Evaluating the performance of skeleton-based high-level parallel programs

(unded by the EPSRC, grant number GR/S21717/01)

Enhancing the Performance Predictability of Grid Applications with Patterns and Process Algebras

A. Benoit, M. Cole, S. Gilmore, J. Hillston

http://groups.inf.ed.ac.uk/enhance/
Parallel programs in a heterogeneous context
- run on a widely distributed collection of computers
- resource availability and performance unpredictable
- scheduling/rescheduling issues

High-level parallel programming
- library of skeletons (parallel schemes)
- many real applications can use these skeletons
- modularity, configurability → easier for the user
- Edinburgh Skeleton Library eSkel (MPI) [Cole02]
Use of a particular skeleton: information about implied scheduling dependencies

Model with stochastic process algebra
- include aspects of uncertainty
- automated modelling process
- dynamic monitoring of resource performance

→ allow better scheduling decisions and adaptive rescheduling of applications

→ Enhance the performance of parallel programs
Structure of the talk

- Introduction
- The Pipeline skeleton
 - Principle of the skeleton
 - Modelling the skeleton with PEPA [Hillston96] (Performance Evaluation Process Algebra)
- AMoGeT: The Automatic Model Generation Tool
 - Overview and input files
 - Numerical results
- Conclusions and Perspectives
Pipeline - Principle of the skeleton

- \(N_s \) stages process a sequence of inputs to produce a sequence of outputs
- All input passes through each stage in the same order
- The internal activity of a stage may be parallel, but this is transparent to our model
- Model: mapping of the application onto the computing resources: the network and the processors
Pipeline - Application model

- **Application model**: independent of the resources

- 1 PEPA component per stage of the pipeline \((i = 1..N_s)\)

 \[
 Stage_i \overset{\text{def}}{=} (move_i, \top).(process_i, \top).(move_{i+1}, \top).Stage_i
 \]

- Sequential component: gets data \((move_i)\), processes it \((process_i)\), moves the data to the next stage \((move_{i+1})\)

- Unspecified rates \((\top)\): determined by the resources

- Pipeline application = cooperation of the stages

 \[
 Pipeline \overset{\text{def}}{=} Stage_1 \overset{\text{move}_2}{\bowtie} Stage_2 \overset{\text{move}_3}{\bowtie} \ldots \overset{\text{move}_{N_s}}{\bowtie} Stage_{N_s}
 \]

- Boundary: \(move_1\): arrival of an input in the application

 \(move_{N_s+1}\): transfer of the final output out of the Pipeline
Network model: information about the efficiency of the link connection between pairs of processors

Assign rates λ_i to the $move_i$ activities ($i = 1..N_s + 1$)

$$
Network \overset{\text{def}}{=} (move_1, \lambda_1).Network + \ldots + (move_{N_s+1}, \lambda_{N_s+1}).Network
$$

λ_i represents the connection between the processor j_{i-1} hosting stage $i - 1$ and the processor j_i hosting stage i

Boundary cases:

- j_0 is the processor providing inputs to the Pipeline
- j_{N_s+1} is where we want the outputs to be delivered
Pipeline - Processors model

- **Processors model**: Application mapped on a set of N_p processors.

- Rate μ_i of the $process_i$ activities ($i = 1..N_s$): load of the processor, and other performance information.

- One stage per processor ($N_p = N_s$; $i = 1..N_s$):
 \[Proc_i \equiv (process_i, \mu_i).Proc_i \]

- Several stages per processor:
 \[Proc_1 \equiv (process_1, \mu_1).Proc_1 + (process_2, \mu_2).Proc_1 \]

- Set of processors: parallel composition
 \[Processors \equiv Proc_1 || Proc_2 || ... || Proc_{N_p} \]
The overall model is the mapping of the stages onto the processors and the network by using the cooperation combinator.

\[L_p = \{ \text{process}_1, \ldots, \text{process}_{N_s} \} \] synchronize Pipeline and Processors

\[L_m = \{ \text{move}_1, \ldots, \text{move}_{N_s+1} \} \] synchronize Pipeline and Network

\[\text{Mapping} \overset{\text{def}}{=} \text{Network} \begin{array}{c} \text{Pipeline} \end{array} \begin{array}{c} \text{Processors} \end{array} \]
Structure of the talk

- Introduction
- The Pipeline skeleton
 - Principle of the skeleton
 - Process algebra model
- AMoGeT: The Automatic Model Generation Tool
 - Overview and input files
 - Numerical results
- Conclusions and Perspectives
AMoGeT: **Automatic Model Generation Tool**

- Generic analysis component
- Ultimate role: integrated component of a run-time scheduler and re-scheduler
AMoGeT

- Description file
 - timing information: time required to complete a stage on a processor, communication latencies, ...
 (some of these may be gathered from NWS)
 - mappings of stages to processors: location of the input data, the processor where each stage is processed, and where the output data must be left.
 mappings=[1, (1,2,3), 1], [1, (1,1,1), 1];

- Model generation straightforward \((\lambda, \mu)\)
- Models solved with the PEPA Workbench
Numerical Results

- **Example 1**: 3 Pipeline stages, up to 3 processors
- 27 states, 51 transitions → less than 1 second to solve
- latency of the com 0.001 sec; all stages/processors are identical; time required to complete a stage t
- $\mu_i = 1/(t \times nb_j)$ (nb_j: nb stages on processor j)
- Mappings compared: all the mappings with the first stage on the first processor (mappings $[1, (1, *, *), *]$)
 - $t = 0.1$: optimal mappings $(1,2,3)$ and $(1,3,2)$ with a throughput of 5.64
 - $t = 0.2$: same optimal mappings (one stage on each processor), but throughput divided by 2 (2.82)
Example 2: 4 Pipeline stages, up to 4 processors, \(t = 10 \)

Mappings:

\[
\begin{align*}
[1,(1,1,1,1),1] & \\
[1,(1,1,2,2),1] & \\
[1,(1,1,2,3),1] & \\
[1,(1,2,3,4),1] &
\end{align*}
\]
Conclusions

- Use of skeletons and performance models to improve the performance of high-level parallel programs
 - Pipeline skeleton
 - Tool AMoGeT which automates all the steps to obtain the result easily
 - Models: help us to choose the mapping to produce the best throughput of the application
Perspectives

- Provide more detailed **timing information** on the tool to prove its usefulness - *Recent work*

- Extension to **other skeletons** - *Deal*

- Experiments with a **realistic application** on an heterogeneous computational **Grid**

First case study ➔ we have the potential to enhance the performance of high-level parallel programs with the use of skeletons and process algebras
Related projects

- The Network Weather Service – [Wolski99]
 - benchmarking and monitoring techniques for the Grid
 - no skeletons and no performance models

- ICENI project – [Furmento02]
 - performance models to improve the scheduling decisions
 - no skeletons, models = graphs which approximate data

- Use of skeleton programs within grid nodes – [Alt02]
 - each server provides a function capturing the cost of its implementation of each skeleton
 - each skeleton runs only on one server
 - scheduling = select the most appropriate servers
Specify the names of the processors

- file hosts.txt: list of IP addresses
- rank i in the list \rightarrow processor i
- processor 1 is the *reference processor*

wellogy.inf.ed.ac.uk
bw240n01.inf.ed.ac.uk
bw240n02.inf.ed.ac.uk
france.imag.fr
The Network Weather Service (NWS) [Wolski99]

- Dynamic forecast of the performance of network and computational resources
- Just a few scripts to run on the monitored nodes
- Information we use:
 - av_i fraction of CPU available to a newly-started process on the processor i
 - $la_{i,j}$ - latency (in ms) of a communication from processor i to processor j
 - cpu_i - frequency of the processor i in MHz ($/proc/cpuinfo$)
One Pipeline model per mapping

Problem: computing the rates

Stage \(s (s = 1..N_s) \) hosted on processor \(j \) (and a total of \(nb_j \) stages hosted on this processor):

\[
\mu_s = \frac{av_j}{nb_j} \times \frac{cpu_j}{cpu_1} \times \frac{1}{tr_s}
\]

Rate \(\lambda_s (s = 1..N_s + 1) \): connection link between the processor \(j_{s-1} \) hosting stage \(s - 1 \) and the processor \(j_s \) hosting stage \(s \):

\[
\lambda_s = 10^3 / la_{j_{s-1},j_s}
\]

(boundary cases: stage 0 = input and stage \(N_s + 1 = output \))
Numerical results obtained with the PEPA Workbench [Gilmore94]

Performance result: throughput of the $move_s$ activities = throughput of the application

Result obtained via a simple command line, all the results saved in a single file

Which mapping produces the best throughput?

Use this mapping to run the application