
Extraction of complexity bounds

from first-order functional programs

7 Dec. 2002

Roberto Amadio

Ludwig-Maximilian Universität and Université de Provence
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Part 1: Mobile/embedded code motivations and
approaches

• Scenarios for resource guarantees

• Proof carrying code approach

• Mobile Resource Guarantees project
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Scenarios for Resource Guarantees

• Programmable switches (Penn PLAN project): requires
termination.

• Applications threads in a smart card (Gemplus): needs to
predict memory consumption.

• In combination with synchronous programming (Pareto).

4



Proof carrying code approach (Lee-Necula)

• Define security policy (e.g. no memory faults).

• Code comes with evidence (a proof) of its conformity to the
security policy.

• Receiver can (easily) check evidence before running the code.

• To increase efficiency and trust-in-compiler, code is low level
(assembler).
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PCC (continued)

• Burden is on the code producer: it has to generate the proof.

• The proof is formalized in some suitable (Hoare) program logic
and represented as a λ term in some logical framework (e.g.
LF).

• Proof compression and quick proof check is an issue.
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A couple of frequent questions. . .

• How do you generate the evidence?

• Why don’t you just monitor the execution?
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. . . and some remarks

• Can easily rewrite a program so that it respects a certain
resource bound: just insert a time out/a memory counter/. . .

• I.e., producer can insert dynamic checks whenever it is unable
to prove statically that the program guarantees certain resource
bounds.

• Of course, the more dynamic checks the less efficient (and
useful) the program. Still, having dynamic checks performed by
the program rather than by the monitor is usually more
efficient.
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IST Global Computing project Mobile resource guarantee

• Concentrates on resource bounds security policy: given an
input of size n the program will run in at most time T (n) and
space S(n).

• To be useful, bounds have to be precise and they have to be
valid for the implemented abstract machine.

• High-level language (Camelot): a restricted functional
language (no functions as results) with a type system to
guarantee certain bounds on heap space consumption.

• Low-level language (Grail): an imperative language with some
notion of class and object which is sufficient to implement the
abstract machine.
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MRG (continued)

• Defined: implementation of Camelot in Grail and cost
model for Grail.

• Under development: Hoare logic with heap management for
Grail implemented in Isabelle (cf. Abadi-Leino logic,
Reynolds’ separation logic).

• Expected: automatic generation of proofs for the Grail code
resulting from the compilation of well-typed Camelot code.
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Part 2: Some classical results on functional algebras

• A first-order functional language.

• Bounded recursion on notation.

• Ramification.

• Limits of programming with ramification.
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A first-order functional language

• Inductive types

µt.(. . . c : τ1, · · · , τn → t, . . .)

• Values, patterns, expressions:

v ::= c(v, . . . , v)

p ::= x || c(p, . . . , p)

e ::= x || c(e, . . . , e) || f(e, . . . , e)

• Functions definitions by pattern matching and evaluation by
value.

f(x1, . . . , xn) =

. . .

x1 = p1, . . . , xn = pn ⇒ e

. . .
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Bounded recursion on notation (Cobham)

µt.(ε : t, 0 : t→ t, 1 : t→ t) (binary words)

f(x, ~y) =

x = ε ⇒ g(~y)

x = ix′ ⇒ hi(f(x′, ~y), x′, ~y)

with |f(x, ~y)| ≤ P (|x|, |~y|), P polynomial.
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BRN (continued)

• Without bound can still define exponential:

d(x) = e(x) =

x = ε⇒ ε x = ε⇒ 0(ε)

x = i(x′)⇒ i(i(x′)) x = i(x′)⇒ d(e(x′))

• With bound can evaluate in Ptime.

• Vice versa, BRN can simulate polynomially many steps of TM.
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Ramification (Bellantoni-Cook and Leivant)

• f(~x; ~y): split arguments in Normal (~x) and Safe (~y).

• N ≤ S: Normal can be regarded as a subtype of Safe.

• f(ix . . . ; . . .)⇒ h(. . . ; f(x, . . . ; . . .), . . .).
Recurrence parameters are Normal, Result of a recurrence is
Safe (⇒ typing of exponential fails).

• Constructors are overloaded, sending safe to safe and normal to
normal.

• Composition: g(h1(~x; );h2(~x; ~y)).
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Ramified –size– addition and multiplication

a(x; y) =

x = ε⇒ y

x = ix′ ⇒ i(a(x; y))

m(x, y; ) =

x = ε⇒ ε

m(ix′, y; )⇒ a(y;m(x′, y; ))
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Limits of ramification

sort(l; ) =

l = ε⇒ ε

l = i(x)⇒ insert i(sort(x; ); ) (∗)

insert0(x; ) = 0(x)

insert1(x; ) =

x = ε⇒ 1(ε)

x = 1(x′)⇒ 1(1(x′))

x = 0(x′)⇒ 0(insert1(x′; ))

(*) insert1 waits for normal but gets safe (cf. exponential).
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Part 3: Restrictions enforcing space bounds

• Consider general recursive programs but find (implicit) way to
bound the size of results.

• We analyse two cases:

– Jones’ no-cons condition.

– Hofmann’s type system for in-place update.
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Jones’ no cons condition

• No constructors of positive arity on the right-hand side of the
rule.

• Enough to characterize Ptime problems.

• Simple functions such as reverse cannot be represented.
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Hofmann’s type system for in-place update

• Relies on an –empty– resource type ρ and affine typing.

• An element of resource type is understood as a memory cell.

• Constructors take an extra-argument of type ρ. Also functions
may get extra-arguments of type ρ.

• In a rule x1 = p1, . . . , xn = pn ⇒ e, resources have to be
balanced:

Γ ` pi, i = 1, . . . , n ⇒ Γ `aff e

• Data transformations are non-size increasing and language can
be compiled so that no dynamic heap memory allocation is
required.
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Part 4: Max-Plus quasi-interpretations

We look for an automatic method for inferring bounds on the size
of computed values for general recursive programs, without
annotations.

• Quasi-interpretations as a tool to bound size of values.

• Max-Plus polynomials.

• Synthesis problem.
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Assign functions over non-negative rationals

qc =

 0 c constant

d+ Σi=1,...,nxi otherwise, with d ≥ 1

qf : (Q+)k → Q+ monotonic and qf ≥ πi
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Quasi-interpretation (Marion et al.)

Extension of assignment to expressions:

qx = x

qc(e1,...,en) = qc(qe1 , . . . , qen)

qf(e1,...,en) = qf (qe1 , . . . , qen)

Condition an assignment must satisfy to be a quasi-interpretation:

qf (qpi,1 , . . . , qpi,n) ≥ qei
NB Quasi-interpretations are inspired by polynomial
interpretations for termination proofs.
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Basic properties

• |v| ≤ qv ≤ d|v|, for v value, d constant.

• e 7→ v then qe ≥ qv ≥ |v|.

• Can evaluate f(v1, . . . , vn) in 2O(qf(v1,...,vn)).
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A simple evaluator

Eval(e) = case

e value : e

e ≡ E[f(v1, . . . , vn)] and

∃σ (σ(pj) = vj , j = 1, . . . , n) :

let v′ = Eval(σ(e)) in

Eval(E[v′])

else : Return ⊥

NB This program can be run on a linearly bounded Apda and, by
Cook’s theorem, it can be transformed to run in Exptime.
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An evaluator with memoization

Evalm(e) = case

e value : e

e ≡ E[f(v1, . . . , vn)] and ∃σ, i (σ(pi,j) = vj , j = 1, . . . , n) :

(new , v′′) := Insert(f(v1, ..., vn)); ⇐
case

new : let v′ = Evalm(σ(ei)) in (1)

Update(f(v1, ..., vn), v′); ⇐
Evalm(E[v′])

¬new , v′′ 6= ⊥ : Evalm(E[v′′]) (2) ⇐
else : Return ⊥ ⇐

else : Return ⊥
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Insertion sort revisited

The program admits the following quasi-interpretation:

qi = x+ 1, qsort = x, qinsert i = x+ 1.
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No cons revisited

A program conforming to Jones’ restriction admits the following
multi-linear quasi-interpretation

qc = 1 + Σi=1,...,nxi qf = max (x1, . . . , xn) .
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In-place update revisited

If a program has an affine typing then its erasure of resource
arguments admits the following multi-linear quasi-interpretation:

qc = 1 + Σi=1,...,nxi qf = r(f) + Σi=1,...,nxi

where r(f) is the number of resource arguments of f .
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Lower bounds on expressivity: Qbf

qbf (φ) = check(φ,nil)

check(φ, l) =

φ = v(x) ⇒ mem(x, l)

φ = o(φ′, φ′′) ⇒ or(check(φ′, l), check(φ′′, l))

φ = all(x, φ′) ⇒ and(check(φ′, cons(x, l)), check(φ′, l))

Quasi-interpretation

qv = x+ 1, qo = qall = x+ y + 1, qqbf = x,

qor = qmem = max (x, y), qcheck = φ+ l
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Lower bound on expressivity: exponential time TM

• Can also simulate TM running in 2O(n).

• Define

T : Input × Step × Position → State × Letter

• T (x, s, p) = (q, a) iff the machine with input x after s steps
arrives in state q with character a at position p.

• s, p can be stored in space O(|x|) and we can do basic
arithmetic modulo 2O(|x|).

• T (x+ 1, s, p) can be defined recursively in terms of
T (x, s, p− 1), T (x, s, p), T (x, s, p+ 1).

NB Again, this is a rephrasing of Cook’s theorem (from Exptime

to Apda).
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Max-plus polynomials

• We shift from the algebra (+,×) to the algebra (max ,+).

• Work over Q+
max = Q+ ∪ {−∞}. −∞ is the unit of max and 0

is the unit of +.

• Distribution: x+ max (y, z) = max (x+ y, x+ z).

• Exponentiation: αx.

• Polynomial of degree d with n indeterminates:

max I:{1,...,n}→{0,...,d}(I(1)x1 + · · ·+ I(n)xn + aI)

• For a given degree synthesis problem can be expressed as
validity of ∃∀ Presburger formula. Look for something more
efficient. . .
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Lower bound on complexity of synthesis

Prop The synthesis problem is NP-hard.

• Reduction from SAT.

• Devise rules that force qf = max (x1, . . . , xn). E.g.

f(c(x))⇒ f(f(c(x)))

forces qf = max (a, x).

• Simulate boolean variables with constructors’ coefficients.

NB This lower bound does not depend on bounding the degree of
the polynomials or the size of the rules.
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Multi-linear polynomials

• Multi-linear = Degree of every variable is at most 1:

max I⊆{1,...,n}(Σi∈Ixi + aI)

• Multi-linear polynomials have a normal form. . .

J ⊆ K ⊆ {1, . . . , n} ⇒ a′J ≥ a′K

• . . . and then they are easy to compare:

P1 ≥ P2, P1 multi-linear ⇒ P2 multi-linear.

Suppose P1, P2 multi-linear. P1 ≥ P2 iff a1
I ≥ a2

I , I ⊆ {1, . . . , n}
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Upper bound on complexity of synthesis

Prop For programs with rules of bounded size the synthesis
problem for multi-linear polynomials is NP-complete.

• Compute the interpretations of qf(p1,...,pn) and qe and reduce to
the satisfaction of a system of inequalities over Q+

max .

• Use non-determinism to eliminate max from qf(p1,...,pn) on the
right-hand side of the inequality.

max (A,B) ≥ C becomes (A ≥ C ∧A ≥ B) ∨ (B ≥ C ∧B ≥ A)

• Eliminate max in qe in polynomial time. Idea:

A ≥ max (B,C) becomes A ≥ z, z ≥ B, z ≥ C
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Upper bound (continued)

• Get a system with constraints of the shape:

x = −∞ y ≥ 1

x+ Σj=1,...,lαjyj ≥ Σj=1,...,nβjxj + Σj=1,...,lγjyj

• Send to −∞ all the variables for which no x ≥ 0 constraint can
be inferred. Idea on boolean variables: satisfaction of formulae∨
j∈J xj or x⇒

∨
j∈J xj can be decided efficiently.

• Hence reduce to a linear programming problem over Q+ (it is
possible to look for optimal solutions).

NB If the size of the rules is not bound then the method requires
exponential space just to write the solution.
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Work in progress/problems

• Look for synthesis subproblems with polynomial complexity.

• Determine complexity of the synthesis problem for higher
degrees.

• Consider quasi-interpretations in more complicated type
theories (co-inductive types, higher-order types).
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Related work

• Pareto et al. sized types.

– Functions definitions are annotated with Presburger’s
functions, i.e. type-checking rather than type-inference.

– Type checking uses Omega library to validate ∀∃
Presburger’s formulae.

• Hofmann-Jost heap analysis.

– Annotate judgments x : τ, f ` e : τ ′, g with the
interpretation: evaluation of [v/x]e requires f(|v|) heap, and
if [v/x]e 7→ v′ then it releases g(|v′|) heap.

– Goal: lower bound on heap size needed to complete
evaluation.

– Synthesis method over linear affine functions (no max).
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