
Extraction of complexity bounds

from first-order functional programs

7 Dec. 2002

Roberto Amadio

Ludwig-Maximilian Universität and Université de Provence

1

Plan

• Part 1: Mobile/embedded code motivations and approaches.

• Part 2: Some classical results on functional algebras.

• Part 3: Restrictions enforcing space bounds.

• Part 4: Max-Plus quasi-interpretations.

2

Part 1: Mobile/embedded code motivations and
approaches

• Scenarios for resource guarantees

• Proof carrying code approach

• Mobile Resource Guarantees project

3

Scenarios for Resource Guarantees

• Programmable switches (Penn PLAN project): requires
termination.

• Applications threads in a smart card (Gemplus): needs to
predict memory consumption.

• In combination with synchronous programming (Pareto).

4

Proof carrying code approach (Lee-Necula)

• Define security policy (e.g. no memory faults).

• Code comes with evidence (a proof) of its conformity to the
security policy.

• Receiver can (easily) check evidence before running the code.

• To increase efficiency and trust-in-compiler, code is low level
(assembler).

5

PCC (continued)

• Burden is on the code producer: it has to generate the proof.

• The proof is formalized in some suitable (Hoare) program logic
and represented as a λ term in some logical framework (e.g.
LF).

• Proof compression and quick proof check is an issue.

6

A couple of frequent questions. . .

• How do you generate the evidence?

• Why don’t you just monitor the execution?

7

. . . and some remarks

• Can easily rewrite a program so that it respects a certain
resource bound: just insert a time out/a memory counter/. . .

• I.e., producer can insert dynamic checks whenever it is unable
to prove statically that the program guarantees certain resource
bounds.

• Of course, the more dynamic checks the less efficient (and
useful) the program. Still, having dynamic checks performed by
the program rather than by the monitor is usually more
efficient.

8

IST Global Computing project Mobile resource guarantee

• Concentrates on resource bounds security policy: given an
input of size n the program will run in at most time T (n) and
space S(n).

• To be useful, bounds have to be precise and they have to be
valid for the implemented abstract machine.

• High-level language (Camelot): a restricted functional
language (no functions as results) with a type system to
guarantee certain bounds on heap space consumption.

• Low-level language (Grail): an imperative language with some
notion of class and object which is sufficient to implement the
abstract machine.

9

MRG (continued)

• Defined: implementation of Camelot in Grail and cost
model for Grail.

• Under development: Hoare logic with heap management for
Grail implemented in Isabelle (cf. Abadi-Leino logic,
Reynolds’ separation logic).

• Expected: automatic generation of proofs for the Grail code
resulting from the compilation of well-typed Camelot code.

10

Part 2: Some classical results on functional algebras

• A first-order functional language.

• Bounded recursion on notation.

• Ramification.

• Limits of programming with ramification.

11

A first-order functional language

• Inductive types

µt.(. . . c : τ1, · · · , τn → t, . . .)

• Values, patterns, expressions:

v ::= c(v, . . . , v)

p ::= x || c(p, . . . , p)

e ::= x || c(e, . . . , e) || f(e, . . . , e)

• Functions definitions by pattern matching and evaluation by
value.

f(x1, . . . , xn) =

. . .

x1 = p1, . . . , xn = pn ⇒ e

. . .

12

Bounded recursion on notation (Cobham)

µt.(ε : t, 0 : t→ t, 1 : t→ t) (binary words)

f(x, ~y) =

x = ε ⇒ g(~y)

x = ix′ ⇒ hi(f(x′, ~y), x′, ~y)

with |f(x, ~y)| ≤ P (|x|, |~y|), P polynomial.

13

BRN (continued)

• Without bound can still define exponential:

d(x) = e(x) =

x = ε⇒ ε x = ε⇒ 0(ε)

x = i(x′)⇒ i(i(x′)) x = i(x′)⇒ d(e(x′))

• With bound can evaluate in Ptime.

• Vice versa, BRN can simulate polynomially many steps of TM.

14

Ramification (Bellantoni-Cook and Leivant)

• f(~x; ~y): split arguments in Normal (~x) and Safe (~y).

• N ≤ S: Normal can be regarded as a subtype of Safe.

• f(ix . . . ; . . .)⇒ h(. . . ; f(x, . . . ; . . .), . . .).
Recurrence parameters are Normal, Result of a recurrence is
Safe (⇒ typing of exponential fails).

• Constructors are overloaded, sending safe to safe and normal to
normal.

• Composition: g(h1(~x;);h2(~x; ~y)).

15

Ramified –size– addition and multiplication

a(x; y) =

x = ε⇒ y

x = ix′ ⇒ i(a(x; y))

m(x, y;) =

x = ε⇒ ε

m(ix′, y;)⇒ a(y;m(x′, y;))

16

Limits of ramification

sort(l;) =

l = ε⇒ ε

l = i(x)⇒ insert i(sort(x;);) (∗)

insert0(x;) = 0(x)

insert1(x;) =

x = ε⇒ 1(ε)

x = 1(x′)⇒ 1(1(x′))

x = 0(x′)⇒ 0(insert1(x′;))

(*) insert1 waits for normal but gets safe (cf. exponential).

17

Part 3: Restrictions enforcing space bounds

• Consider general recursive programs but find (implicit) way to
bound the size of results.

• We analyse two cases:

– Jones’ no-cons condition.

– Hofmann’s type system for in-place update.

18

Jones’ no cons condition

• No constructors of positive arity on the right-hand side of the
rule.

• Enough to characterize Ptime problems.

• Simple functions such as reverse cannot be represented.

19

Hofmann’s type system for in-place update

• Relies on an –empty– resource type ρ and affine typing.

• An element of resource type is understood as a memory cell.

• Constructors take an extra-argument of type ρ. Also functions
may get extra-arguments of type ρ.

• In a rule x1 = p1, . . . , xn = pn ⇒ e, resources have to be
balanced:

Γ ` pi, i = 1, . . . , n ⇒ Γ `aff e

• Data transformations are non-size increasing and language can
be compiled so that no dynamic heap memory allocation is
required.

20

Part 4: Max-Plus quasi-interpretations

We look for an automatic method for inferring bounds on the size
of computed values for general recursive programs, without
annotations.

• Quasi-interpretations as a tool to bound size of values.

• Max-Plus polynomials.

• Synthesis problem.

21

Assign functions over non-negative rationals

qc =

 0 c constant

d+ Σi=1,...,nxi otherwise, with d ≥ 1

qf : (Q+)k → Q+ monotonic and qf ≥ πi

22

Quasi-interpretation (Marion et al.)

Extension of assignment to expressions:

qx = x

qc(e1,...,en) = qc(qe1 , . . . , qen)

qf(e1,...,en) = qf (qe1 , . . . , qen)

Condition an assignment must satisfy to be a quasi-interpretation:

qf (qpi,1 , . . . , qpi,n) ≥ qei
NB Quasi-interpretations are inspired by polynomial
interpretations for termination proofs.

23

Basic properties

• |v| ≤ qv ≤ d|v|, for v value, d constant.

• e 7→ v then qe ≥ qv ≥ |v|.

• Can evaluate f(v1, . . . , vn) in 2O(qf(v1,...,vn)).

24

A simple evaluator

Eval(e) = case

e value : e

e ≡ E[f(v1, . . . , vn)] and

∃σ (σ(pj) = vj , j = 1, . . . , n) :

let v′ = Eval(σ(e)) in

Eval(E[v′])

else : Return ⊥

NB This program can be run on a linearly bounded Apda and, by
Cook’s theorem, it can be transformed to run in Exptime.

25

An evaluator with memoization

Evalm(e) = case

e value : e

e ≡ E[f(v1, . . . , vn)] and ∃σ, i (σ(pi,j) = vj , j = 1, . . . , n) :

(new , v′′) := Insert(f(v1, ..., vn)); ⇐
case

new : let v′ = Evalm(σ(ei)) in (1)

Update(f(v1, ..., vn), v′); ⇐
Evalm(E[v′])

¬new , v′′ 6= ⊥ : Evalm(E[v′′]) (2) ⇐
else : Return ⊥ ⇐

else : Return ⊥

26

Insertion sort revisited

The program admits the following quasi-interpretation:

qi = x+ 1, qsort = x, qinsert i = x+ 1.

27

No cons revisited

A program conforming to Jones’ restriction admits the following
multi-linear quasi-interpretation

qc = 1 + Σi=1,...,nxi qf = max (x1, . . . , xn) .

28

In-place update revisited

If a program has an affine typing then its erasure of resource
arguments admits the following multi-linear quasi-interpretation:

qc = 1 + Σi=1,...,nxi qf = r(f) + Σi=1,...,nxi

where r(f) is the number of resource arguments of f .

29

Lower bounds on expressivity: Qbf

qbf (φ) = check(φ,nil)

check(φ, l) =

φ = v(x) ⇒ mem(x, l)

φ = o(φ′, φ′′) ⇒ or(check(φ′, l), check(φ′′, l))

φ = all(x, φ′) ⇒ and(check(φ′, cons(x, l)), check(φ′, l))

Quasi-interpretation

qv = x+ 1, qo = qall = x+ y + 1, qqbf = x,

qor = qmem = max (x, y), qcheck = φ+ l

30

Lower bound on expressivity: exponential time TM

• Can also simulate TM running in 2O(n).

• Define

T : Input × Step × Position → State × Letter

• T (x, s, p) = (q, a) iff the machine with input x after s steps
arrives in state q with character a at position p.

• s, p can be stored in space O(|x|) and we can do basic
arithmetic modulo 2O(|x|).

• T (x+ 1, s, p) can be defined recursively in terms of
T (x, s, p− 1), T (x, s, p), T (x, s, p+ 1).

NB Again, this is a rephrasing of Cook’s theorem (from Exptime

to Apda).

31

Max-plus polynomials

• We shift from the algebra (+,×) to the algebra (max ,+).

• Work over Q+
max = Q+ ∪ {−∞}. −∞ is the unit of max and 0

is the unit of +.

• Distribution: x+ max (y, z) = max (x+ y, x+ z).

• Exponentiation: αx.

• Polynomial of degree d with n indeterminates:

max I:{1,...,n}→{0,...,d}(I(1)x1 + · · ·+ I(n)xn + aI)

• For a given degree synthesis problem can be expressed as
validity of ∃∀ Presburger formula. Look for something more
efficient. . .

32

Lower bound on complexity of synthesis

Prop The synthesis problem is NP-hard.

• Reduction from SAT.

• Devise rules that force qf = max (x1, . . . , xn). E.g.

f(c(x))⇒ f(f(c(x)))

forces qf = max (a, x).

• Simulate boolean variables with constructors’ coefficients.

NB This lower bound does not depend on bounding the degree of
the polynomials or the size of the rules.

33

Multi-linear polynomials

• Multi-linear = Degree of every variable is at most 1:

max I⊆{1,...,n}(Σi∈Ixi + aI)

• Multi-linear polynomials have a normal form. . .

J ⊆ K ⊆ {1, . . . , n} ⇒ a′J ≥ a′K

• . . . and then they are easy to compare:

P1 ≥ P2, P1 multi-linear ⇒ P2 multi-linear.

Suppose P1, P2 multi-linear. P1 ≥ P2 iff a1
I ≥ a2

I , I ⊆ {1, . . . , n}

34

Upper bound on complexity of synthesis

Prop For programs with rules of bounded size the synthesis
problem for multi-linear polynomials is NP-complete.

• Compute the interpretations of qf(p1,...,pn) and qe and reduce to
the satisfaction of a system of inequalities over Q+

max .

• Use non-determinism to eliminate max from qf(p1,...,pn) on the
right-hand side of the inequality.

max (A,B) ≥ C becomes (A ≥ C ∧A ≥ B) ∨ (B ≥ C ∧B ≥ A)

• Eliminate max in qe in polynomial time. Idea:

A ≥ max (B,C) becomes A ≥ z, z ≥ B, z ≥ C

35

Upper bound (continued)

• Get a system with constraints of the shape:

x = −∞ y ≥ 1

x+ Σj=1,...,lαjyj ≥ Σj=1,...,nβjxj + Σj=1,...,lγjyj

• Send to −∞ all the variables for which no x ≥ 0 constraint can
be inferred. Idea on boolean variables: satisfaction of formulae∨
j∈J xj or x⇒

∨
j∈J xj can be decided efficiently.

• Hence reduce to a linear programming problem over Q+ (it is
possible to look for optimal solutions).

NB If the size of the rules is not bound then the method requires
exponential space just to write the solution.

36

Work in progress/problems

• Look for synthesis subproblems with polynomial complexity.

• Determine complexity of the synthesis problem for higher
degrees.

• Consider quasi-interpretations in more complicated type
theories (co-inductive types, higher-order types).

37

Related work

• Pareto et al. sized types.

– Functions definitions are annotated with Presburger’s
functions, i.e. type-checking rather than type-inference.

– Type checking uses Omega library to validate ∀∃
Presburger’s formulae.

• Hofmann-Jost heap analysis.

– Annotate judgments x : τ, f ` e : τ ′, g with the
interpretation: evaluation of [v/x]e requires f(|v|) heap, and
if [v/x]e 7→ v′ then it releases g(|v′|) heap.

– Goal: lower bound on heap size needed to complete
evaluation.

– Synthesis method over linear affine functions (no max).

38

