified direct-
ory itself, but in subdirectories of the directory specified, where the subdirectories is called by the names (or some other
unique designators) of the annotators. Annotation schemes often require more than one layer in the NOM representation.
The loading routine takes as arguments the name of the highest layer containing multiple annotations; the name of a layer
reached from that layer by child links that is common between the two annotators, or null if the annotation grounds out at
signal instead; and a string to use as an attribute name in the NOM to designate the annotator for some data. Note that
the use of a top layer and a common layer below it allows the program to know exactly where the multiply annotated data
is - it is in the top layer plus all the layers between the two layers, but not in the common layer. (It is possible to arrange
annotation schemes so that they do not fit this structure, in which case, NXT will not support reliability studies on them.)
The routine loads all of the versions of these multiply-annotated layers into the NOM, differentiating them by using the
subdirectory name as the value for the additional attribute representing the annotator.
NXT is agnostic as to which statistical measures are appropriate. It does not currently (June 05) implement any, but leaves
users to write Java applications or sets of NXT queries that allow their chosen measures to be calculated. (Being an open
source project, of course, anyone who writes such applications can add them to NXT for the benefit of others who make
the same choices.) Version 1.3.3 provides two end user facilities that will be helpful for these studies, which are essen-
tially multiple annotator versions of the GenericDisplay GUI and of CountQueryResults.

6.3.2 MultiAnnotatorDisplay
This is a version of the GenericDisplay that takes additional command line arguments as required by the loading
routine for multiply-annotated data, and renders separate windows for each annotation for each annotator. The advantage
of using the GUI is, as usual, for debugging queries, since queries can be executed, with the results highlighted on the
data display.
To call the GUI:

java net.sourceforge.nite.gui.util.MultiAnnotatorDisplay -c METADATAFILE
-o OBSERVATION -tl TOPLAYER [-cl COMMONLAYER] [-a ANNOTATOR]

-c METADATAFILENAME names a metadata file defining the corpus to be loaded.
-tl TOPLAYER names the data layer at the top of the multiple annotations to be loaded.

NXT Documentation: 6. Analysis

Page 52 of 94

-cl COMMONLAYER is required only if the multiple annotations ground out in a common layer, and names the first data
layer, reached by descending from the toplayer using child links, that is common between the multiple annotations.
-a ANNOTATOR is the name of the attribute to add to the loaded data that contains the name of the subdirectory from
which the annotations were obtained - that is, the unique designator for the annotation. Optional; defaults to coder.

6.3.3 CountQueryMulti
To call:

java CountQueryMulti -corpus METADATAFILE -query QUERY
-toplayer TOPLAYER -commonlayer COMMONLAYER
[-attribute ANNOTATOR] [-observation OBSERVATION][-allatonce]

where arguments are as for MultiAnnotatorDisplay, apart from the following (which are as for CountQueryRes-
ults):

-observation OBSERVATION: the observation whose annotations are to be loaded. Optional; if not given, all observa-
tions are processed one by one with counts given in a table.
-query QUERY: the query to be executed.
-allatonce: Optional; if used, then the entire corpus is loaded together, with output counting over the entire corpus.
This option is very slow and memory-intensive, and assuming you are willing to total the results from the individual obser-
vations, is only necessary if queries draw context from outside single observations.

6.3.4 Example reliability study
The remainder of this web page demonstrates an annotation scheme reliability test in NITE. The example queries below
come from the agreement test on the named entities annotation of the AMI corpus. Six recorded meetings were annotated
by two coders, whose marking were consequently compared. The categories and attributes that come into play are the
following:
named-entity: new named entities - the data for which we are doing the reliability test. These are parents of words in the
transcript. They are in a layer called ne-layer.
w: the words in the transcript. They are in a layer called word-layer.
ne-type: the categories a named entity can be assigned to. They are in an ontology, with the named entities pointing to
them, using the type role.
name: an attribute of a named entity type that gives the category for the named entity (e.g., timex, enamex).
coder:an attribute of a named entity, signifying who marked the entity.

6.3.4.1 Loading the data into the GUI
The tests are being carried out by loading the annotated data on the NXT display MultiAnnotatorDisplay (included
in nxt_1.3.3 and above). The call can be incorporated in a shell script along with the appropriate classpaths. For example,
the following is included in our multi.sh script run from the root of the NXT install (% sh multi.sh). All the
CLASSPATHs should be in a single line in the actual script.

#!/bin/bash
Note that a Java runtime should be on the path.
The current directory should be root of the nxt install.
unless you edit this variable to contain the path to your install
then you can run from anywhere. CLASSPATH statements need to be
in a single line
NXT="."

Adjust classpath for running under cygwin.
if [$OSTYPE = 'cygwin']; then

export CLASSPATH=".;$NXT;$NXT/lib;$NXT/lib/nxt.jar;$NXT/lib/jdom.jar;
$NXT/lib/JMF/lib/jmf.jar;$NXT/lib/pnuts.jar;$NXT/lib/resolver.jar;
$NXT/lib/xalan.jar;$NXT/lib/xercesImpl.jar;$NXT/lib/xml-apis.jar;
$NXT/lib/jmanual.jar;$NXT/lib/jh.jar;$NXT/lib/helpset.jar;$NXT/lib/poi.jar;
$NXT/lib/eclipseicons.jar;$NXT/lib/icons.jar;$NXT/lib/forms-1.0.4.jar;
$NXT/lib/looks-1.2.2.jar;$NXT/lib/necoderHelp.jar;$NXT/lib/videolabelerHelp.jar;

NXT Documentation: 6. Analysis

Page 53 of 94

$NXT/lib/dacoderHelp.jar;$NXT/lib/testcoderHelp.jar"

else

export CLASSPATH=".:$NXT:$NXT/lib:$NXT/lib/nxt.jar:$NXT/lib/jdom.jar:
$NXT/lib/JMF/lib/jmf.jar:$NXT/lib/pnuts.jar:$NXT/lib/resolver.jar:
$NXT/lib/xalan.jar:$NXT/lib/xercesImpl.jar:$NXT/lib/xml-apis.jar:
$NXT/lib/jmanual.jar:$NXT/lib/jh.jar:$NXT/lib/helpset.jar:$NXT/lib/poi.jar:
$NXT/lib/eclipseicons.jar:$NXT/lib/icons.jar:lib/forms-1.0.4.jar:
$NXT/lib/looks-1.2.2.jar:$NXT/lib/necoderHelp.jar:$NXT/lib/videolabelerHelp.jar:
$NXT/lib/dacoderHelp.jar:$NXT/lib/testcoderHelp.jar"

echo "CLASSPATH=.:$NXT:$NXT/lib:$NXT/lib/nxt.jar:$NXT/lib/jdom.jar:
$NXT/lib/JMF/lib/jmf.jar:$NXT/lib/pnuts.jar:$NXT/lib/resolver.jar:
$NXT/lib/xalan.jar:$NXT/lib/xercesImpl.jar:$NXT/lib/xml-apis.jar:
$NXT/lib/jmanual.jar:$NXT/lib/jh.jar:$NXT/lib/helpset.jar:$NXT/lib/poi.jar:
$NXT/lib/eclipseicons.jar:$NXT/lib/icons.jar:lib/forms-1.0.4.jar:
$NXT/lib/looks-1.2.2.jar:$NXT/lib/necoderHelp.jar:$NXT/lib/videolabelerHelp.jar:
$NXT/lib/dacoderHelp.jar:$NXT/lib/testcoderHelp.jar\n";

fi

java net.sourceforge.nite.gui.util.MultiAnnotatorDisplay -c Data/AMI/AMI-metadata.xml
-tl ne-layer -cl words-layer

A GUI with a multitude of windows will load (each window contains the data of one of the various layers of data and an-
notations), thus allowing comparisons between the choices of these coders. In our examples below the annotators are
named Coder1 and Coder2.
Selecting Search off the menu bar will bring up a small GUI where the queries such as the ones below can be written.
Clicking on any of the query results, highlights the corresponding data in the rest of the windows (words, named entities,
coders' markings etc.). Simultaneously, underneath the list of matches, the query GUI expands whichever n-tuple is se-
lected. For a the low-down on the NITE query language (NiteQL), look at the 'The NXT Query Language' p.34 or the Help
menu in the query GUI.

6.3.4.2 Querying data related to a single annotator
($a named-entity) : $a@coder=="Coder1"

Give a list of all the named entities marked by Coder1.

($w w)(exists $a named-entity) : $a@coder="Coder1" && $a ^ $w

Give a list of all the words marked as named entities by Coder1.

($a named-entity): $a@coder=="Coder1" :: ($w w): $a ^ $w

Gives all the named entities marked by Coder1 showing the words included in each entity.

($a named-entity)($t ne-type) : ($a >"type"^ $t) && ($t@name == "EntityType") && ($a@coder
== "Coder1")

Gives the named entities of type EntityType annotated by Coder1. The entity types (and their names) to choose
from can be seen in the respective window in the GUI (titled "Ontology: ne-types" in this case).

($a named-entity)($t ne-type) : ($a >"type"^ $t) && ($t@name == "EntityType") && ($a@coder
== "Coder1") :: ($w w): $a ^ $w

Like the previous query, only each match also includes the words forming the entity.

($t ne-type) :: ($a named-entity) : $a@coder=="Coder1" && $a >"type"^ $t

NXT Documentation: 6. Analysis

Page 54 of 94

Gives a list of all the named entity types (including root), and for each type, the entities of that type annotated by
Coder1. By writing the last term of the query as $a >"type" $t, the query will match only the bottom level entity
types (the ones used as actual tags), that is it will display MEASURE entities, but not NUMEX ones (assuming here that
MEASURE is a sub-type of NUMEX).

($a named-entity)($t ne-type) : $a@coder=="Coder1" && $a >"type"^ $t :: ($w w): $a ^ $w

Like the previous query, only each match (n-tuple) also includes the words forming the entity.

6.3.4.3 Querying data related to two annotators

Checking for co-extensiveness
The following examples check for agreement between the two annotators as to whether some text should be marked as
a named entity:
($a named-entity)($b named-entity): $a@coder=="Coder1" && $b@coder=="Coder2" :: ($w1 w)
(forall $w w) : ($a ^ $w1) && ($b ^ $w1) &&(($a ^ $w) -> ($b ^ $w)) && (($b ^ $w) -> ($a
^ $w))

Gives a lost of all the co-extensive named entities between Coder1 and Coder2 along with the words forming the
entities (the entities do not have to be of the same type, but they have to span exactly the same text).

($a named-entity)($b named-entity): $a@coder=="Coder1" && $b@coder=="Coder2" :: ($w1 w)
(exists $w w) : ($a ^ $w1) && ($b ^ $w1) &&(($a ^ $w) -> ($b ^ $w)) && (($b ^ $w) -> ($a
^ $w))

Like the previous query, but includes named entities that are only partially co-extensive. The words showing in the
query results are only the ones where the entities actually overlap.

($a named-entity)(forall $b named-entity)(forall $w w): $a@coder=="Coder1" &&
(($b@coder=="Coder2" && ($a ^ $w))->!($b ^ $w))

Gives the list of entities that only Coder1 has marked, i.e. there is no corresponding entity in Coder2. Switching
Coder1 and Coder2 in the query, gives the respective set of entities for Coder2.

($a named-entity)(forall $b named-entity)(forall $w w): $a@coder=="Coder2" &&
(($b@coder=="Coder1" && ($a ^ $w))->!($b ^ $w)) || $a@coder=="Coder1" &&
(($b@coder=="Coder2" && ($a ^ $w))->!($b ^ $w))

Like the previous query, only this time both sets of non-corresponding entities is given in one go.

Checking for categorisation agreement
The following examples check how the two annotators agree on the categorisation of co-extensive entities:
($a named-entity)($b named-entity) ($t ne-type): $a@coder=="Coder1" && $b@coder=="Coder2"
&& ($a >"type" $t) && ($b >"type" $t) :: ($w1 w) (forall $w w) : ($a ^ $w1) && ($b ^ $w1)
&&(($a ^ $w) -> ($b ^ $w)) && (($b ^ $w) -> ($a ^ $w))

Gives all the common named entities between Coder1 and Coder2 along with the entity type and text; the entities
have to be co-extensive (fully overlapping) and of the same type.

($a named-entity)($b named-entity) ($t ne-type): $a@coder=="Coder1" && $b@coder=="Coder2"
&& ($a >"type" $t) && ($b >"type" $t) :: ($w1 w) (exists $w w) : ($a ^ $w1) && ($b ^ $w1)
&&(($a ^ $w) -> ($b ^ $w)) && (($b ^ $w) -> ($a ^ $w))

Like the previous query, but includes partially co-extensive entities. The words showing in the query results are only
the ones that actually do overlap.

NXT Documentation: 6. Analysis

Page 55 of 94

($a named-entity)($b named-entity) ($t ne-type): $a@coder=="Coder1" && $b@coder=="Coder2"
&& ($a >"type" $t) && ($b >"type" $t) :: ($w2 w):($a ^ $w2) && ($b ^ $w2) :: ($w w):(($b
^ $w) && !($a ^ $w)) || (($a ^ $w) && !($b ^ $w))

Gives the list of entities which are the same type, but only partially co-extensive. The results include the entire set of
words from both codings.

($a named-entity)($b named-entity) ($t ne-type)($t1 ne-type): $a@coder=="Annotator1" &&
$b@coder=="Annotator2" && ($a >"type" $t) && ($b >"type" $t1) && ($t != $t1) :: ($w1 w)
(exists $w w) : ($a ^ $w1) && ($b ^ $w1) &&(($a ^ $w) -> ($b ^ $w)) && (($b ^ $w) -> ($a
^ $w)) :: ($w2 w): ($b ^ $w2)

Gives the list of entities, which are partially or fully co-extensive, but for which the two coders disagree as to the type.

($a named-entity)($b named-entity)($c ne-type)($d ne-type): $a@coder=="Coder1" &&
$b@coder=="Coder2" && $c@name="EntityType1" && $d@name="EntityType2"&& $a>"type"^ $c &&
$b>"type"^ $d :: ($w2 w):($a ^ $w2) && ($b ^ $w2)

Gives the list of entities which are partially or fully co-extensive, and which Coder1 has marked as EntityType1
(or one of its sub-types) and Coder2 has marked as EntityType2 (or one of its sub-types). This checks for type-
specific disagreements between the two coders.

($t ne-type): !($t@name="ne-root") :: ($a named-entity)($b named-entity):
$a@coder=="Coder1" && $b@coder=="Coder2" && (($a >"type"^ $t) && ($b >"type"^ $t)) :: ($w1
w) (forall $w w) : ($a ^ $w1) && ($b ^ $w1) &&(($a ^ $w) -> ($b ^ $w)) && (($b ^ $w) ->
($a ^ $w))

The query creates a list of all the entity types, and slots in each entry all the (fully) co-extensive entities as marked by
the two coders. The actual text forming each entity is also included in the results.

($t1 ne-type): !($t1@name="ne-root") :: ($a named-entity)($b named-entity):
$a@coder=="Coder1" && $b@coder=="Coder2" && (($a >"type"^ $t1) && ($b >"type"^ $t1)) ::
($w1 w) (exists $w w) : ($a ^ $w1) && ($b ^ $w1) &&(($a ^ $w) -> ($b ^ $w)) && (($b ^ $w)
-> ($a ^ $w))

Like the previous query, but includes partially co-extensive entities. The words showing in the query results are only
the ones that actually do overlap.

NXT Documentation: 6. Analysis

Page 56 of 94

7 Graphical user interfaces
NXT gives three different levels of support for graphical user interfaces. The first is a very basic data display that will al-
ways work for data in the correct format. The second is a set of configurable end user tools for common coding tasks that
covers simple timestamped labelling plus a range of discourse coding types. Finally, NXT contains a number of libraries
that can be used to build tailored end user interfaces for a particular corpus.

7.1 Preliminaries
7.1.1 Invoking the GUIs
Most NXT corpora come with a script for invoking the GUIs that work with the data; look for a top level file with the ex-
tension .bat (for Windows), .sh (for Linux), or .command (for Mac OSX). Where these scripts fail to work, it is usually
because you need to edit them because you have put the data in a different place than where the script author expected.
These start-up scripts will give as options the standard search gui and generic display gui, plus any other interfaces that
have been registered for the corpus by editing the callable-programs section of the metadata. For corpora with many dif-
ferent annotations, the generic display as accessed in this way is unusable because by default, it tries to load and display
everything - the command line call will give better control.

7.1.2 Time Highlighting

7.1.3 Search Highlighting
In the search highlighting, if there isn't a direct representation of some element on the display, then there's nothing to
highlight. For instance, in many data sets timestamped orthographic transcription consists of w and sil elements but the
sil elements are not rendered in the display, so the query ($s sil): won't cause any highlighting to occur. This can
be confusing but it is the correct behaviour. Good interface design will have a screen rendering for any elements of theor-
etical importance.

7.2 Generic tools that work on any data
Any corpus in NXT format is immediately amenable to two different graphical interfaces that allow the corpus to be
searched, even without writing tailored programs. The first is a simple search GUI, and the second is a generic data dis-
play program that works in tandem with the search GUI to highlight search results.

7.2.1 The NXT Search GUI
The search GUI can be reached either by using search.bat/search.sh and specifying which corpus to load or by
using the .bat/.sh for the specific corpus (if it exists) and choosing the Search option. It has two tabbed windows. The
query tab allows the user to type in a query. Cut and paste from other applications works with this window. The query can
also be saved on the Bookmark menu, but at May 2004 this doesn't work well for long queries. There is a button to press
to do the search , which automatically takes the user either to a pop-up window with an error message explaining where
the syntax of the query is incorrect, or, for a valid query, to the result tab. This window shows the results as an XML tree
structure, with more information about the element the user has selected (with the mouse) displayed below the main tree.
The GUI includes an option to save the XML result tree to a file. This can be very handy in conjunction with knit for
performing data analysis. It also includes an option to save the results in a rudimentary Excel spreadsheet. This is less
handy, especially in the case of complex queries, because the return value is hierarchically structured but the spread-
sheet just contains information about each matched element dumped into a flat list by performing a depth-first, left-to-right
traversal of the results. However, for relatively simple queries and people who are used to data filtering and pivot tables
in Excel, it can be the easiest first step for analysis.
The search GUI works on an entire corpus at once. This can make it slow to respond if the corpus is very large or if the
query is very complicated (although of course it's possible to comment out observations in the metadata to reduce the
amount of information it loads). Sometimes a query is slow because it's doing something more complicated than what the
user intended. A query can be interrupted mid-processing and will still return a partial result list, which can be useful for
checking it.
At May 2004, when the user chooses to open a corpus from the File menu, the search GUI expects the metadata file
to be called something.corpus, although many users are likely to have it called something.xml (so that it behaves

NXT Documentation: 7. Graphical user interfaces

Page 57 of 94

properly in other applications like web browsers). Choose the All files option (towards the bottom of the open dialogue
box) in order to see .xml files as well as .corpus ones.

7.2.2 The Generic Display
NXT comes with a generic display so that it can at least display and search any corpus in NXT format "out of the box",
without having to configure the end user coding tools or build a tailored tool. It provides the absolute basics. It isn't meant
for serious use, but it can be useful to test out new data or if you don't need GUIs often enough to spend time getting
something better set up.
The Generic Display works on one observation at a time. It can be invoked at the command line as follows:
java net.sourceforge.nite.gui.util.GenericDisplay -c CORPUS -o OBS -f FONTSIZE -q QUERY

In the call, CORPUS gives a path to a metadata file and OBS names an observation that is listed in that metadata file.
These are mandatory. You may optionally specify a font size for the data rendering. You may also specify a query that will
be used to choose kinds of data for display. Only the variable type information will be used in the processing; the display
will show data just from the files that include data that matches variables of those types. For instance, -q '($w word)($d
dialogue-act):' will render display windows for words and dialogue-acts only, ignoring all other data. This is particularly
useful for corpora with many different kinds of annotation, where it would create too busy a display to show everything.
For larger corpora, NXT is unable to render all of the annotations at once because this would take too much memory. It is
only possible to run the generic display for such corpora with the -q option.
The Generic Display simply puts up an audio/video window for each signal associated with an observation, plus one win-
dow per coding that shows the elements in an NTextArea, one element per line, with indenting corresponding to the
tree structure and a rendering of the attribute values, the PCDATA the element contains, and enough information about
pointers to be able to find their targets visually on the other windows. It doesn't try to do anything clever about window
placement. As with other NXT GUIs, there is a Search menu, and the display shows both search and time highlights.

7.3 Configurable end user coding tools
There are currently three built-in and configurable end user GUIs for common interface requirements.

7.3.1 The signal labeller
The signal labeller is for creating timestamped labels against signal, with the labels chosen from an enumerated list. This
can be used for a very wide range of low-level annotations, such as gaze direction, movement in the room, rough starts
and ends of turns, and areas to be included in or excluded from some other analysis. The tool treats the labels as mutu-
ally exclusive and exhaustive states; as the user plays the signal, whenever a new label is chosen (either with the mouse
or using keyboard shortcuts), that time is used both for the beginning of the new label and the end of the old one. Al-
though there are several similar tools available, this tool will work on either audio or video signals, including playing a set
of synchronized signals together, and works natively on NXT format data, which is of benefit for user groups that intend
to use NXT for further annotation. It does not, however, currently include either the palette-based displays popular from
Anvil and TASX, and the signal control is meant for the coarser style of real-time coding, not for the precision timing that
some projects require. It also does not contain waveform display, and therefore is unsuitable for many kinds of speech
annotation.
Java class: net.sourceforge.nite.tools.videolabeler.ContinuousVideoLabeling

7.3.2 The discourse entity coder
The second end user GUI is for coding discourse entities above an existing text or speech transcription. Coding is per-
formed by sweeping out the words in the entity and then mousing on the correct entity type from a static display of the
named entity type ontology, or choosing it by keyboard shortcut. It can be used for any coding that requires the user to
categorize contiguous stretches of text (or of speech by one person) using labels chosen from a tree-shaped ontology.
In addition, it allows the user to indicate directional relationships between two coded entities, with the relationship cat-
egorized from a set of labels. The most common uses for this style of interface are in marking up named entities and
coreferential relationships.
Java class: net.sourceforge.nite.tools.necoder.NECoder

7.3.3 The discourse segmenter

NXT Documentation: 7. Graphical user interfaces

Page 58 of 94

The final GUI is for segmenting discourse into contiguous stretches of text (or of speech by one person) and categorizing
the segments. The most common use for this style of interface is a dialogue act coder. Coding is performed by marking
the end of each discourse segment; the segment is assume to start at the end of the last segment (or the last segment
by the same speaker, with the option of not allowing segments to draw words across some higher level boundary, such
as previously marked speaker turns). A permanent dialogue box displays information about the currently selected act and
allows a number of properties to be specified for it beyond simple type. The coding mechanisms supported include a tick-
box to cover boolean properties such as termination of the act before completion, free text comments, and choice from
a small, enumerated, mutuallly exclusive list, such as might be used for noting the dialogue act's addressee. Although
this structure covers some styles of dialogue act coding, this tool is not suitable for schemes such as MRDA where dual-
coding from the same act type list is allowed. This tool additionally allows the user to indicate directional relationships
between acts using the same mechanism as in the discourse entity coder, although for current dialogue act schemes this
is a minority requirement.
Java class: net.sourceforge.nite.tools.dacoder.DACoder

7.3.4 The non-spanning comparison display
This is the first in a series of tools to display multiple versions of a particular type of annotation. The non-spanning com-
parison display can show two different annotators' data over the same base-level transcription. We use annotator loosely
to mean any human or machine process that results in an annotation. This is a display only, not an annotation tool. Dis-
play details are controlled using a configuration file much like the other end user GUIs, though there are two extra settings
required (see below). The display shows the two annotators' names, with the first underlined and the second italicised,
in a small Annotator Legend window. Every annotation by the first annotator is underlined and every annotation by the
second is italizized so that the two can be distinguished. The types of annotations will be distinguished in the same way
as for the discourse entity coder.
Java class: net.sourceforge.nite.tools.comparison.nonspanning.NonSpanningComparisonDisplay

7.3.5 The dual transcription comparison display
This is the second in a series of tools to display multiple versions of a particular type of annotation. The dual transcription
comparison display displays two transcriptions side-by-side using a different configuration for each. For example, a manu-
al transcription on the left and an automatic transcription on the right. This is a display only, not an annotation tool. Display
details are controlled using a configuration file much like the other end user GUIs. Any annotations on the transcriptions
will be displayed in the same way as for the non spanning comparison display.
Java class:
net.sourceforge.nite.tools.comparison.dualtranscription.DualTranscriptionComparisonDisplay

7.3.6 How to configure the end user tools
There are two basic steps to configure one of these end-user tools for your corpus:

7.3.6.1 Edit the Metadata File
Consider what you want to code and which tool you want to use. Edit the codings and layers in the metadata file for your
new annotation, then add something like this to the callable-programs section of your metadata file:

<callable-program description="Named Entity Annotation"
name="net.sourceforge.nite.tools.necoder.NECoder">

<required-argument name="corpus" type="corpus"/>
<required-argument name="observation" type="observation"/>
<required-argument name="config" default="myConfig.xml"/>
<required-argument name="corpus-settings" default="my-corpus-settings-id"/>
<required-argument name="gui-settings" default="my-gui-settings-id"/>

</callable-program>

This tells NXT to allow the use of the built-in Named Entity coder on this corpus. When you start up
net.sourceforge.nite.nxt.GUI on this metadata, a new entry will appear called Named Entity Annotation.
The required-arguments require first that the corpus (metadata file name) is passed to the tool and than an obser-
vation is chosen by the user. The third required-argument, config tells NXT where to find the configuration file for
this tool, relative to the metadata, and the last two tell it which settings to use within that file (see next section).

7.3.6.2 Edit or Create the Configuration File

NXT Documentation: 7. Graphical user interfaces

Page 59 of 94

Configuration files can look complicated but the requirements to get started are really quite simple. One example con-
figuration file is included in the NXT distribution as lib/nxtConfig.xml. It contains extensive comments about what
the settings mean. Below is a full discussion of the elements and attributes of the configuration files, but to continue with
the above example, here is a configuration file (according to the above metadata fragment, it should be called myCon-
fig.xml and located in the same directory as the metadata). This configures the named entity coder:

<NXTConfig>
<DACoderConfig>

<!-- Corpus settings for the ICSI corpus -->
<corpussettings

id = "my-corpus-settings-id"
segmentationelementname = "segment"
transcriptionlayername = "words-layer"
transcriptiondelegateclassname = "MyTranscriptionToTextDelegate"
neelementname = "named-entity"
neattributename = "type"
annotatorspecificcodings= "nees"

/>

<guisettings
id = "my-gui-settings-id"
gloss = "My Corpus settings"
applicationtitle = "My Corpus Tool"

/>

</DACoderConfig>
</NXTConfig>

Note the corpussettings element with the ID ="my-corpus-settings-id" as referred to in the metadata file, and
similarly a guisettings element named my-gui-settings-id. In this way, a configuration file can contain any num-
ber of different configurations for different corpora as well as different tools, though it's normally clearer to have at least
one config file per corpus.

Some Important Settings
neelementname

the name of the element, which must be present in the metadata file, that will be created by the named entity tool

neattributename

if this is present, we are using an enumerated attribute directly on the neelementname rather than a pointer into a
type hierarchy. The attribute must be present in the metadata file and must be enumerated. To use a pointer into a
type hierarchy you should specify at least the neontology, neroot, nenameattribute and netyperole instead
of this single attribute. Note: this feature is only available in NXT versions after March 2006.

segmentationelementname

the element used to split the transcription into 'lines'. It is normally assumed this is an agent-coding and if so, the
agent associated with each speaker is placed in front of each line.

transcriptionlayername

the layer that contains the transcription to be printed. How it actually appears can be specified using transcrip-
tiondelegateclassname.

transcriptiondelegateclassname

if this is absent, any element in the transcriptionlayername with text content will be displayed as transcription.
If it is present, each element is passed to the delegate class in order to display the transcription. Any such delegate

NXT Documentation: 7. Graphical user interfaces

Page 60 of 94

class has to implement the Java interface TranscriptionToTextDelegate which contains the single method
getTextForTranscriptionElement(NOMElement nme).

7.3.6.3 Config File Detail
This section is a detailed look at the settings in the NXT configuration files. Note: some of these settings can only be used
in NXT builds after 1.3.5 (9/5/06). The details may not be entirely static.
At the top level, in the NXTConfig element, there are currently two possible subelements: DACoderConfig and
CSLConfig. The first is for configuring discourse coder tools (dialogue act coder; named entity coder etc). The second is
for configuring the 'Continuous Signal Labeller' p.58 tool
Both CSLConfig and DACoderConfig can contain any number of corpussettings and guisettings elements,
each of which has an id attribute to uniquely identify it: often these IDs will be used in the CallableTools section of an
NXT metadata file. guisettings are preferences that affect the overall look of the interface and corpussettings tell
NXT about the elements to be displayed and annotated. The detail of what goes where is described in each subsection
below.

DACoderConfig

guisettings attributes
id

Unique identifier

gloss

Example element containing short explanation of all possible settings

showapwindow

If true, the Adjacency Pair (or relation) window is shown in the discourse entity coder. Defaults to true.

showlogwindow

If true, the log feedback window is shown. Defaults to true.

applicationtitle

The title that you want to see in the main frame

wordlevelselectiontype

This determines what units are selectable on the speech transcriptions (assuming transcriptselection is
not ="false"). The are currently five valid strings - anything else will result in the default behaviour:
in_segment_phrase. The values and their meanings are: one_word: only single words can be selected at a
time; one_segment: only single segments can be selected; multiple_segments: multiple complete sements
can be selected; in_segment_phrase: contiguous words that lie within a single segment can be selected;
cross_segment_phrase: contiguous words across segments can be selected (note that the selection can in fact
be discontiguous if multiagentselection is not true).

transcriptselection

This determines whether you can select speech transcription elements. If this is false no speechtext selection will
take place, regardless of settings such as allowMultiAgentSelect or wordlevelSelectionType. Defaults to
="true".

annotationselection

NXT Documentation: 7. Graphical user interfaces

Page 61 of 94

This determines whether you can select annotation elements. If this is false no annotation selection will take place,
regardless of other settings. Defaults to true.

multiagentselection

This determines whether you can select data from more than one agent. If this is true such selection can take place.
Defaults to false.

corpussettings attributes
id

Unique identifier

gloss

Example element containing short explanation of all possible settings

segmentationelementname

Element name of the segmentation elements that pre-segments the transcription layer. Used for the initial display of
the text.

segmenttextattribute

Name of the attribute on the segment element to use as the header of each transcription line. Use a delegate (below)
for more complex derivation. If neither delegate nor attribute is set, the agent is used as the line header (if agent is
specified).

segmenttextdelegateclassname

full class name of a TranscriptionToTextDelegate that derives the text of the segment header from each seg-
ment element. Note this is not the transcription derivation, just the derivation of the header for each line of transcrip-
tion. If neither this delegate nor segmenttextattribute is set, the agent is used as the line header (if agent is
specified).

transcriptionlayername

LAYER name of the transcription layer

transcriptionattribute

Name of the attribute in which text of transcription is stored. Leave out if text not stored in attribute.

transcriptiondelegateclassname

full class name of TranscriptionToTextDelegate. Leave out is no delegate is used.
net.sourceforge.nite.gui.util.AMITranscriptionToTextDelegate is an example delegate class that
works for the AMI corpus. For a new corpus you may have to write your own, but it is a simple process.

daelementname

element name of dialogue act instances

daontology

ontology name of dialogue acts

daroot

NXT Documentation: 7. Graphical user interfaces

Page 62 of 94

nite-id of dialogue act root

datyperole

role name of the pointer from a dialogue act to its type

daattributename

The enumerated attribute on the DA element used as its 'type'. If this attribute is set, the daontology, daroot and
datyperole attributes are ignored.

dagloss

the name of the attribute of the dialog act types that contains some extra description of the meaning of this type

apelementname

element name of adjacency pair instances

apgloss

the name of the attribute of the relation types that contains some extra description of the meaning of this type

apontology

ontology name of adjacency pairs

aproot

nite-id of adjacency pair root

defaultaptype

nite-id of default adjacency pair type

aptyperole

role name of the pointer from a AP to its type

apsourcerole

role name of the pointer from a AP to its source

aptargetrole

role name of the pointer from a AP to its target

neelementname

element name of named entity instances

neattributename

The enumerated attribute on the NE element used as its 'type'. If this attribute is set, the neontology, neroot and
netyperole attributes are ignored.

neontology

ontology name of named entities

neroot

NXT Documentation: 7. Graphical user interfaces

Page 63 of 94

nite-id of named entities root

neontologyexpanded

set to false if you want the ontology to remain in un-expanded form on startup. The default is to expand the tree.

nenameattribute

attribute name of the attribute that contains the name of the named entity

netyperole

role name of the pointer from a named entity to its type

nenesting

Set to true to allow named entities to nest inside each other. Defaults to false.

nemultipointers

if this is true each span of words can be associated with multiple values in the ontology. Note that this only makes
sense when the neattributename is not set - this setting is ignored if neattributename is set. It also requires
that the nenesting attribute is true.

abbrevattribute

name of the attribute which contains an abbreviated code for the named entity for in-text display

nelinkelementname

The element linking NEs together. Used by NELinker.

nelinkattribute

The enumerated attribute on the NE link element used as its 'type'. If this attribute is set, the nelinkontology,
nelinkroot and nelinkrole attributes are ignored, and the nelinktypedefault if present is the default string
value of the type. Used by NELinker.

nelinkontology

The type ontology pointed to by the NE link element. Used by NELinker.

nelinkroot

The root of the type ontology pointed into by the NE link element. Used by NELinker.

nelinktyperole

The role used to point into the type ontology by the NE link element. Used by NELinker.

nelinktypedefault

The default type value for NE link elements. Used by NELinker.

nelinksourcerole

The role of the pointer from the link element to the first (or source) NE element. Used by NELinker.

nelinktargetrole

NXT Documentation: 7. Graphical user interfaces

Page 64 of 94

The role of the pointer from the link element to the second (or target) NE element. Used by NELinker.

annotatorspecificcodings

the semi-colon-separated list of codings that are annotator specific, i.e. for which each individual annotator will get
his or her own datafiles. Usually these are the codings for all layers that will be annotated in the DACoder; see AMI
example. This setting only has effect when the tool is started for a named annotator or annotators.

nsannotatorlayer

Only used by NonSpanningComparisonDisplay this specifies the layer containing elements to compare. This is
the top layer passed to the multi-annotator corpus load.

nscommonlayer

Only used by NonSpanningComparisonDisplay this is the layer that is common between all annotators - it will
normally be the same layer as transcriptionlayername.

In the above settings, da and ap prefixes are used in the attribute names here (standing for 'dialogue act' and 'adjacency
pair'), these can refer to any kind of discourse elements and relations between them you wish to annotate.

CSLCoderConfig

guisettings attributes
id

Unique identifier

gloss

Example CSL settings, giving an explanation for every entry.

autokeystrokes

Optional (default false): if true, keystrokes will be made automatically if no keystroke is defined in the corpus data
or if the defined keystroke is already in use.

showkeystrokes

Optional (default off): set to off (keystroke won't be shown in the GUI), tooltip (keystroke will be shown in the
tooltip of a control) or label (keystroke will be shown in the label of a control).

continuous

Optional (default true): if true, the CSL tool will ensure that annotations remain continuous (prevent gaps in the
time line)

syncrate

Optional (default 200): the number of milliseconds between time change events from the NXT clock

timedisplay

Optional (default seconds): the type of display of coding times in the annotation window: if minutes then the format
is like that of the clock h:mm:ss.ms

corpussettings attributes
id

NXT Documentation: 7. Graphical user interfaces

Page 65 of 94

Unique identifier

gloss

Example CSL settings for Dagmar demo corpus

annotatorspecificcodings

pose

For the 'Continuous Signal Labeller' p.58 we expect the corpussettings element to contain a number of layerinfo
elements, each of which can contain these attributes. Each layer named within the current corpussettings element
can be coded using the same tool: users choose what they're annotating using a menu.

corpussettings / layerinfo attributes
id

Unique identifier

gloss

Textual description of this layer

codename

Name of the elements that are annotated in the given layer

layername

The name of the layer that you want to code in the video labeler

layerclass

Delegate AnnotationLayer class. Defaults to
net.sourceforge.nite.tools.videolabeler.LabelAnnotationLayer

controlpanelclass

Delegate TargetControlPanel class. Defaults to
net.sourceforge.nite.tools.videolabeler.LabelTargetControlPanel

enumeratedattribute

Either this or pointerrole are required for LabelAnnotationLayer: name of the attribute that should be set -
attribute must exist on the codename element and must be enumerated - currently no flexibility is offered in the key-
board shortcuts - they always start at "1" and increase alphanumerically.

pointerrole

Either this or enumeratedattribute are required for LabelAnnotationLayer: role of the pointer that points to
the object set or ontology that contains the labels.

labelattribute

Required for LabelAnnotationLayer: name of the attribute of an object set or ontology element that contains the
label name.

evaluationattribute

NXT Documentation: 7. Graphical user interfaces

Page 66 of 94

Required for FeeltraceAnnotationLayer: name of the double value attribute that contains the evaluation of an
emotion.

activationattribute

Required for FeeltraceAnnotationLayer: name of the double value attribute that contains the activation of an
emotion.

showlabels

Optional (default true) for FeeltraceTargetControlPanel: if true, labels for some predefined emotions will be
shown in the Feeltrace circle.

clickannotation

Optional (default false) for FeeltraceTargetControlPanel: if true, the user can click to start and end annot-
ating; if false, the user should keep the mouse button pressed while annotating.

7.4 Libraries to support GUI authoring
Please refer to the NXT Javadoc and the example programs in the samples directory.

7.4.1 The NXT Search GUI as a component for other tools
It's often useful for applications to be able to pop up a search window and react to search results as they are selected by
the user. Using any in-memory corpus that implements the SearchableCorpus interface (for example NOMWriteCor-
pus), you can very simply achieve this. If nom is a valid SearchableCorpus we could use:

net.sourceforge.nite.search.GUI searchGui = new GUI(nom);
searchGui.registerResultHandler(handler);
...
searchGui.popupSearchWindow();

In this extract, the first line initializes the search GUI by passing it a SearchableCorpus. The second line tells the GUI
to inform handler when search results are selected. handler must implement the QueryResultHandler interface. This
simple interface is already implemented by some of NXT's own GUI components like NTextArea, but this mechanism
allows you complete freedom to do what you want with search results. There is no obligation to register a result handler
at all, but it may result in a less useful interface.
The third line of the listing actually causes the search window to appear and will normally be the result of a user action
like selecting the Search menu item or something similar.

NXT Documentation: 7. Graphical user interfaces

Page 67 of 94

8 Using NXT in conjunction with other tools
This section contains specific information for potential users who need NXT's features about how to record, transcribe,
and otherwise mark up their data before up-translation to NXT. NXT's earliest users have mostly been from computational
linguistics projects. This is partly because of where it comes from - it arose out of a collaboration among two computational
linguistics groups and an interdisciplinary research centre - and partly because for most uses, its design assumes that
the projects that use it will have access to a programmer to set up tailored tools for data coding and to get out some
kinds of analysis, or at the very least someone on the project will be willing to look at XML. However, NXT is useful for
linguistics and psychology projects based on corpus methods as well. This web page is primarily aimed at them, to tell
them problems to look out for, help them assess what degree of technical help they will need in order to carry out the work
successfully, and give a sense of what sorts of things are possible with the software.

8.1 Recording Signals
8.1.1 Signal Formats
For information on media formats and JMF, see 'How to Play Media in NXT' p.7.
It is a good idea to produce a sample signal and test it in NXT (and any other tools you intend to use) before starting
recording proper, since changing the format of a signal can be confusing and time-consuming. There are two tests that
are useful. The first is whether you can view the signal at all under any application on your machine, and the second is
whether you can view the signal from NXT. The simplest way of testing the latter is to name the signal as required for
one of the sample data sets in the NXT download and try the generic display or some other tool that uses the signal. For
video, if the former works and not the latter, then you may have the video codec you need, but NXT can't find it - it may
be possible to fix the problem by adding the video codec to the JMF Registry. If neither works, the first thing to look at is
whether or not you have the video codec you need installed on your machine. Another common problem is that the video
is actually OK, but the header written by the video processing tool (if you performed a conversion) isn't what JMF expects.
This suggests trying to convert in a different way, although some brave souls have been known to modify the header in a
text editor.
We have received a request to implement an alternative media player for NXT that uses QT Java (the QuickTime API
for Java) rather than JMF. This would have advantages for Mac users and might help some PC users. We're currently
considering whether we can support this request.

8.1.2 Capturing Multiple Signals
Quite often data sets will have multiple signals capturing the same observation (videos capturing different angles, one
audio signal per participant, and so on). NXT expresses the timing of an annotation by offsets from the beginning of the
audio or video signal. This means that all signals should start at the same time. This is easiest to guarantee if they are
automatically synchronized with each other, which is usually done by taking the timestamp from one piece of recording
equipment and using it to overwrite the locally produced timestamps on all the others. (When we find time to ask someone
who is technically competent exactly how this is done, we'll insert the information here.) A distant second best to auto-
matic synchronization is to provide some audibly and visibly distinctive event (hitting a colourful children's xylophone, for
instance) that can be used to manually edit the signals so that they all start at the same time.

8.1.3 Using Multiple Signals
Most coding tools will allow only one signal to be played at a time. It's not clear that more than this is ever really required,
because it's possible to render multiple signals onto one. For instance, individual audio signals can be mixed into one
recording covering everyone in the room, for tools that require everyone to be heard on the interface. Soundless video
or video with low quality audio can have higher quality audio spliced onto it. For the purposes of a particular interface,
it should be possible to construct a single signal to suit, although these might be different views of the data for different
interfaces (hence the requirement for synchronization - it is counter-productive to have different annotations on the same
observation that use different time bases). The one sticking point is where combining multiple videos into one split-screen
view results in an unacceptable loss of resolution, especially in data sets that do not have a "room view" video in addition
to, say, individual videos of the participants.
From NXT 1.3.0 it is possible to show more than one signal simultaneously by having the application put up more than
one media player. If one signal is selected as the master by clicking the checkbox on the appropriate media player, that
signal will control the time for all the signals: it will be polled for the current time that will be sent to the other signals (and
anything else that monitors time). The number of signals that can successfully play in sync on NXT depends on the spec

NXT Documentation: 8. Using NXT in conjunction with other tools

Page 68 of 94

of your machine and the encoding of the signals. Where sync is seriously out, NXT will attempt to correct the drift by paus-
ing all the signals and re-aligning. If this happens too often, it's a good sign your machine is struggling. If you intend to
rely on synchronization of multiple signals, you should test your formats and signal configuration on your chosen platform
carefully.

8.2 Transcription
One of the real benefits of using NXT is the fact that it puts together timing information and linguistic structure. This means
that most projects transcribing data with an eye to using NXT want a transcription tool that allows timings to be recorded.
For rough timings, a tool with a signal (audio or video) player will do, especially if it's possible to slow the signal down and
go back and forth a bit to home in on the right location (although this greatly increases expense over the sort of "on-line"
coding performed simply by hitting keys for the codes as the signal plays). For accurate timing of transcription elements
- which is what most projects need - the tool must show the speech waveform and allow the start and end times of utter-
ances (or even words) to be marked using it.
NXT does not provide any interface for transcription. It's possible to write an NXT-based transcription interface that takes
times from the signal player, but no one has. Providing one that allows accurate timestamping is a major effort because
NXT doesn't (yet?) contain a waveform generator. For this reason, you'll want to do transcription in some other tool and
import the result into NXT.

8.2.1 Using special-purpose transcription tools
There are a number of special-purpose transcription tools available. For signals that effectively have one speaker at a
time, most people seem to use Transcriber or perhaps TransAna. For group discussion, ChannelTrans which is a multi-
channel version of Transcriber, seems to be the current tool of choice. iTranscribe is a ground-up rewrite of it that is
currently in pre-release.
Although we have used some of these tools, we've never evaluated them from the point of view of non-computational
users (especially whether or not installation is difficult or whether in practice they've required programmatic modification),
so we wouldn't want to endorse any particular one, and of course, there may well be others that work better for you.
Transcriber's transcriptions are stored in an XML format that can be up-translated to NXT format fairly simply. TransAna's
are stored in an SQL database, so the up-translation is a little more complicated; we've never tried it but there are NXT
users who have exported data from SQL-based products into whatever XML format they support and then converted that
into NXT.

8.2.2 Using programs not primarily intended for transcription
Some linguistics and psychology-based projects use programs they already have on their computers (like Microsoft Word
and Excel) for transcription, without any modification. This is because (a) they know they want to use spreadsheets for
data analysis (or to prepare data for importation into SPSS) and they know how to get there from here, (b) because they
can't afford software licenses but they know they've already paid for these ones; and (c) they aren't very confident about
installing other software on their machines.
Using unmodified standard programs can be successful, but it takes very careful thought about the process, and we would
caution potential users not to launch blindly into it. We would also argue that since there are now programs specifically for
transcription that are free and work well on Windows machines, there is much less reason for doing this than there used
to be. However, whatever you do for transcription, you want to avoid the following.

• hand-typing times (for instance, from a display on the front of a VCR), because the typist will get them wrong

• hand-typing codes (for instance, {laugh}, because the typist will get them wrong

In short, avoid hand-typing anything but the orthography, and especially anything involving numbers or left and right
bracketing. These are practices we still see regularly, mostly when people ask for advice about how to clean up
the aftermath. Which is extremely boring to do, because it takes developing rules for each problem
({laughs}, {laugh, laugh), laugh, {laff}, {luagh}... including each possible way of crossing nested
brackets accidentally), inspecting the set as you goes to see what the next rule should be. Few programmers will take on
this sort of job voluntarily (or at least not twice), which can make it expensive. It is far better (...easier, less stressful, better
for staff relations, less expensive...) to sort out your transcription practices to avoid these problems.

NXT Documentation: 8. Using NXT in conjunction with other tools

Page 69 of 94

More as a curiosity than anything else, we will mention that it is possible to tailor Microsoft Word and Excel to contain
buttons on the toolbars for inserting codes, and to disable keys for curly brackets and so on, so that the typist can't easily
get them wrong. We know of a support programmer who was using these techniques in the mid-90s to support corpus
projects, and managed to train a few computationally-unskilled but brave individuals to create their own transcription and
coding interfaces this way. If you really must use these programs, you really should consider these techniques. (Note to
the more technical reader or anyone trying to find someone who knows how it works these days: the programs use Visual
Basic and manipulate Word and Excel via their APIs; they can be created by writing the program in the VB editor or from
the end user interface using the Record Macro function, or by some combination of the two.) In the 90's, the Microsoft
platform changed every few years in ways that required the tools to be continually reimplemented. We don't know whether
this has improved or not.
Up-translating transcriptions prepared in these programs to NXT can be painful, depending upon exactly how the tran-
scription was done. It's best if all of the transcription information is still available when you save as "text only". This means,
for instance, avoiding the use of underlining and bold to mean things like overlap and emphasis. Otherwise, the easiest
treatment is to save the document as HTML and then write scripts to convert that to NXT format, which is fiddly and can
be unpalatable.

8.2.3 Using Forced Alignment with Speech Recognizer Output to get Word Timings
Timings at the level of the individual word can be useful for analysis, but they are extremely expensive and tedious to
produce by hand, so most projects can only dream about them. It is actually becoming technically feasible to get usable
timings automatically, using a speech recognizer. By "becoming", we mean that computational linguistics projects, who
have access to speech specialists, know how to do it well enough that they think of it as taking a bit of effort but not requir-
ing particular thought. This is a very quick explanation of how, partly in case you want to build this into your project and
partly because we're considering whether we can facilitate this process for projects in general (for instance, by working
closely with one project to do it for them and producing the tools and scripts that others would need to do forced align-
ment, as a side effect). Please note that the author is not a speech researcher or a linguist; she's just had lunch with a
few, and not even done a proper literature review. That means that we don't guarantee everything in here is accurate, but
that we are taking steps to understand this process and what we might be able to do about it. For better information, one
possible source is Lei Chen, Yang Liu, Mary Harper, Eduardo Maia, and Susan McRoy, Evaluating Factors Impacting the
Accuracy of Forced Alignments in a Multimodal Corpus, LREC 2004, Lisbon Portugal.
Commercial speech recognizers take an audio signal and give you their one best guess (or maybe n best guesses) of
what the words are. Research speech recognizers can do this, but for each segment of speech, they can also provide a
lattice of recognition hypotheses. A lattice is a special kind of graph where nodes are times and arcs (lines connecting
two different times) are word hypotheses, meaning the word might have been said between the two times, with a given
probability. The different complete things that might have been said can be found by tracing all the paths from the start
time to the end time of the segment, putting the word hypotheses together. (The best hypothesis is then the one that has
the highest overall probability, but that's not always the correct one.) If you have transcription for the speech that was
produced by hand and can therefore be assumed to be correct, you can exploit the lattice to get word timings by finding
the path through the lattice for which the words match what was transcribed by hand and transferring the start and end
times for each word over to the transcribed data. This is what is meant by "forced alignment". HTK, one popular toolkit
that researchers use to build their speech recognizers, comes with forced alignment as a standard feature, which means
that if your recognizer uses it, you don't have to write a special purpose program to get the timings out of the lattice and
onto your transcription. Of course, it's possible that other speech recognizers do this to and we just don't know about it.
The timings that are derived from forced alignment are not as accurate as those that can be obtained by timestamping
from a waveform representation, but they are much, much cheaper. Chen et al. 2004 has some formal results about ac-
curacy. Speech recognizers model what is said by recognizing phonemes and putting them together into words, so the
inaccuracy comes from the kinds of things that happen to articulation at word boundaries. This means that, to hazard a
guess, the accuracy isn't good enough for phoneticians, but it is good enough for researchers who are just trying to find
out the timing relationship between words and events in other modalities (posture shifts, gestures, gaze, and so on). The
timings for the onset and end of a speech segment are likely to be more accurate than the word boundaries in between.
The biggest problem in producing a forced alignment is obtaining a research speech recognizer that exposes the lattice of
word hypotheses. The typical speech recognition researcher concentrates on accuracy in terms of word error rates (what
percentage of words the system gets wrong in its best guess), since in the field as a whole, one can publish if and only
if the word error rate is lower than in the last paper to be published. (This is why most people developing speech recog-
nizers don't seem to have immediate answers to the question of how accurate the timings are.) Developing increasingly
accurate recognizers takes effort, and once a group has put the effort in, they don't usually want to give their recognizer
away. So if you want to used forced alignment, you have the following options:

NXT Documentation: 8. Using NXT in conjunction with other tools

Page 70 of 94

• Persuade a speech group to help you. Lending the speech recognizer for your purposes doesn't harm commercial pro-
spects or their research prospects in any way, but they might never have thought about that. This does require contact
with a group that is either charitable or knows the benefits of negotation. Since speech groups are always wanting more
data and since hand-transcription is expensive, one reasonable deal is that if they provide you with the timings for your
research, they can use your data to improve their recognizer. This only works if your recordings are of high enough
quality for their purposes and speech groups may have specific technical constraints. For instance, speech recognizers
work better on data that is recorded using the same kind of microphones as the data the recognizer was trained on.
This means that the best time to broker a deal is before you start recording. The easiest arrangement is usually for
them to bung your data through the recognizer at their site and pass you the results rather than for you to install the
recognizer.

• Build your own recognizer. One of the interesting things about forced alignment is that you don't actually need a good
recognizer - you just need one that can get the correct words somewhere in the lattice of word hypotheses. Knowing
the correct words also makes it possible to make it much more likely that the correct hypothesis will be in the lattice
somewhere, since you can make sure that none of the words are outside of the speech recognizer's vocabulary. A quick
poll of speech researchers results in the estimate that constructing a speech recognizer that works OK but won't win
any awards using HTK takes 1-3 person-months. More time lowers the word error rate but isn't likely to affect the timing
accuracy. The researchers involved found it difficult to think about how bad the recognizer could be and still work for
these purposes, so they weren't sure whether spending less time was a possibility. It does take someone with a com-
putational background to build a recognizer, although they didn't feel it took any particular skill or speech background
to build a bad one.

• Find a speech recognizer floating around somewhere that's free and will work. There must be a project student some-
where who has put together a recognizer using HTK that is good enough for these purposes.

Finally, here are the steps in producing a forced alignment:

• Produce high quality speech recordings. You must have one microphone per participant, and they must be close-talking
microphones (i.e., tabletop PZMs will not do - you need lapel or head-mounted microphones). If you are recording con-
versational speech (i.e., dialogue or small groups), it's essential that the signal on each participant's microphone be
stronger when they're speaking than when other people are. Each participant must be recorded onto a separate chan-
nel.

• Optionally, find the areas of speech on each audio signal automatically. The energy on the signal will be higher when
the person is speaking; you need to figure out some threshhold above which the person is speaking and write a script
to mark those. This is often done in MATLAB.

• Hand-transcribe, either scanning each entire signal looking for speech or limiting yourself to the areas found to the auto-
matic process. Turns (or utterances, depending on your terminology) don't have to be timestamped accurately, but can
include extra silent space before or after them that will be corrected by the forced alignment. However, it's important
that the padding not include cross-talk from another person that could confuse the recognizer.

• Optionally, add to the speech recognizer's dictionary all of the words in the hand-transcription that aren't in it already.
(This is so that it can make a guess at what speech matches them even though it has never encountered the words
before, rather than treating them as out-of-vocabulary, which means applying some kind of more general "garbage"
model.)

• Run the speech recognizer in forced alignment mode and then a script to add the timings to the hand transcription.

8.2.4 Time-stamped coding
Although waveforms are necessary for timestamping speech events accurately, many other kinds of coding (gestures,
posture, etc.) don't really require anything that isn't available in the current version of NXT, except possibly the ability

NXT Documentation: 8. Using NXT in conjunction with other tools

Page 71 of 94

to advance a video frame by frame. People are starting to use NXT to do this kind of coding, and we expect to release
some sample tools of this style plus a configurable video labelling tool fairly soon. However, there are many other ways
of getting time-stamped coding; some of the video tools we encounter most often are The Observer, EventEditor, Anvil,
and TASX. EMU is audio-only but contains extra features (such as format and pitch tracking) that are useful for speech
research.
Time-stamped codings are so simple in format (even if they allow hierarchical decomposition of codes in "layers") that it
doesn't really matter how they are stored for our purposes - all of them are easy to up-translate into NXT. In our experi-
ence it takes a programmer .5-1 day to set up scripts for the translation, assuming she understands the input and output
formats.

8.3 Importing Data into NXT
NXT has been used with source data from many different tools. The import mechanisms used are becoming rather less
ad-hoc, and this section has information about importing from some commonly-used tools. As transforms for particular
formats are abstracted enough to be a useful starting point for general use, they will appear in this document, and also in
the NXT distribution: see the transforms directory for details.

8.3.1 Transcriber and Channeltrans
Transcriber and Channeltrans have very similar file formats, Channeltrans being a multi-channel version of Transcriber.
See the transforms/TRStoNXT directory for the tools and information you will need. The basic transform is run by a
perl script called trs2nxt. The perl script uses three stylesheets and an NXT program. Before running the transform,
compile the AddObservation Java program using the standard NXT CLASSPATH. Full instructions are included, but the
basic call to transform is:

trs2nxt -c metadata_file -ob observationname -i in_dir -o out_dir -n nxt_dir

where you need to point to your local NXT directory using -n, and your local editable metadata copy using -c. The Java
part of the process is useful as it checks validity of the transform and saves the XML in a readable format.

Note:

: there are many customizations you can make to this process using command line arguments, but if you have specific
transcription conventions that you need to be converted to particular NXT elements or attributes, you will need to edit
the script itself. The transcription conventions assumed are those in the AMI Transcription Guidelines.

8.3.2 EventEditor
EventEditor is a free Windows-only tool for direct time-stamping of events to signal.
See the transforms/EventEditortoNXT directory for the tools and information you will need. The basic transform
is a Java program which needs to be compiled using the standard NXT CLASSPATH (comprising at least nxt.jar and
xalan.jar). To transform one file, use

java EventEditorToNXT -i input_file -t tagname -a attname -s starttime
-e endtime -c comment [-l endtime]

The arguments are the names of the elements and attributes to be output. Because EventEditor is event based, the last
event does not have an end time. If you want an end time to appear in the NXT format, use the -l argument.

IDs are not added to elements, but you can use the provided add-ids.xsl stylesheet for that:

java -classpath $NXTDIR/lib/xalan.jar org.apache.xalan.xslt.Process
-in outputfromabove -out outfile
-xsl add-ids.xsl -param session observationname
-param participant agentname

NXT Documentation: 8. Using NXT in conjunction with other tools

Page 72 of 94

where NXTDIR is your local NXT install, or you can point to anywhere you happen to have installed Xalan. At least the
session parameter, and really the participant one too, should be used as these help the IDs to be unique.

8.3.3 The Observer
The Observer is a commercial Windows-only tool for timestamping events against signal.
Output from The Observer is the textual odf format and this is transformed to NXT format using the observer2nxt perl
script in the transforms/ObserverToNXT directory. It will be necessary to specify your own transform between Ob-
server and NXT codes by editing the lookup tables in the perl script.

8.3.4 Other Formats
For data in different formats it's worth investigating how closely your transform might resemble one of those above: often
it's a fairly simple case of tailoring an existing transform to your circumstances. If you manage this successfully, please
contact the NXT developers: it will be worth passing on your experience to other NXT users. If your input format is signi-
ficantly different to those listed, the NXT developers may still have experience that can be useful for your transform. We
have also transformed data from Anvil and ELAN among others.

8.4 Exporting Data from NXT into Other Tools
'The NXT Query Language' p.34 is a good query language for this form of data, but it is necessarily slower and more
memory-intensive than some others in use (particularly by syntacticians) because it does not restrict the use of left and
right context in any way (in fact, it's possible to search across several observations using it). This isn't really as much of a
problem for data analysts as they think - they can debug queries on a small amount of data and then run them overnight
- but it is a problem for real-time applications. And sometimes users already know other query languages that they would
prefer to use. This page considers how to convert NXT data for use in two existing search utilities, tgrep2 and Tiger-
Search. Our recommended path to tgrep2 is via Penn Treebank format, which can be useful as input to other utilities as
well. Besides the speed improvements that come from limiting context, tgrep2 has a number of structural operators that
haven't been implemented in NQL, including immediate precedence and first and last child (although we expect to ad-
dress this in 2006). We haven't gone through it looking at whether it has functionality that is difficult to duplicate in XPath;
if it doesn't, then using XPath is likely to be the better option for those who already know it, but tgrep2 already has a
user community who like the elegance and compactness of the language. TigerSearch has a nice graphical interface and
again supports structural operators missing in NQL.
Tgrep2 is for trees, and TigerSearch, for directed acyclic graphs with a single root. NXT represents a directed acyclic
graph with multiple roots and additionally, some arbitrary graph structure thrown over the top that can have cycles. The
biggest problem in conversion is determining what tree, or what single-rooted graph, to include in the conversion. This
is a design problem, since it effectively means deciding what information to throw away. Every NXT corpus has its own
design, so there is no completely generic solution - conversion utilities will require at least corpus-specific configurations.

8.4.1 TGREP2 via Penn Treebank Format
Penn Treebank format is simply labelled bracketing of orthography. For instance,

(NP (DET the) (N man))

Tgrep2 can load Penn Treebank format, but other tools use it as well. This means that it's reasonable to get to tgrep2 via
Penn Treebank format, since some of the work on conversion can be dual purposed.
Most users of Penn Treebank format treat the labels simply as labels. Tgrep2 users tend to overload them with more in-
formation that they can get at using regular expressions. So, for instance, if one has markup for NPs that are subjects of
sentences, one might mark that using NP for non-subjects and NP-SUBJ for subjects. The hyphen as separator is import-
ant to the success of regular expressions over the labels, especially where different parts of the labelling share substrings.
Some users of Penn Treebank format additionally overload the labels with information about out-of-tree links that can't be
used in tgrep2, but that they have other ways of dealing with. For instance, suppose they wish to mark a coreferential link
between "the man" and "he". One way of doing this is using a unique reference number for link:

(NP/ANTEC1 (DET the) (N man)) ... (PRO/REF1 he)

NXT Documentation: 8. Using NXT in conjunction with other tools

Page 73 of 94

We recommend dividing conversion into two steps: (1) deriving a single XML file that represents the tree you want from
the NXT format data, where the XML file structure mirrors the tree structure for the target treebank and any out of tree
links are representing using ids and idrefs; and (2) transforming that tree into the Penn Treebank format.

(1) is specific to a given corpus and set of search requirements. For some users, it will be one coding file from the original
data, or the result of one knit operation, in which case it's easy. It might also be a simple transformation of a saved query
result. Or it might be derived by writing a Java program that constructs it using the data model API. Once you know what
tree you want, the search page will give hints about how to get it from the NXT data.
(2) could be implemented as a generic utility that reads a configuration file explaining how to pack the single-file XML
structure into a Penn Treebank labelling and performs it on a given XML file. Assume that each label consists of a basic
label (the first part, before any separator, usually the most critical type information), optionally followed by some rendering
of attribute-value pairs, optionally followed by some rendering of out-of-tree links. The configuration file would designate
separators between different kinds of information in the Treebank label and where to find the roots of trees for the tree-
bank. (The latter is unnecessary, since anything else could be culled from the tree in step 1, but it makes it more likely
that a single coding file from the NXT data format will be a usable tree for input to step 2.) For each XML tag name, it
would also designate how to find the basic label (the first part, before any separator), which attribute-value pairs and links
to include, and how they should be printed.
Below is one possible design for the configuration file. Note that the configuration uses XPath fragments to specify where
to find roots for the treebank and descendants for inclusion. Our assumption is that those who don't know XPath can at
least copy from examples, and those who do can get more flexibility from this approach.

<NXT-to-tgrep-config>
<!-- specify where the treebank roots are. We will tree-walk

the XML from these nodes, printing as we go -->
<treebank-roots match="//foo"/>
<!-- what to use as brackets -->
<left-bracket value="("/>
<right-bracket value=")"/>
<!-- string with a separator to use between base label and atts;

if none give, none used -->
<base-label-sep value="-"/>
<!-- string with a separator to use between att name and value -->
<att-value-sep value=":"/>
<!-- string with a separator to use between different atts -->
<att-sep value="*"/>
<!-- string with a separator to use between attributes and links -->
<link-sep value="/"/>
<!-- don't bother printing attribute names or the separator between

the names and the values -->
<omit-attribute-names/>
<!-- if a node matches the expression given, skip it, moving

on to its children -->
<omit match="baz"/>
<!-- transformation instructions for nodes matching the expression given -->
<transform match="nt">

<!-- the base-label comes first in the label, again an XPath
fragment. name() for tag name, @cat for value of cat attribute -->
<base-label value="name()"/>
<!-- where to find the orthography, if any (usually the textual content,
sometimes a particular attribute) -->
<orthography value="text()"/>
<!-- leave out the start attribute -->
<omit-attribute name="start"/>
<!-- we assume all other attributes are printed in a standard
format with the name, att-value-sep, and then the attribute-value.
If we need individual control for how attributes are printed,
we'll need to allow configuration of that here.
-->

</transform>
<!-- how to print out-of-tree links represented by id/idref in

NXT Documentation: 8. Using NXT in conjunction with other tools

Page 74 of 94

the input. This example says expect foo tags
to be linked to bar tags where the refatt attribute has the same
value as the foo's idatt attribute. For the foo label, add the
link separator followed by ANTEC followed by the value of idatt,
and for the bar label, add the link separator followed by REF
followed by the value of refatt (which is the same value). -->

<link>
<antecedent match="foo"/>
<antecedent-id name="@idatt"/>
<referent match="bar"/>
<referent-idref name="@refatt"/>
<link-anteclabel value="ANTEC"/>
<link-reflabel value="REF"/>

</link>
</NXT-to-tgrep-config>

A few example tags that can be generated from this configuration from

<nt cat="NP" subcat="SUBJ" id="1"/>

where this serves as an antecedent in a link:

• NP

• NP-subcat:SUBJ/ANTEC1

• NP-subcat:SUBJ/1

• nt-cat:NP*subcat:SUBJ/ANTEC1

• nt-NP:SUBJ

• nt-NP

and so on.
The utility should have defaults for everything so that it does something when there is no configuration file, choosing
standard separators, not omitting any tags or attributes, printing attribute names, and failing to print any out-of-tree
links. It also should not require a DTD for the input data. One thing to note: this design assumes we print separate
ids for every link, but some nodes could end up linked in two ways, to two different things, causing labels like
FOO-BARANTEC1-BAZANTEC1. This is the more general solution, but if users always have the same id attribute for both
types of links, we can make the representation more compact.
We have attracted funding to write this utility, with the work to be scheduled sometime in the period Oct 05 to Oct 06, and
so we are consulting on this design to see whether it is flexible enough, complete, too complicated for the target users,
and actually in demand. Note that a converter like this couldn't guarantee safety of queries given that the Penn Treebank
labels get manipulated using regular expressions - the user could easily get matches on the wrong part of the label by
mistake because these regular expressions are hard to write to preclude this, unless you devise your attribute values and
tag names carefully so that no pair of things matches an obvious reg exp you might want to search on. The users who
have requested this work expect to get around this problem by running conversion from NXT format into several different
tgreppable formats for different queries that omit the information that isn't needed.
Our biggest concern with the utility is how implementation choices could affect usability for this user community. It tends
to be the less computational end of the tgrep user community who most want tgrep conversion, with speed and famili-
arity as the biggest issues. (Familiarity doesn't really seem to be an issue for the more computational users, and speed

NXT Documentation: 8. Using NXT in conjunction with other tools

Page 75 of 94

is slightly less of an issue since they're more comfortable with scripting and batch processing, but it's still enough of a
problem for some queries that they want conversion. This may change when we complete work on a new NXT search
implementation that evaluates queries by translating them to XQuery first, but that's a bigger task.) Serving the needs of
less computational users introduces some problems, though. The first one is that since they know nothing about XML,
and are used to thinking about trees but not more complex data models, they won't be able to write the configuration file
for the utility. The second is that it may be difficult to find an implementation for the converter that runs fast, is easy to
install, and doesn't require us to make executables for a wide range of platforms. (We think it needs to run fast because
the users expect to create several different tgreppable forms of the same data, but if they have to get someone else to do
it because it requires skills they don't have to write the configuration file, this is no longer important - the real delay will be
in getting someone's time.)
We're still wrestling with this design; comments about our assessment of what's required and acceptable solutions wel-
come. The implementations we're considering are (a) generating a stylesheet from the configuration file and applying that
to the data or (b) direct implementation reading the data and configuration file at the same time, in either perl with xml
parsing and xpath modules, Java with Apache libraries, or LT-XML2.

8.4.2 TigerSearch
We have put less thought into conversion into TigerSearch, but that doesn't mean the conversion is less useful. The fact
that TigerSearch supports a more general data structure than trees means that it will be more useful for some people.
NXT uses the XML structure to represent major trees from the data, but Tiger's XML is based on graph structure, with
XML tags like nt (non-terminal node), t (terminal node), and edge. On the other hand, since Tiger can represent not
just trees but directed acyclic graphs with a single root, it would be more reasonable to specify a converter, again using a
configuration file, in one step from NXT format. The configuration file would need to specify what to use as roots, where
to find the orthography, a convention for labelling edges, and which links to omit to avoid cycles, but otherwise it could
just preserve the attribute-value structure of the original. The best implementation is probably in Java using the NXT data
model API to walk a loaded data set.

8.5 Knitting and Unknitting NXT Data Files
By "knitting", we mean the process of creating a larger tree than that in an individual coding or corpus resource by tra-
versing over child or pointer links and including what is found. Knitting an XML document from an NXT data set performs
a depth-first left-to-right traversal of the nodes in a virtual document made up by including not just the XML children of
a node but also the out-of-document children links (usually pointed to using nite:child and nite:pointer, respect-
ively, although the namimg of these elements is configurable). In the data model, tracing children is guaranteed not to
introduce cycles, so the traversal recurses on them; however, following links could introduce cycles, so the traversal is
truncated after the immediate node pointed to has been included in the result tree. For pointers, we also insert a node in
the tree between the source and target of the link that indicates that the subtree derives from a link and shows the role.
The result is one tree that starts at one of the XML documents from the data set, cutting across the other documents in
the same way as the ^ operator of the query language, and including residual information about the pointer traces. At May
2004, we are considering separating the child and pointer tracing into two different steps that can be pipelined together,
for better flexibility, and changing the syntax of the element between sources and targets of links.
Unknitting is the opposite process, involving splitting up a large tree into smaller parts with stand-off links between them.
Knitting NXT data can create standard XML files from stand-off XML files. This can be essential for downstream process-
ing that is XML aware but does not deal with stand-off markup. 'Data Storage' p.14 describes NXT's stand-off annotation
format.
There are two distinct approaches for kitting data: using an XSLT stylesheet, or using the LT XML2 toolkit.

8.5.1 Knit using Stylesheet
To resolve the children and pointers from any NXT file there is a stylesheet in NXT's lib directory called knit.xsl.
Stylesheet processor installations vary locally. Some people use Xalan, which happens to be redistributed with NXT. It
can be used to run a stylesheet on an XML file as follows.

java org.apache.xalan.xslt.Process -in INFILE -xsl lib/knit.xsl -param idatt id
-param childel child -param pointerel pointer -param linkstyle ltxml
-param docbase file:///my/file/directory 2> errlog > OUTFILE

The docbase parameter indicates the directory of the INFILE, used to resolve the relative paths in child and pointer links.
If not specified, it will default to the location of the stylesheet (NOT the input file!). Note that if you're using the absolute

NXT Documentation: 8. Using NXT in conjunction with other tools

Page 76 of 94

location of the INFILE, it is perfectly fine to just set docbase to the same thing, because the entity resolver will take its
base URL (according to xslt standard) for document function calls.

Note:

This means you may have to move XML files around so that all referred-to files are in the same directory.

The default linkstyle is ="LT XML", the default id attribute is ="nite:id", the default indication of an out-of-file
child is nite:child, and the default indication of an out-of-file pointer is nite:pointer. These can be overridden us-
ing the parameters linkstyle, idatt, childel, and pointerel, respectively, and so for example if the corpus is not
namespaced and uses xpointer links,

java org.apache.xalan.xslt.Process -in INFILE -xsl STYLESHEET
-param linkstyle xpointer -param idatt id
-param childel child -param pointerel pointer

A minor variant of this approach is to edit knit.xsl so that it constructs a a tree that is drawn from a path that could be
knitted, and/or document calls to pull in off-tree items. The less the desired output matches a knitted tree and especially
the more outside material it pulls in, the harder this is. Also, if a subset of the knitted tree is what's required, it's often
easier to obtain it by post-processing the output of knit.

8.5.2 Knit using LT XML2
Knit.xsl can be very slow. It follows both child links and pointer links, but conceptually, these operations could be sep-
arate. We have implemented separate "knits" for child and pointer links as command line utilities with a fast implementa-
tion in LT XML2: lxinclude (for children) and lxnitepointer (for pointers).

lxinclude -t nite FILENAME reads from the named file (which is really a URL) or from standard input, writes to
standard output, and knits child links. (The -t nite is required because this is a fuller XInclude implementation; this
parameterizes for NXT links). If you haven't used the default nite:child links, you can pass the name of the tag you
used with -l, using -xmlns to declare any required namespacing for the link name:

lxinclude -xmlns:n=http://example.org -t nite -l n:mychild

This can be useful for recursive tracing of pointer links if you happen to know that they do not loop. Technically, the -l
argument is a query to allow for constructions such as -l '*[@ischild="true"]'.

Similarly,

lxnitepointer FILENAME

will trace pointer links, inserting summary traces of the linked elements.

8.5.2.1 Using stylesheet extension functions
As a footnote, LT XML2 contains a stylesheet processor called lxtn, and we're experimenting with implementing exten-
sion functions that resolve child and pointer links with less pain than the mechanism given in knit.xsl; this is very much
simpler syntactically and also faster, although not as fast as the LT XML2 based implementation of knit. This approach
could be useful for building tailored trees and is certainly simpler than writing stylesheets without the extension functions.
Edinburgh users can try it as

8.5.3 Unknit using LT XML2
Again based on LT XML2 we have developed a command line utility that can unknit a knitted file back into the original
component parts.

lxniteunknit -m METADATA FILE

Lxniteunknit does not include a command line option for identifying the tags used for child and pointer links because
it reads this information from the metadata file.

NXT Documentation: 8. Using NXT in conjunction with other tools

Page 77 of 94

8.6 General Approaches to Processing NXT Data
Suppose that you have data in NXT format, and you need to make some other format for part or all of it - a tailored HTML
display, say, or input to some external process such as a machine learning algorithm or a statistical package. There are
an endless number of ways in which such tasks can be done, and it isn't always clear what the best mechanism is for any
particular application (not least because it can depend on personal preference). Here we walk you through some of the
ones we use.
The hardest case for data processing is where the external process isn't the end of the matter, but creates some data
that must then be re-imported into NXT. (Think, for instance, of the task of part-of-speech tagging or chunking an existing
corpus of transcribed speech.) In the discussion below, we include comments about this last step of re-importation, but it
isn't required for most data processing applications.

8.6.1 Option 1: Write an NXT-based application
Often the best option is to write a Java program that loads the data into a NOM and use the NOM API to navigate it,
writing output as you go. For this, the iterators in the NOM API are useful; there are ones, for instance, that run over all
elements with a given name or over individual codings. It's also possible from within an application to evaluate a query
on the loaded NOM and iterate over the results within the full NOM, not just the tree that saving XML from the query
language exposes. (Many of the applications in the sample directory both load and iterate over query results, so it can
be useful to borrow code from them.) For re-importation, we don't have much experience of making Java communicate
with programs written in other languages (such as the streaming of data back and forth that might be required to add,
say, part-of-speech tags) but we know this is possible and that users have, for instance, made NXT-based applications
communicate with processes running in C (but for other purposes).
This option is most attractive:

• for those who write applications anyway (since they know the NOM API)

• for applications where drawing the data required into one tree (the first step for the other processing mechanisms)
means writing a query that happens to be slow or difficult to write, but NOM navigation can be done easily with a simpler
query or no query at all

• for applications where the output requires something which is hard to express in the query language (like immediate
precedence) or not supported in query (like arithmetic)

8.6.2 Option 2: Make a tree, process it, and (for re-importation) put it back
Since XML processing is oriented around trees, constructing a tree that contains the data to be processed, in XML format,
opens up the data set to all of the usual XML processing possibilities.

8.6.2.1 First step: make a tree
Individual NXT codings and corpus resources are, of course, tree structures that conveniently already come in XML files.
Often these files are exactly what you need for processing anyway, since they gather together like information into one
file. Additionally, you can use the knitting and knit-like tree construction approaches described in 'Knitting and Unknitting
NXT Data Files' p.76.
As an alternative to knitting data into trees, if you evaluate a query and save the query results as XML, you will get a tree
structure of matchlists and matches with nite:pointers at the leaves that point to data elements. Sometimes this is
the best way to get the tree-structured cut of the data you want, since it makes many data arrangements possible that
don't match the corpus design and therefore cannot be obtained by knitting.
The query engine API includes (and the search GUI exposes) an option for exporting query results not just to XML but to
Excel format. We recommend caution in exercising this option, especially where further processing is required. For simple
queries with one variable, the Excel data is straightforward to interpret, with one line per variable match. For simple quer-
ies with n variables, each match takes up n spreadsheet rows, and there is no way of finding the boundaries between
n-tuples except by keeping track (for instance, using modular arithmetic). This isn't so much of a problem for human read-
ability, but it does make machine parsing more difficult. For complex queries, in which the results from one query are
passed through another, the leaves of the result tree and presented in left-to-right depth-first order of traversal, and even

NXT Documentation: 8. Using NXT in conjunction with other tools

Page 78 of 94

human readability can be difficult. Again, it is possible to keep track whilst parsing, but between that and the difficulty of
working with Excel data in the first place, its often best to stick to XML.

8.6.2.2 Second step: process the tree

Stylesheets
This is the most standard XML transduction mechanism. There are some stylesheets in the lib directory that could be
useful as is, or as models; knit.xsl itself, and attribute-extractor.xsl, that can be used in conjunction with
SaveQueryResults and knit to extract a flat list of attribute values for some matched query variable (available from
Sourceforge CVS from 2 July 04, will be included in NXT-1.2.10).
This option is most attractive:

• for those who write stylesheets anyway (since they know XSLT)

• for operations that can primarily be carried out on one coding at a time, or on knitted trees, or on query language result
trees, limiting the number and complexity of the document calls required

• for applications where the output requires something which is not supported in query but is supported in XSLT (like
arithmetic)

Xmlperl
Xmlperl gives a way of writing pattern-matching rules on XML input but with access to general perl processing in the
action part of the rule templates.
This option is most attractive:

• for those who write xmlperl or at least perl anyway

• for operations that can be carried out on one coding at a time, or on knitted trees, or on query language result trees

• for applications where the output requires something which is not supported in query (like arithmetic)

• for applications where XSLT's variables provide insufficient state information

• for applications where bi-directional communication with an external process is needed (for instance, to add part-of-
speech tags to the XML file), since this is easiest to set up in xmlperl

Xmlperl is quite old now. There are many XML modules for perl that could be useful but we have little experience of them.
In the LT XML2 release, see also lxviewport, which is another mechanism for communication with external processes.

ApplyXPath/Sggrep
There are some simple utilities that apply a query to XML data and return the matches, like ApplyXPath (an Apache
sample) and sggrep (part of LT XML2). Where the output required is very simple, these will often suffice.

Using lxreplace
This is another transduction utility available that is distributed more widely with LT XML2. It is implemented over LT
XML2's stylesheet processor, but the same functionality could be implemented over some other processor.

lxreplace -q query -t template

NXT Documentation: 8. Using NXT in conjunction with other tools

Page 79 of 94

template is an XSLT template body, which is instantiated to replace the nodes that match query. The stylesheet has some
pre-defined entities to make the common cases easy:

• &this; expands to a copy of the matching element (including its attributes and children)

• &attrs; expands to a copy of the attributes of the matching element

• &children; expands to a copy of the children of the matching element

Examples:
To wrap all elements foo whose attribute bar is ="unknown" in an element called bogus:

lxreplace -q 'foo[@bar="unknown"]' -t '&this;'

(that is, replace each matching foo element with a bar element containing a copy of the original foo element).

To rename all foo elements to bar while retaining their attributes:

lxreplace -q 'foo' -t '&attrs;&children;'

(that is, replace each foo element with a bar attribute, copying the attributes and children of the original foo element).

To move the (text) content of all foo elements into an attribute called value (assuming that the foos don't have any
other attributes):

lxreplace -q 'foo' -t ''

(that is, replace each foo element with a foo element whose value attribute is the text value of the original foo ele-
ment).

8.6.2.3 Third step: add the changed tree back in
Again based on LT XML2 we have developed a command line utility that can unknit a knitted file back into the original
component parts.

lxniteunknit -m METADATA FILE

Lxniteunknit does not include a command line option for identifying the tags used for child and pointer links because
it reads this information from the metadata file. With lxniteunknit, one possible strategy for adding information to a
corpus is to knit a view with the needed data, add information straight in the knitted file as new attributes or a new layer of
tags, change the metadata to match the new structure, and then unknit.
Another popular option is to keep track of the data edits by id of the affected element and splice them into the original
coding file using a simple perl script.

8.6.3 Option 3: Process using other XML-aware software
NXT files can be processed with any XML aware software, though the semantics of the standoff links between files will not
be respected. Most languages have their own XML libraries: under the hood, NXT uses the Apache XML Java libraries.
We sometimes use the XML::XPath module for perl, particularly on our import scripts where XSLT would be inefficient or
difficult to write.

8.7 Manipulating media files
A wide variety of media tools can be used to create signals for NXT and to manipulate them for use with other tools. Here
we mention a few that we use regularly. The cross-platform tool mencoder is good for encoding video for use with NXT;
VirtualDub in conjunction with AviSynth (Windows only) are useful for accurately chopping up video files for use in other
programs. Using the latter approach is better if you need frame-accurate edits, mencoder is only accurate to the nearest
keyframe.

NXT Documentation: 8. Using NXT in conjunction with other tools

Page 80 of 94

As an example, we are sometimes asked to provide video extracts that show certain NXT phenomena. The first task is to
find the phenomena using an NXT tool like FunctionQuery. This results in a tab-delimited result set each line of which will
identify the video file to use, along with the start and end time of the segment. Using a scripting language like perl it's easy
to transform this into a set of AviSynth format files. These files simply describe a set of media actions to take like loading
a video file and adding an audio soundtrack, then chopping out the appropriate section (these would use the AviSynth
functions AVISource, WAVSource, AudioDub and Trim). These files can then be loaded into VirtualDub which treats
them like any other video file, and the result saved as an AVI file with whatever video / audio compression you choose.
The useful thing about VirtualDub is that these actions can be applied to a batch of files and left to run with no further
user-action.

A. FAQ
End user and developer questions for NXT still tend to be dealt with by private email, although we do realize that
we should move over to using public forums for this. When we receive a question more than once, we try to make
time to change the web pages to make the answer clear in the correct location. This page is for frequently asked
questions that haven't yet found a proper home, plus their answers.

Namespacing
•Q:Q: Exactly what does xmlns:nite="http://nite.sourceforge.net/" do in the xml files? Is it neces-
sary?

•A:A: It declares the nite namespace. If you use it in your data, then you have to include this attribute on the root
element of the data files that include elements and attributes from this namespace. In NXT format data, users
typically namespace the reserved attributes and element names to avoid naming conflicts (e.g., attributes for
ids, start and end times, and elements for document roots, out-of-file children, and pointers).

•Q:Q: Can I use namespacing in my data set?

•A:A: In theory namespacing is a good idea, but there is a bug in NXT's query language parser that means it can't
handle namespaced element names and attributes. For this reason, you should avoid namespacing, with the
possible exception of XML document roots (which aren't available to query anyway) and the reserved attributes
that have their own special meaning to NXT and dedicated query language syntax (the id, available as ID($x),
the start time, available as START($x), and the end time, available as END($x)).

Fonts and Font Sizes
•Q:Q: How do I change the font in an NXT GUI?

•A:A: You can do whatever you want in a customized tool. The standard and configurable NXT GUIs don't specify
a font, so what you get depends on your java installation. Getting different fonts for different parts of the dis-
played data requires you to write customized tools or to contribute code to the project that allows the user to
specify in the configuration file what font to use for a particular element, attribute, or element's textual content.

•Q:Q: How do I change the font size in an NXT GUI?

•A:A: You can do whatever you want in a customized tool. The standard and configurable NXT GUIs have a font
size (usually 12 point) wired in, with the exception (at September 2006) of the GenericDisplay, which al-
lows a font size to be passed in at the command line. The simplest change would be to recompile other GUIs
with the font size you want, although it would be better to contribute code that allows users to specify the
font size in the configuration file. Some previous customized tools have allowed the end user to change the
font size for a display from a menu. If you wish to revive this code for general use, contact us. The main NXT
GUI (net.sourceforge.nite.nxt.GUI) that allows the user to choose among the registered programs for
a data set (those mentioned in the metadata under <callable-programs/>) automatically adds a Gener-
icDisplay to the list. This automatic addition uses the default font size (12 point). If you want a menu entry
for a different font size, you need to register the generic display with the font size you require. The declaration
to do this is, e.g.:

NXT Documentation: Appendix A. FAQ

Page 81 of 94

<callable-programs>
<callable-program description="20 point GenericDisplay" name="net.sourceforge.nite.gui.util.GenericDisplay">

<required-argument name="corpus" type="corpus"/>
<required-argument name="observation" type="observation"/>
<required-argument name="fontsize" default="20"/>

</callable-program>
</callable-programs>

To pop up a window asking the user to enter the fontsize they require, use:

<callable-programs>
<callable-program description="20 point GenericDisplay" name="net.sourceforge.nite.gui.util.GenericDisplay">

<required-argument name="corpus" type="corpus"/>
<required-argument name="observation" type="observation"/>
<required-argument name="fontsize" default="20"/>

</callable-program>
</callable-programs>

GUIs
•Q:Q: Why is the GenericDisplay unusable? / Why does the GenericDisplay run out of memory?

•A:A: The GenericDisplay is designed to throw up windows corresponding to every XML tree in the data set
for the observation chosen. If your data set has many different annotations, this will be too many windows
for the user to handle, and if it's really big, you many not even be able to load them all at once. You can cut
it down using the query argument to specify the kinds of things you actually want to see in the display. The
GenericDisplay is designed to be something that will work, badly, for any NXT format data set - for actual
work you will almost certainly want to set up one of the configurable interfaces or write your own customized
display.

Data Model
•Q:Q: Are filenames case sensitive?

•A:A: Yes.

•Q:Q: Can I use the same element name in two different layers?

•A:A: No. NXT needs each element to belong to exactly one layer because otherwise it doesn't know how to seri-
alize the data set, or what files to load when it requires elements of a specific type.

•Q:Q: Can I use the same attribute name for two different elements?

•A:A: Yes.

•Q:Q: What kinds of properties can elements inherit from their children?

•A:A: Only timing information using the reserved start and end time attributes, and this only if time inheritance is
enabled for the element type involved.

•Q:Q: What are ids for, and what constraints are there on the values for ids?

•A:A: An id can be any string that's globally unique. If you are importing data and don't have ids on it yet, you can
get NXT to generate ids for you by loading the data and then saving it. Ids are used to manage the relationship
between display elements in a GUI and the underlying data, and for specifying out-of-file child and pointer links.

•Q:Q: Can elements in two structural layers point to each other?

•A:A: Yes. In general, any element can point to any other element, as long as all the elements from a given layer
point to elements from the same layer, and this relationship is declared in the metadata. Pointers do not have
to be in featural layers; the featural layer is just useful conceptually for the kind of layer that only relates to the
rest of the data set via pointers.

Data Set Design

NXT Documentation: Appendix A. FAQ

Page 82 of 94

•Q:Q: What if I want elements from one layer to be able to draw children from either some layer or the the layer
that layer draws children from, skipping straight to what is usually a grandchild?

•A:A: This violates the NXT data model. Suppose the phrase-layer contains the element phrase, which draws
children from the subphrase-layer, which contains the element subphrase, which draws children from the
word-layer, which contains the element word. There are two standard ways to encode the relationship you
want:

• Wrap non-subphrase runs of word elements in some new tag, say, nosubphrase, and use these as the
children for phrases, so that you get get strict decomposition in the layers. Then the data conforms com-
pletely, but users who are used to distance limited operators like ^1 will need to know that the intermediate
nosubphrase tag is there in the structure.

• Serialize phrase and subphrase elements in the same file, and declare them as two tags within the same
recursive layer. Then either can contain words, but also either can contain each other This has the disad-
vantage that the data model design is declared to be less restrictive than it should be for the data set, so
data validation wouldn't catch subphrase elements that contain phrase elements, for instance.

• Declare phrase-layer to draw children from subphrase-layer, have phrase elements point to words
directly whenever you want, and either store all three layers in the same file or never use code that lazy
loads.

The first one is what was designed in as the preferred solution; the others are what data sets usually do. The
third one may not be robust against future NXT development.

•Q:Q: When should I use pointers and when should I use children?

•A:A: Use children whenever this is acceptable in the data model (i.e., when it doesn't create loops or require an
element to have multiple, conflicting sets of children), turning off the temporal inheritance if you need to - it's
much easier to query elements related by hierarchy than by pointer.

•Q:Q: How much data should I put in one XML file?

•A:A: Divide your data into files by thinking about typical uses of the data. If one layer draws children from another,
and the two layers always get used together (both within NXT and in external processing), then you can save
some loading overhead by putting them in the same file. If, however, users may want one without the other,
separate them into two files so that lazy loading can minize the data set size in working memory. If you have
an element with many attributes, most of which are rarely used, consider putting the information conveyed by
the attributes in one or more files containing elements that use the old, reduced elements as children, or that
point to them. This makes querying the rarely used information more cumbersome, but saves overhead in the
more common uses.

•Q:Q: Should I represent my orthography in textual content, or use an attribute?

•A:A: The original NXT developers were split between some who wanted to preserve the TEI-ish notion that the
textual content is the base text and some who didn't want any privileged textual content at all. Both designs
have strengths for different kinds of data sets, so it depends. Most current data sets seem to use textual con-
tent. For NXT, textual content has the following special properties:

• In query, you can get at it using e.g. TEXT($w) Some users find this more intuitive than having to remember
a specific attribute name.

• Some of the libraries for building GUIs based on text or transcription expect textual content, and so e.g. cod-
ing tools and transcription-based displays (which you haven't been using so far) can require less setup if the
data is laid out this way - but adding a delegate function that displays based on an attribute isn't hard.

NXT Documentation: Appendix A. FAQ

Page 83 of 94

• Some command line utilities, like SortedOutput, treat an element as having textual content equal to the
whitespace-delimited concatenation of its children in order. This can make it easier to extract some kinds of
tables out of an NXT data set (for instance, a list of phrases by syntactic type) It's possible to get the text
out in such tables if it is in attributes on words lower down in the hierarchy using FunctionQuery with the
extract function, but cumbersome.

• In future, it's possible that the query language will always treat an element as having textual content equal
to the whitespace-delimited concatenation of its children in order. This was part of our original design and
we have recently had someone complain that NXT doesn't do this, but we haven't made a decision about
whether to make this extension or committed resource to it yet. If we do this work we could consider adding
a reserved attribute for orthography so that we can treat it equivalently to textual content and suit both
choices.

There are cases where using textual content is less elegant, as, for instance, in parallel corpora, where there
are two rival versions of the orthography of equal importance.

•Q:Q: What's special about ontologies? Can I search for the "top-level" code and get all the child codes? How is it
reflected in the underlying data structure?

•A:A: Ontologies are a way of providing type or attribute value information that isn't just a string, but where the
types or values fit into a hierarchical structure in their own right. Suppose your ontology contains:

[ontol.xml]
<foo id="id0" name="animal">

<foo id="id1" name="bird">
<foo id="id2" name="sparrow"/>
<foo id="id3" name="chickadee"/>

</foo>
<foo id="id4" name="dog">

<foo id="id5" name="mutt"/>
</foo>

</foo>

Your elements can point into the ontology:

<el>
<nite:pointer href="ontol.xml#id3"/>

</el>

to get type information. You can test for chickadees:

($a el)($b foo):($a > $b) && ($b@name="chickadee")

but you can also test for birds in general:

($a el)($b foo):($a > $b)::($c foo):($c@name="bird") && ($c ^ $b)

Elements in ontologies have searchable relationships just like everything else. In another sense, ontologies
aren't at all special, because you could encode the same information as a corpus-resource and still be able to
access the information from the query language. Using an ontology is more restrictive because it assume one
tag name throughout the hierarchy.

Query Language
•Q:Q: Is there a "not dominates" operator, like !^?

•A:A: Use e.g. !($a ^ $b).

NXT Documentation: Appendix A. FAQ

Page 84 of 94

Performance
•Q:Q: What are the memory limits to NXT in loading data?

•A:A: The in-memory data representation uses around 7 times the disk storage space for the same data, or a bit
less. If lazy loading is on, only the files that are actually needed are loaded.

B. How To Use Metadata
The main investment involved in allowing your own data to be used by the NITE XML toolkit is the production of
a metadata file and the provision of your data in a conformant fashion (especially as regards file-naming). Under-
standing the format of metadata files will be important if you wish to import your data, though we provide several
example metadata files to help. Once you have a metadata file that describes your data, you will be able to use
all the NITE tools to validate, analyse and edit your data.

B.1 What metadata files do
Metadata files describe all aspects of a corpus including:

• where on disk the parts of the corpus reside;

• the codings that can validly be made on the data;

• the observations that have been made already along with their status;

• the NITE editors and viewers that can be used on the corpus;

• much more (see below).

B.2 What metadata files look like
Metadata files are XML and conform to a DTD. There is one metadata DTD for simple (single file) corpora and one
for standoff corpora. They both share much in common, so import the same basic DTD. The set of DTDs (zipped)
can be downloaded here. If you are more familiar with XML Schema and have a schema validator installed you
may prefer this set of zipped schemas.

B.3 Metadata examples
Save these to disk and have a look at them in your favourite XML or text editor.

NXT Documentation: Appendix B. How To Use Metadata

Page 85 of 94

• Metadata for NITE's simple example (you may also want to see the data it describes - 5K zip)

• Metadata for the Maptask corpus (here is a single maptask observation - 165K zip)

• Metadata for the Smartkom corpus (simple corpus case) (here's a single Smartkom interaction file - 15K XML)

B.4 Using Metadata to validate data
Since metadata describes the format of the data and where to find it on disk, it is used by the NITE software to
validate the data as it is loaded and edited. This sort of direct validation is useful, but we also provide schema
validation of data using a schema derived automatically from the metadata (via a stylesheet).

Assuming you have already '' p.6, you already have the schema-generating stylesheet (it's in the lib directory).
Armed with this and a stylesheet processor (xalan is also in the NOM distribution), you can run this command on
your metadata file:

java org.apache.xalan.xslt.Process -in <your-metadata> -xsl generate-schema.xsl -out
extension.xsd
If you have a schema validator (I use xsv) you are now ready to validate some data files. Try putting these de-
clarations:

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="extension.xsd"

in the root element of your data file and then execute:

xsv <your-file>

One of the major reasons behind this approach to schema validation is that we can validate data that is either
a single file "as-serialized" by NITE, or files that have been transformed to replace their nite:child elements
with the pointed-to elements recursively, and also replacing pointers with their actual elements. This is useful for
validating the types of elements that can be children of a specific element and pointed to by that element. In this
way an entire corpus could be schema validated. You have a stylesheet that does this transformation in the lib
directory of your NOM distribution.

If this all seems rather involved, and your data already loads into the NOM, the program PrepareSchemaVal-
idation.java will make a new directory for you which is fully ready for schema validation.

Validation limitations
• all stream elements must be named nite:root;

• all ID, Start and End time attributes must use the NITE default names: nite:id, nite:start and nite:end.

• all children and pointers must use XLink / XPointer style links.

NXT Documentation: Appendix B. How To Use Metadata

Page 86 of 94

• stream elements will be permitted to contain inadvisably mixed elements (so long as all those elements are
valid and defined themselves)

C. Comparison to other efforts
Several other tools and frameworks exist that offer some functionality which overlaps with that of NXT. This sec-
tion describes these other tools and how they relate to NXT.

Note:

Any errors in the descriptions below are our own. These descriptions are based on published information at
March 2004.

C.1 Annotation Graph Toolkit (AGTK)
The Annotation Graph Toolkit, or AGTK, employs a data model, the annotation graph, which is a directed acyclic
graph where edges are labeled with feature-value pairs and nodes can be labeled with time offsets. Structural
relationships can be expressed by convention in the edge labelling, but they are not exposed directly in the API
as they are in NXT; instead, the focus is on the efficient handling of temporal information. AGTK is written in C++
and comes with a Java port. A query language is planned for AGTK but is not yet available. Although AGTK does
not provide direct support for writing graphical user interfaces, it does include wrappers for Tcl/Tk and Python,
two scripting languages in which writing such interfaces is easier than in C++ itself. The developers expect inter-
faces to call upon WaveSurfer, a compatible package, to display waveforms and play audio files.

C.2 ATLAS
ATLAS is intended to generalize the annotation graph and differs in two main ways. First, it allows richer relation-
ships between annotation and signal. In annotation graphs, the only relationship between annotation and signal
that is supported in the data handling is the timespan on the signal to which the annotation refers, given as a
start and end time. NXT is similar to AGTK in this regard. ATLAS, however, defines more generic signal regions
which can refer to other properties besides the timing. For example, on a video signal, a region could pinpoint a
screen location using X and Y coordinates. Second, ATLAS explicitly represents structural relationships by allowing
annotations to name a set of "children", without constraining how many "parents" an annotation may have. The
framework for defining the semantics of this relationship and for specifying which types of annotations expect
which other types as children, MAIA, is still under development. It has the potential to be very flexible, especially
if the semantics of the parent-child relationship can vary depending on the types of data objects that they link.
The ATLAS data model is implemented in Java, and the developers plan both a query language and direct support
for writing graphical user interfaces.

NXT Documentation: Appendix C. Comparison to other efforts

Page 87 of 94

C.3 MMAX
MMAX2 is primarily used for annotation of text, but it has the facility to play some kinds of audio signal in syn-
chrony with its data display. Timing information is represented in the stylesheet that MMAX2 uses to specify a
data display format declaratively and not in the data itself. MMAX2's data model is rather simpler than NXT's, but
it allows one to specify different types of annotation all of which point independently to the base documents, and
links between annotations. MMAX2 also has a query language based on the idea of intersections between paths.
MMAX2 is easier to set up than NXT but in general NXT is more useful, the more one's work relies on crossing
hierarchies, complex structural relationships, or timing information.

C.4 EMU
EMU also shares some properties with NXT, in that it allows time-aligned labelling of speech data including hier-
archical decomposition across different tiers of labels and specifically supports query of the label sets. (This differ-
entiates EMU from tools such as Anvil and TASX that are just coding tools without more general support, although
given the availability of XML query languages to deal with their data formats, it's not clear that this really makes
a difference.)

C.5 Others
Other tools and frameworks worth considering: GATE, WordFreak and CALLISTO if your data is textual (i.e., you
don't need signal playing to annotate) and you can tolerate stand-off using character offsets; The Observer,
EventEditor TASX, Anvil, and ELAN for simple time-stamped labelling of signals (with some tools offering linking
between elements).

C.6 Relationship to the Text Encoding Initiative
The TEI is not a tool like the others on this list, but we have been asked about the relationship between NXT
and the Text Encoding Initiative, and in particular, whether it is possible to produce an annotation for spoken
dialogue compliant with the TEI standards using NXT GUIs. (Although NXT does get used on text, we have not
considered the relationship between NXT and the TEI on textual materials yet, but we expect there to be fewer
issues that arise for them.) These are our thoughts on the issue so far. We have made some reference to the P5
documentation in writing them, although we are also relying partly on memory and have not thoroughly checked
our work, so it is not definitive. Corrections are welcome. Note also that the TEI states that their guidelines are
under revision in this area.

Summary of Answer
If one has TEI-compliance in mind from the start, then it should be possible to design the NXT storage format
for the data set so that it only requires a simple transform to be TEI-compliant, and for some data sets it may be
possible to make it TEI-compliant as is. However, designing the NXT data representation for maximum TEI-com-
pliance loses the main benefits of using NXT. If the data has crossing hierachies of annotation, using a TEI-com-
pliant representation means losing the search facility that handles these nicely. If the data represents temporal
relationships, using a TEI-compliant representation means losing the ability of NXT browsers to highlight the cur-
rent annotations as a signal plays. In addition, the configurable interfaces for dialogue acts and named entities
currently constrain the NXT data representation in ways that violate TEI recommendations, which means that data
sets which aim for TEI-compliance would either need to write their own tailored GUIs for everything or contribute
(fairly modest) changes to them. If one wants to make use of NXT's best properties, then it would be better to

NXT Documentation: Appendix C. Comparison to other efforts

Page 88 of 94

develop a data path for getting between the NXT and TEI-compliant data formats than to build TEI-compliance
into the NXT format. If one doesn't need NXT's facilities for crossing hierachies or timing, then there may be a
simpler framework upon which annotation tools can be built.

Data without crossing hierarchies or timing
The TEI recommends particular tag names for orthographic transcription element. These are not a problem for
NXT, which has no constraints on tag naming - it just requires the tags to be formally defined in the NXT
"metadata" using the TEI's set. The TEI recommends the use of markup within one XML tree as the orthography
for the representation of dialogue acts, named entities, turns, and the like. For instance, dialogue acts are rep-
resented in the TEI as <seg>'s and named entities as <rs>'s (or similar non-segmenting spans of transcription
elements, such as <persName>). One hierarchy of <seg>'s over the transcription can be represented in NXT,
again by authoring the metadata to match, but the metadata will not be particularly useful for data validation
because it will simply have the semantics that all <seg>'s draw from the transcription elements as children; if
there is internal structure among the segments, NXT will not by itself enforce or check that. Similarly, <rs> and
similar tags can be used, but technically they violate NXT's data model unless hey are either defined within the
orthographic transcription tag set (with recursive descent through that set of tags). This is because strictly speak-
ing, NXT requires "layers" of annotation to span the layers beneath them (in this case, the layer of transcription
elements). However, this is a only a weak data model violation, and NXT copes with it by allowing tags to contain
either the element types declared as their children or skip directly to the ones declared as their children's children.
If one's data does not have crossing hierarchies or a relationship to signal, this suggests that TEI-compliance is
either possible or very close. There may be a problem with the representation of links. The TEI practice for relating
data elements uses IDREF or IDREFS or in-file links. Some NXT data sets use string matching on attribute values
which is similar to using IDREFs, but there is nothing in the attribute declarations which lets NXT validate that
relationship. NXT currently writes in-file links using a syntax that (redundantly) contains the filename, although
this could be changed without much difficulty. There may also be differences in what's expected at file roots. NXT
doesn't require a particular tag name at the root (although it does currently warn if an unexpected one is used),
but it doesn't expect headers and bodies in the same file, and the metadata declaration won't allow different con-
tent models for two tags at the same depth from the root in the same file, weakening the data validation where
they are stored together (since then the content model must specify a disjunction of the possible types at that
depth). Every NXT element must have an id, which may be a burden for some data sets.

Crossing hierarchies
The main difference between NXT's representation and that of the TEI is whether or not overlapping (crossing)
hierarchies pointing down to the same elements are expected. NXT is designed specifically for cases where they
are; the TEI contains mechanisms for dealing with crossing hierarchies, but because this is not their primary
concern, the mechanisms are more cumbersome. NXT's data representation is based on the idea of multi-rooted
trees; in the data model, individual nodes can have one set of children, but multiple parents from different upward
trees. A typical use of for this representation in the annotation of spoken dialogue (which makes up NXT's largest
user group) is to have time-aligned orthographic transcription at the bottom, and then separate hierarchies for,
say, named entities, dialogue acts, prosodic phrases, turns, or whatever that use the words as children. The data
is serialized into XML by divided the multi-rooted tree into convenient trees where the XML structure mirrors the
data structure and representing the remaining connections between nodes using stand-off links in XLink format.
NXT also allows arbitrary additional links to be represented on top of the multi-rooted tree, again using XLinks, but
ones that have a different semantics within NXT. The TEI representation for a data set with crossing hierarchies
would choose one hierarchy as the primary one, mirror that in the XML structure, and use milestone tags for the
other hierarchies. This keeps everything in one file. For extreme cases, one could use the TEI's recommended
form for representing graphs, which gives a list of nodes and links where the XML structure does not mirror any
part of the graph. Either of these styles of representation can be defined in NXT's "metadata" describing the set
of tags, and as long as everything fits into one XML tree they can be kept in one file, but the NXT data validation
won't be particularly useful then, and there are no existing GUIs or search facilities that will help in creating or
using this data, which means building new ones using the GUI library.

NXT Documentation: Appendix C. Comparison to other efforts

Page 89 of 94

Timing data
The other main difference between NXT and the TEI is in the representation of timing relationships. The
TEI gives a choice of mechanisms, ranging from the coarse statement that an element is overlapped via
trans="overlap", through the use of <anchor> tags that link to overlapping events, to the representation
of complete timelines that give time points which then can be used to indicate the start and end times for an
element. Any of these representations can be defined in NXT's data storage format, but none of them will get
the timing data recognized as time in NXT, which disables one of the most useful features of NXT browsers (the
ability to play signals and show which annotations are current as they play). NXT's format for timing information
is closest to the last one, but is not TEI-compliant; where annotations of a particular type for different speakers
("agents") can overlap temporally, NXT requires them to be stored in separate files. This is in aid of the temporal
semantics inherent in NXT's data model which allows timings to percolate up trees. This requirement can only be
circumventing by failing to declare the attributes as times.

Standardized GUIs
NXT comes with some configurable tools for annotating dialogue acts and named entities. These currently rely on
an NXT data representation in which the dialogue act and named entity tags point into an external ontology of
act or entity types, rather than allowing the type to be expressed as an attribute value. That means that if a data
set is represented to be as TEI-compliant as possible in the NXT format itself, these tools cannot be used. We
are considering making it possible to configure the tools to use an enumerated attribute, but we don't have an
immediate need for the result so the work hasn't been scheduled yet. If there is more than one type of <seg> in
the data, this will cause problems for setting up the tool because the NXT metadata will have no way of specifying
which types go together into one set to be annotated together (so, for instance, making dialogue act annotation
different from some other segmentation and classification task).

Other frameworks
The difficulties in mapping between the TEI and NXT arise from the fact that NXT is designed for data that is
rather esoteric for the TEI. If one doesn't need crossing hierachies or relationships to signal, there may be other
annotation frameworks that are closer to TEI-compliance in their native data formats. We have never considered
other frameworks in this light. MMAX2 uses multiple file stand-off, so probably isn't any closer. Other key words
to search on are AGTK, CALLISTO, ATLAS, and WordFreak.

D. Information and Further Reading
Updated printable documentation: March 07

Download v.0.2

Notes on version 0.2
In October 2006, we decided to move over NXT documentation from being completely web-based to being written
in DocBook so that we can generate HTML, JavaDoc, and PDF at will. We are rewriting much of the documenta-
tion at the same time. Versions of the documentation numbered before v1.0 are incomplete, although the outline
gives some idea of our intentions for it. In this version, version 0.2, not all of the information has been checked
for accuracy yet. The most likely difficulties concern the following areas: corpus resources, ontologies, and object

NXT Documentation: Appendix D. Information and Further Reading

Page 90 of 94

sets; validation; incomplete description of data set concepts. In addition, not all the formatting works, and the
query reference manual has not been fully converted over to DocBook, so it is incomplete and hard to read in this
version.

D.1 NXT's history and funding
The NITE XML Toolkit is software that arose out of a European Commission-funded collaboration between the
University of Edinburgh's The Language Technology Group, the University of Stuttgart's Institut för Maschinelle
Sprachverarbeitung (IMS), and the Deutsches Forschungszentrum för Könstliche Intelligenz (DFKI). Although the
NITE project itself finished in 2003, the software is now being maintained and further developed via Sourceforge;
the University of Twente has been a particularly active contributor. NXT is in use on a number of large distributed
projects including JASTand TALK. NXT is in use on a wide range of corpora, representing everything from Biblical
text structure to the relationship between deictic expressions and gestures in multimodal referring expressions. Its
users range from individual PhD students up to large multi-site projects, many of whom contribute to development
in some way. The AMI consortium is its biggest user and also the largest current contributor to its development.
Other past and current funders are The Engineering and Physical Sciences Research Council (UK) , The Economic
and Social Research Council (UK), and Scottish Enterprise, via The Edinburgh-Stanford Link.

D.2 Technical Documents
These are project internal documents that the NXT partners have agreed to make web-accessible.

• Formal specification of the NITE Object Model, the abstract data model used by the NITE XML Toolkit.

• End user documentation of NiteQL , the query language that operates over data conforming to the NITE Object
Model.

• Formal specification of NiteQL, the query language that operates over data conforming to the NITE Object
Model.

• Metadata information describing the metadata format required by the NITE Object Model, and how to produce
one for your data.

• A document introducing our display object library and describing how to use display objects as building blocks
for data display from stylesheets (pdf format)

D.3 Documentation for Programmers
Bug reports and feature requests are kept on Sourceforge. The sample programs that come with NXT provide
commented example code.

However, there is a space here for a general overview of the programmers' API provided by NXT, but currently
there's only the Javadoc that comes with the NXT dowload. We will generally provide Javadoc from the latest CVS
build which will not necessarily tally with the NXT version you downloaded, so don't rely on it.

NXT Documentation: Appendix D. Information and Further Reading

Page 91 of 94

D.4 Academic publications
Because we're academics, it helps us if you cite one of our papers when making use of NXT. Please be aware that
there were other software products to arise out of the NITE project, and be sure to credit the correct one.

Papers about the NITE XML Toolkit or development
concerns
CARLETTA J.EVERT S.HEID U.KILGOUR J. (in press)

The NITE XML Toolkit: data model and query
. Language Resources and Evaluation Journal

CARLETTA J.EVERT S.HEID U.KILGOUR J.ROBERTSON J.VOORMANN H. (2003)

The NITE XML Toolkit: flexible annotation for multi-modal
language data
. Behavior Research Methods, Instruments, and Computers, special issue on Measuring Behavior, 35(3), 353-363.

CARLETTA J.KILGOUR J.O'DONNELL T.EVERT S.VOORMANN H. (2003)

The NITE Object Model Library for Handling Structured Lin-
guistic Annotation on Multimodal Data Sets
.

MAYO N.KILGOUR J.CARLETTA J. (2006)

Towards an alternative implementation of NXT's query lan-
guage via XQuery
. EACL Workshop on Multi-dimensional Markup in Natural Language Processing, Trento, Italy, April 4th.

REIDSMA D.JOVANOVIC H.HOFS D. (2005)

Designing annotation tools based on properties of annota-
tion problems
. Measuring Behavior 2005 , 5th International Conference on Methods and Techniques in Behavioral Research, 30
August - 2 September 2005, Wageningen, The Netherlands.

Research papers that mention NXT in use (more
than in passing)
BLAYLOCK N.SWAIN B.ALLEN J. (2009)

NXT Documentation: Appendix D. Information and Further Reading

Page 92 of 94

TESLA: A Tool for Annotating Geospatial Language Cor-
pora
. In Proceedings of the North American Chapter of the Association for Computational Linguistics - Human Lan-
guage Technologies (NAACL HLT) 2009, Toronto, Canada, May 2009.

CALHOUN S.NISSIM M.STEEDMAN M.BRENIER J. (2005)

A framework for annotating information structure in dis-
course
. In Frontiers in Corpus Annotation II: Pie in the Sky, ACL2005 Conference Workshop, Ann Arbor, Michigan, June
2005.

CARLETTA J.C.KILGOUR J. (2005)

The NITE XML Toolkit Meets the ICSI Meeting Corpus: Im-
port, Annotation, and Browsing.
. In MLMI'04: Proceedings of the Workshop on Machine Learning for Multimodal Interaction.,
SamyBengio and HerveBourlard eds.

Springer-Verlag Lecture Notes in Computer Science
Volume 3361
. ISBN: 3-540-24509-X. This is an updated version of a workshop paper.

CARLETTA J.DINGARE S.NISSIM M.NIKITINA T. (2004)

Using the NITE XML Toolkit on the Switchboard Corpus to
study syntactic choice: a case study
. In Fourth Language Resources and Evaluation Conference, Lisbon, Portugal, May.

GUT U.MILDE J-T.VOORMANN H.HEID U. (2004)

Querying annotated speech corpora
. In Speech Prosody (International Conference), Nara, Japan, March 23-26, ed. by BernardBel and IsabelleMarlien,
ISCA, 569-572.

HEID U.VOORMANN H.MILDE J-T.GUT U.ERK K.PADO S. (2004)

Querying both time-aligned and hierarchical corpora with
NXT Search
. In Fourth Language Resources and Evaluation Conference, Lisbon, Portugal, May.

ISARD A.BROCKMANN C.OBERLANDER J. (2005)

Re-Creating Dialogues from a Corpus
. In Proceedings of the Corpus Linguistics 2005 Workshop on Using Corpora for Natural Language Generation,
July 2005 Birmingham, U.K.

NXT Documentation: Appendix D. Information and Further Reading

Page 93 of 94

Pre-NITE paper motivating the concept
CARLETTA J.MCKELVIE D.ISARD A.MENGEL A.KLEIN M. (2005)

A generic approach to software support for linguistic an-
notation using XML
.
G.Sampson D.McCarthy

Corpus Linguistics: Readings in a Widening Discipline
Continuum International

London and NY

ISBN: 082648803X

Paper about the NITE project in general
SORIA C.BERNSEN N. O.CADEE N.CARLETTA J.DYBKJAER L.EVERT S.HEID U.ISARD A.KOLODNYTSKY M.LAUER C.LEZIUS W.NOL-
DUS L.PIRRELLI V.REITHINGER N. (2002)

Advanced tools for the study of natural interactivity
Third International Conference on Language Resources and Evaluation (LREC 2002)

Las PalmasSpain

May

NXT Documentation: Appendix D. Information and Further Reading

Page 94 of 94

	Drafts before v1.0
	A Basic Introduction to the NITE XML Toolkit
	Downloading and Using NXT
	Prerequisites
	Getting Started
	Setting the CLASSPATH
	How to Play Media signals in NXT
	Programmatic Controls for NXT
	Compiling from Source and Running the Test Suites

	Data
	The NITE Object Model
	The NITE Data Set Model
	Data Storage
	Metadata
	Dependency Structures
	Data validation
	Data Set Design
	Data Builds

	The NXT Query Language (NQL)
	General structure of a simple query
	Property tests
	Comments
	Structural relations
	Temporal relations
	Quantifier
	Query results
	Complex queries
	Known Problems
	Helpful hints
	Related documentation

	Analysis
	Command line tools for data analysis
	Projecting Images Of Annotations
	Reliability Testing

	Graphical user interfaces
	Preliminaries
	Generic tools that work on any data
	Configurable end user coding tools
	Libraries to support GUI authoring

	Using NXT in conjunction with other tools
	Recording Signals
	Transcription
	Importing Data into NXT
	Exporting Data from NXT into Other Tools
	Knitting and Unknitting NXT Data Files
	General Approaches to Processing NXT Data
	Manipulating media files

	FAQ
	How To Use Metadata
	What metadata files do
	What metadata files look like
	Metadata examples
	Using Metadata to validate data

	Comparison to other efforts
	Annotation Graph Toolkit (AGTK)
	ATLAS
	MMAX
	EMU
	Others
	Relationship to the Text Encoding Initiative

	Information and Further Reading
	NXT's history and funding
	Technical Documents
	Documentation for Programmers
	Academic publications

