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Abstract 

 

This report describes how to build protocols models in UML, so that they can be 

analized for authentication properties in the DEGAS framework. To this purpose, we 

introduce a couple of reusable UML packages, which should be used in Poseidon, to 

produce protocol models amenable to analysis in the DEGAS Choreographer.  
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Introduction 
This report describes how to build protocols models in UML, so that they can be analized for authentication 

properties in the DEGAS framework. To this purpose, we introduce a couple of reusable UML packages, 

which should be used in Poseidon, to make protocol models amenable to analysis in the DEGAS 

Choreographer [Chor]. In other terms, the report specifies how to generate models that the extractor for LySa 

will accept, and that the reflector will be able to use to produce feedback [Del20]. In  the first package, 

ForLysa, we model general concepts like principals, keys, messages, etc.; the actual protocol model is 

derived extending the second package, Protocol. They are available as a Poseidon .zuml file [ForLysa]. The 

model includes the standard elements that are used in the analysis performed by the lysatool in 

Choreographer, according to the requirements in [MB04]. 

The For Lysa package 
As shown in Figure 1, the classes and associations that define the verification scenario assumed by the 

extractor according to the requirements in [MB04], come in two packages. Some classes in Protocol inherits 

from ForLysa, since they specialize the general concepts to the protocol at hand.  

 

The contents of package ForLysa is shown in Figure 2 and in Figure 3 with respect to the general aspects and 

the principals, and to the details of the messages, respectively. 

 

Three party protocols are considered, with one kind of principal being the initiator of the protocol, while 

another kind is the responder. Additionally, there is a server, sometimes referred to as a trusted third party, a 

key distribution centre, a certificate authority, etc. In a protocol specification there is only one initiator, 

responder and server. The principals communicate and exchange messages as indicated by the communicates 

association. To express communication, the operation msg() can be invoked on the principal that the message 

is sentTo. The specification of this operation is that it copies its argument into variable in of the receiver. For 

uniformity, and to ease the extraction process, we expect that the value of variable out is passed to msg(). In 

summary, whenever a principal contributes to a step of the protocol, it needs to keep track of two messages: 

an incoming message that is left by msg() in its in variable, and triggers the contribution, and the outgoing 

message that it builds in its out variable and then sends. 

 

 

 

 

 

 

Figure 1: General structure of ForLysa. 
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Figure 2: The Class diagram of the principals. 

 

 

 

 

 

Figure 3: The Class diagram of the messages. 
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There are two different kind of admissible cyptography: symmetric, which uses either private or session 

keys, and asymmetric, which uses public/private key pairs. There are some generic operations that can be 

used to build and open the messages. They are left abstract, since we leave the choice of the cryptographic 

algorithms open to further specialisations. In fact, the analysis treats encryption as abstract operations so we 

would not get more precise analysis results by specialising these operations further. Encryption and 

decryption are performed by crypt() and decrypt() for the symmetric case, and aCrypt() and aDecrypt() for 

the asymmetric case. We assume that decrypt() and aDecrypt() leave their result in variable 

theDecryptedItem. The type of this variable, and those of the parameters will be discussed below, when 

considering the structure of the messages in detail. These operations must be immediately followed by a 

checkdecrypt() operation, as discussed below. 

 

Class Info represent what is being communicated, and is no further specified here, and Nonce represents 

numbers used only once, which are a standard tool when specifying protocols. 

 

As shown in Figure 3, messages carry Payloads, some of which can be CryptedPayloads, which encrypt 

Data in their contents. The CryptedPayloads are returned by the encryption operations that we introduced 

above. Dually, the decryption operations leave in the local variable theDecryptedItem, values of type 

DecryptedData, which contain the information in clear in the field dd.  

 

To support the analysis, the result of each encryption/decryption operation may be decoratated with labels, 

called Cryptopoints, that identify uniquely the point in the protocol where the operation is performed (the at 

field of the payloads) and to specify the points in which the payload was originated (orig, in case of a 

decryption) or is intented to be used (dest, in case of an encryption). 

 

Moreover, always to support the analysis, as explained in [LySa], each message, is decorated with a source 

field, that will contain the name of the sender of the message, and a sink field, that should contain the name 

of the recipient. 

 

Operations checkmsg() and checkdecrypt() are used to open and check the messages and the decrypted 

payloads, respectively. The specific semantics of each use of these operations will be specified in the 

protocol model, using invariant and postcondition constraints. The details are given below, when discussing 

the specification language. 

 

Finally, there are no standard operations to build the outgoing messages. These operations should be 

introduced explicitely, albeit named in standardised ways that we discuss in the next section, and specified 

by pre- and post-conditons. They can use the parts of the incoming messages, saved in local variables by 

previous checkmsg/checkdecrypt operations, as well as specific information held by the principal in private 

attributes. Since it often happens, when specifying a protocol, that one needs a "fresh" value of some kind, 

the Principal specification introduces three "isNew" operations, to express the need of a correct initialization 

of some variable. These predicates can be used in the preconditon of the message building operations. 

 

 

 

The Protocol package 
To specify a protocol in our approach, one needs to specify subtypes of the initiator, responder and server 

that introduce local variable to held parts of the incoming messages and other specific information, and 

introduce specific operations to build the outgoing messages. Then one needs to build a sequence diagram, 

that represents the interaction between the involved principals, and holds, as constraints on the links, the 

specification of each operation. 
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The Protocol package contains the essential starting point for this activity, in a way that reflects the current 

verification scenario, as shown in Figure 4, Figure 5, and Figure 6. The names for initiator, server and 

responder come from the tradition in informal protocol narrations.  

 

In the scenario, each principal shares a unique key for symmetric key encryption with the server. These 

private keys are known as kA and kB for the initiator and the responder, respectively. The server knowledge 

is represented by the function key().  

 

Furthermore, an asymmetric key pair is assigned to each principal. These keys are known as kAp, kAm, kBp, 

kBm, and kSp, kSm for the initiator, the responder, and the server, respectively. The ending characters of 

these names are chosen to remind of the plus and minus signs that are used in UML to denote public and 

private attributes/operations, respectively. Indeed, the negative keys in the key pairs are kept secret by the 

principal they belong to, while the positive key are known to all other principals. This is in agreement with 

the UML visibility rules. 

 

The remaining attributes are not standards but are simply examples of what a protocol designer may 

introduce. The choice given here is compatible with a scenario in which the initiator encrypts and sends the 

information for a certificate to the server, which accepts them in certAinS, and then returns the Certificate 

(i.e. the received information to A, encrypted wih its private asymmetric key, kSm) to A, which stores it in 

its variable certA, for future use. It is also expected that the initiator will use a Nonce, rA, and a piece of 

information m. Similarly, the responder will have its own Certificate and Nonce. The typical (once more) 

structure of the involved data is given in Figure 5. This figure shows also the structure of a tpyical message, 

Msg1A, used by the initiator in the scenario above to send the information needed for a certificate, and the 

naming conventions for its payloads.  

 

Finally, since it has the burden to start the protocol, the initiator shows a typical message building operation, 

premsg1A(). Here we are following a requirement, i.e. that the building operations have names that start by 

"premsg", and showing a standard way introducing names, i.e. numbering the operations in the order they 

occur, and tagging them with the principal they pertain. The semantics of this operation, as well as o fthe 

other, as already mentioned, is given by pre/post conditons and invariant constraints in the sequence 

diagram, using a specification language defined in the next section. 

 

 

 

Figure 4: The principals in the verification scenario. 
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Figure 5 Typical data structures. 

 

Finally, Figure 6 shows, as the starting point of the sequence diagram, a typical protocol step. The initiator 

builds the first message, and the encryption is marked as occurring at cryptopoint Acp1, then sends it to the 

server, which inputs it with checkmsg, and opens it with aDecrypt and checkdecrypt. The diagram shows 

both the conventional name of the cryptopoints, and the way we represent in the diagram the association 

between the operations and the labels, i.e. by placing the latter in a comment linked to the former. Besides, 

the diagram shows the conventional names of the Principal objects partecipating in the protocol, namely i,j 

and s for the initiator, responder and server, respectively. 

 

To continue the protocol specification the designer shall introduce new messages, and complete each one 

with pre/post/invariant conditions. The specification of the messages introduced here will be discsussed after 

introducing the specification language in the next section. 

 

 
 

 

Figure 6:  A typical protocol step. 
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The specification language 

Syntax 

Meta-conventions: Square brackets denote optional items, curly brackets zero or more occurrences.  

 
Spec ::= Inv | Pre | Post | Comment 

Inv  ::= Cond { , Cond } 

Pre  ::= TypeRestriction | EncryptedType | 

Initialization { & Initialization } 

TypeRestriction ::= Ide : Type  

EncryptedType :: Ide encrypts DataConstructor 

Initialization ::= isNewKey( Ide ) | isNewInfo( Ide ) | isNewNonce( Ide ) 

Post ::= [ with TypeRestriction ] Cond { & Cond } 

Cond ::= Name = Expr 

Name ::= Ide { . Ide } 

Expr ::= Name | Fun( [ Expr { , Expr } ] ) 

Fun  ::= crypt | aCrypt | cp | Constructor 

Ide  ::= <any name defined in the namespace of the destination> 

Constructor ::= SetofCryptpoints | DataConstructor 

DataConstructor ::= <any data constructor> 

Comment ::= $$ <string> $$ 

Semantics 

Spec 

In the following we will call destination the object which is the destination of the stimulus the specified 

operation is associated with. Each specification is evaluated in a namespace that merges the names of the 

parameters of the operation with the namespace of the sequence diagram, which contains the object names 

(i,j, and s) and of the destination. If the name denotes an object, its fields are also accessible, and so on 

recursively, in the usual fashion. Besides, the evaluation namespace includes all the standard public keys 

kXp. When the destination is the server, the namespace includes also all the private symmetric keys kX, 

since the server knows them all, in our scenario1. The designer is responsible for the absence of clashes: the 

naming conventions should make this task easy. At the moment being, there is no guarantee that all errors 

with respect to naming will be statically caught. 

Inv 

An invariant can be associated to checkmsg and checkdecrypt, to specify checks on an incoming message, or 

on the result of a decryption, respectively. The purpose of an invariant is the same as a UML condition on a 

message: it blocks the protocol if not satisfied. Apparently, Poseidon does not provide for explicit conditions 

on messages in sequence diagrams yet, so we went for this turn-around. The only constraint that can be 

imposed in an invariant is that the values of the two sides of the conditions are equal. Usually, the source and 

sink of each message are checked against the expected value. Additional checks depends on the specifics of 

the protocol, like that a clear payload must be equal to the name of the message source, i.e. that the sender 

can only speak for itself. Similarly, another check may be that the incoming responder is indeed the intended 

one. These checks make the protocol more robust, blocking malicious attacks at run-time. 

Pre 

A pre-condition must be associated to each call of the operation msg(), to specify the actual type of the 

current message, by a type restriction. Similarly, a pre-condition must be associated to each 

decrypt/aDecrypt operation, to specify the type of the encrypted data, by an encrypted data declaration. 

Finally, preconditions allow the designer to express initializations concisely in premsg (see below).  

 

 

                                                      
1
 This convention on the namespaces makes the operation key() of the server superfluous, and we will not use it. 
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Initialization 

The intended meaning is that before the specified operation, the arguments of these predicates have been 

assigned fresh values. Initializations can be used to this purpose, as the preconditon of a premsg operation. 

With respect to the analysis, the lack of proper initalization will likely lead to more errors revealed, since it 

amounts to leave some values unprotected. 

The choice of operators in the initialization clause reflects a couple of assumptions, with respect to keys: 

- private keys, either symmetric or asymmetric, can be freely used in the operations of the owner, 

since they are assumed to be initialised before the protocol starts; 

- asymmetric public keys can be used everywhere, for their own nature; however, some protocols may 

restrict themeselve to use public keys that have been explicitly exchanged;  

- session keys must be initialised explicitly before they are used.  

Similarly, nonces and any information that is generated and exchanged during the execution of the protocol, 

must be initialized before their use. 

Post 

The post-condition clause is used to specify the effect of an operation on the state of the destination.  

The post-condition of operation msg is standard, namely 'in = p', meaning that the sent message (the value of 

the parameter p, which is assigned the value of the 'out' attribute of the sender) is copied into the 'in' attribute 

of the destination.  

In the case of premsg we usually use the optional element, which is a record scope opener à la Pascal, for 

readability: the fields need not be prefixed by the identifier, in the left-hand sides of the conditions that 

follow. The restriction is 'out : MsgM' if the operation is premsgM2. This entails that the names of the 

Payload of MsgM can be used, to denotes fields to be assigned.  

The intended effect of the operation is given by the conditions (see below).   

Cond 

When used in an invariant, a condition expresses a check, as seen above.  

When used in a post-condition, it defines the value of an attribute or one of its fields, as a result of the 

execution of the operation it specifies: the name on the left-hand side denotes the element that takes the value 

defined by the expression on the right-hand side. 

Constraint: When used in a checkdecrypt operation, invariant and postcondition must address the fields of 

the object they are dealing with orderly (as they are listed in the property pane of the Class of the object), and 

only once. In other words a field can be checked or stored, not both. This restriction reflects the way LySa 

deals with decryptions. 

Constraint: When used in a checkmsg operation, invariant and postcondition must address only once the 

fields of the in object they are dealing with, as above and for the same reasons. In the current implementation 

there is no need to preserve ordering, even though it may be wise to do so, for documentation purposes. Also, 

there is no need to model the messages explicitely: their structure can be declared implicitly by the sequence 

of conditions in the postconditon of the building premsg.  

Name 

A name denotes a variable. The standard dot notation is used to access object fields: N.I denotes the variable 

denoted by I in the namespace of the object denoted by N.  

Expr 

An expression denotes a variable. The standard dot notation is used to access object fields: N.I denotes the 

value denoted by I in the namespace of the object denoted by N.  

Ide 

An identifier denotes a value or a variable, depending on the context, and evaluates as follows: 

- the operation parameters evaluate to the corresponding arguments, as specified in the sequence 

diagram; 

- the identifiers in the sequence diagram evaluate to the corresponding objects; 

                                                      
2
 The same restriction should appear as a precondition in the following msg operation. 
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- the attributes of an object (including the standard ones) denote the corresponding object or value, 

according to its type; 

- the standard key names evaluate to the corresponding key. 

 

The operation arguments are evaluated similarly, in the namespace of the origin of the stimulus. 

Fun 

The admissible operations include the encryption actions, the creation of data to be encrypted, and the 

creation of cryptopoints and sets of cryptopoints
3
. Following Java, a constructor has the name of the class of 

the objects it builds. The arguments must correspond in number and order to the fields of the class. Warning: 

these fields are given in alphabetical order for a class, in the project pane, and this order may not coincide 

with the relevant one, which is given in the property pane for the same class. 

The labels in cryptopoints are implictly quoted, and cp is used as an abbreviation of CryptoPoint. 

Pragmatics 

Constraints and comments must be attached to links in the sequence diagram.  

 

To view a constraints on a link in Poseidon, one has to click on the link, and select the "constraints" tab.  

To modify the "body" of a constraint, one has to double click on the text, and then edit the line. Once 

finished, hit "return". Warning: do not change the focus, especially on another constraint, without exiting the 

editing mode: Poseidon tend to move around text, in this situation, resulting in unpleasant side-effects. To 

change the "type" of a constraint, click on the field, and select from the pull-dow menu. 

 

To delete and add constraints use the red cross and curly brackets at the top left corner of the pane,  

respectively. 

 

To add a comment, use the Documentation tab. 

 

In general, use a text file to edit the specifications, and paste them in Poseidon. 

The standard operations and the naming conventions 

Messages 

The messages shall have types MsgM, where M is unique for a given structure of the message. Their 

payloads shell be named thePayloadY and theCryptedPayloadZ, where Y and Z usually catenate the M of the 

message with a number reflecting the order in the message. 

Data 

The encrypted data shall have types DataM, where M is unique for a given structure of the data.  

Principals 

Each principal shall have as many premsgM operations as messages it sends, where M is the same as in the 

type of the sent message. The parameters of each operation (if any) shall be named p1, p2, … in the order of 

appeareance.  Principal objects shall be named i,j, and s. 

 

Cryptopoints should be named in a standard way: TcpN, where T is the type of the owner, and N is a 

progressive number.  

Stimuli 

Each stimulus in the sequence diagram shall have a name consisting of number reflecting its position in the 

sequence, and an operation from the available ones for its destination. 

                                                      
3
 At the moment, only singleton set can be specified. 
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An example of operation specification 
 

To discuss the use of the specification language, we exploit the diagram in Figure 6, and the narration in 

Table 1, which can be generated in Choreographer by applying the option "ExtractNarration" to the UML 

model described above.  

 

The protocol fragment discussed here would be expressed in the informal style used to discuss cryptographic 

issues as 
 

A -> S: {A,kAp}:kSp 

 

to express that the initiator sends a message to the server, consisting of the pair <initiator name, initiator 

public key>, encrypted with the server public key. The fact that asymmetric cryptography is used is left 

implicit, based on the name of the key. It turns out that reporting this description of the step as a comment in 

the operations that build and receive the message, is a useful way of documenting the protocol. Besides the 

name and number of each operation, each entry in Table 1 displays the following information, when present, 

per each link in the sequence diagram: the comment from the Documentation field, embraced by a couple of 

double dollar signs, and the constraint fields, tagged with their type. 

 

The first operation in this step of the protocol (premsg1A) has to construct the message, which, having type 

Msg1A as declared in the type restriction of the postcondition,  requires the definition of five fields: 

- the message source, set to the initiator object name, i; 

- the message sink, set to the server object name, s; 

- the standard field of the CryptedPayload, contents, set to the result of encrypting 

(asymmetrically) a Data of type DataCert (according to what declared in Figure 5 by the 

encrypts association) with the public key of the server. The fields of the encrypted data are as 

defined above, the initiator's name and public key; 

- the standard field of the CryptedPayload, dest, set to the cryptopoint associated with the intended 

place of decryption, which the designer's hindsight sets to Scp1, according to Figure 6; 

- the standard field of the CryptedPayload, at, set to the cryptopoint associated with this operation, 

in Figure 6. 

 

 

Table 1: Exemplar narration 

 
1:premsg1A()  $$ A -> S: {A,kAp}:kSp $$ 

<postcondition>: with out:Msg1A source = i & sink = s &  

theCryptedPayload1A_1.contents = acrypt(kSp,DataCert(i,kAp)) &  

theCryptedPayload1A_1.dest = SetofCryptpoint(Scp1) & 

theCryptedPayload1A_1.at = cp(Acp1) 

 

2:msg(out)   

<precondition>: out : Msg1A 

<postcondition>: in = p 

 

3:checkmsg()  $$ A -> S: {A,kAp}:kSp  

<invariant>: in.source=i, in.sink=s 

<postcondition>: certAinS.contents = in.theCryptedPayload1A_1.contents 

 

4:aDecrypt(kAp,certAinS.contents)   

<precondition>: certAinS encrypts DataCert 

<postcondition>: theDecryptedItem.at = cp(Scp1) & 

 theDecryptedItem.orig = SetofCryptpoint(Acp1) 

 

5:checkdecrypt()   

<invariant>: theDecryptedItem.dd.p=i 

<postcondition>: kApInS = theDecryptedItem.dd.k 
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The second entry in Table 1 is standard, and provides all the information needed to specify the transfer from 

out in the initiator to in in the server. 

 

The third entry repeats the comment: this is useful to the cultivated designer who may have a look at the 

generated LySa code. Since premsg and checkmsg there are no longer contiguous, the comment, which is 

reported also in the LySa code, helps in relating the pieces there. Next, the invariant expresses that the 

standard message fields, source and sink, are checked, to verify if they are what the designer expects. 

Moreover, the postcondition asserts that the informative part of the CryptedPayload of the incoming message 

is stored in the local variable certAinS, for further processing. The other fields, dest and at, are not relevant 

here. 

 

The last two entries should be considered together, since they cooperate in opening the crypted payload, 

checking its contents, and saving parts for future reference. The precondition of operation number 4 is 

needed to declare the actual type of the dd field of the local variable that accepts the result of the decryption, 

theDecryptedItem. The postcondition of the same operation defines the other fields, namely  

- the one labelling this decryption point, at, which is set to Scp1, according to Figure 1; 

- the one stating the expected origin, i.e. the place of encryption, set to Acp1. 

 

The last entry defines the checks on the result of the decryption (we require that the principal in the 

certificate is the initiator) and that the key must be saved locally, to be used later by the server to build the 

certificate for the initiator. 

 

For the curious reader, Appendix A shows the generated LySa code. 
 

An extended example 
We present the model of the protocol SecureSend developed in DEGAS for the case studies. The reader is 

referred to [Del26] for motivations and rationale of this protocol. This model has been developed from a 

copy if the support. We report the structure of the principals, of the encrypted data, the sequence diagram, 

and the narration. The first exchange between the initiator and the server determines a certificate for the 

initiator in its local variable certA. Similarly, the second exchange establishes a certificate for the responder 

in certB. Then, initiator and responder establish a common session key, in x and xInB, respectively, that they 

use in the last exchange. 

 

The generated LySa code is reported in Appendix A. 
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Figure 7 The structure of SecureSend 

 

 

 

 

Figure 8 The data of SecureSend 
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Figure 9 SecureSend sequence diagram 
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Table 2 The narration of SecureSend 

 
 

1:premsg1A()  $$ A -> S: {A,kAp}:kSp  

<postcondition>: [out, source = i, sink = s, theCryptedPayload1A_1.contents = 

acrypt(kSp,DataCert(i,kAp)), theCryptedPayload1A_1.dest = SetofCryptpoint(Scp1), 

theCryptedPayload1A_1.at = cp(Acp1)] 

 

2:msg(out)   

<precondition>: out : Msg1A 

<postcondition>: [in = p] 

 

3:checkmsg()   

<invariant>: [in.source=i, in.sink=s] 

<postcondition>: [certAinS.contents = in.theCryptedPayload1A_1.contents] 

 

4:aDecrypt(kSm,certAinS.contents)   

<precondition>: certAinS encrypts DataCert 

<postcondition>: [theDecryptedItem.at = cp(Scp1), theDecryptedItem.orig = 

SetofCryptpoint(Acp1)] 

 

5:checkdecrypt()   

<invariant>: [theDecryptedItem.dd.p=i] 

<postcondition>: [kApInS = theDecryptedItem.dd.k] 

 

6:premsg2A()  $$ S -> A: {A,kAp}:kSm  

<postcondition>: [out, source = s, sink = i, theCryptedPayload2A_1.contents = 

acrypt(kSm,DataCert(i,kApInS)), theCryptedPayload2A_1.at = cp(Scp2), 

theCryptedPayload2A_1.dest = SetofCryptpoint(Acp2)]] 

 

7:msg(out)   

<precondition>: out : Msg2A 

<postcondition>: [in = p] 

 

8:checkmsg()   

<invariant>: [in.source=s, in.sink=i] 

<postcondition>: [certA.contents = in.theCryptedPayload2A_1.contents] 

 

9:premsg1B()  $$ B -> S: {B,kBp}:kSp  

<postcondition>: [out, source = j, sink = s, theCryptedPayload1B_1.contents = 

acrypt(kSp,DataCert(j,kBp)), theCryptedPayload1B_1.dest = SetofCryptpoint(Scp3), 

theCryptedPayload1B_1.at = cp(Bcp1)] 

 

10:msg(out)   

<precondition>: out:Msg 

<postcondition>: [in = p] 

 

11:checkmsg()   

<invariant>: [in.source=j, in.sink=s] 

<postcondition>: [certBinS.contents = in.theCryptedPayload1B_1.contents] 

 

12:aDecrypt(kSm,certBinS.contents)   

<precondition>: certBinS encrypts DataCert 

<postcondition>: [theDecrypteItem.orig = SetofCryptpoint(Bcp1), 

theDecryptedItem.at = cp(Scp3)] 

 

13:checkdecrypt()   

<postcondition>: [nBinS = theDecryptedItem.dd.p, kBpInS = theDecryptedItem.dd.k] 

 

14:premsg2B()  $$ S -> B : {B,kBp} : kSm  
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<postcondition>: [out, source = s, sink = j, theCryptedPayload2B_1.contents = 

acrypt(kSm,DataCert(nBinS,kBpInS)), theCryptedPayload2B_1.at = cp(Scp4), 

theCryptedPayload2B_1.dest = SetofCryptpoint(Bcp2)] 

 

15:msg(out)   

<precondition>: msg:Msg2B 

<postcondition>: [in = p] 

 

16:checkmsg()   

<invariant>: [in.source=s, in.sink=j] 

<postcondition>: [certB.contents = in.theCryptedPayload2B_1.contents] 

 

17:premsgSec1()  $$ A -> B : A, RA, certA  

<precondition>: isNewNonce(rA) 

<postcondition>: [out, source = i, sink = j, thePayloadSecure1.sender = i, 

thePayloadSecure1.nonce = rA, thePayloadSecure1.cert = certA] 

 

18:msg(out)   

<precondition>: out : MsgSecure1 

<postcondition>: [in = p] 

 

19:checkmsg()   

<invariant>: [in.source=i, in.sink=j] 

<postcondition>: [nA = in.thePayloadSecure1.sender, rAinB = 

in.thePayloadSecure1.nonce, certAinB = in.thePayloadSecure1.cert] 

 

20:aDecrypt(kSp,certAinB.contents)  $$ B->A : ( rA, B, rB, certB}:kAp !! 

the name in second position, since rA must surely be checked on receipt&nbsp;  

<precondition>: certAinB encrypts DataCert 

<postcondition>: [theDecryptedItem.at = cp(Bcp2), theDecryptedItem.orig = 

SetofCryptpoint(Scp4)] 

 

21:checkdecrypt()   

<invariant>: [theDecryptedItem.dd.p=nA] 

<postcondition>: [kApInB = theDecryptedItem.dd.k] 

 

22:premsgSec2()  $$ B->A : ( rA, B, rB, certB}:kAp  

<precondition>: isNewNonce(rB)  

<postcondition>: [out, source = j, sink = i, theCryptedPayloadSecure2.contents = 

acrypt(kApInB,DataSecure2(rAinB,j,rB,certB)), theCryptedPayloadSecure2.at = 

cp(Bcp3), theCryptedPayloadSecure2.dest = SetofCryptpoint(Acp2)] 

 

23:msg(out)   

<precondition>: out:MsgSecure2 

<postcondition>: [in = p] 

 

24:checkmsg()   

<invariant>: [in.source=j, in.sink=i] 

<postcondition>: [cryptedDataSecure2.contents = 

in.theCryptedPayloadSecure2.contents] 

 

25:aDecrypt(kAm,cryptedDataSecure2.contents)   

<precondition>: cryptedDataSecure2 encrypts DataSecure2 

<postcondition>: [theDecrypteItem.orig = SetofCryptpoint(Bcp3), 

theDecrypteItem.at = cp(Acp2)] 

 

26:checkdecrypt()   

<invariant>: [theDecryptedItem.dd.nonceOfA=rA, theDecryptedItem.dd.nameOfB=j] 

<postcondition>: [rBinA = theDecryptedItem.dd.nonceOfB, certBinA = 

theDecryptedItem.dd.certOfB] 

 

27:aDecrypt(kSp,certBinA.contents)   

<precondition>: certAinB encrypts DataCert 



17 

<postcondition>: [theDecrypteItem.orig = SetofCryptpoint(Scp4), 

theDecrypteItem.at = cp(Acp3)] 

 

28:checkdecrypt()   

<invariant>: [theDecryptedItem.dd.p=j] 

<postcondition>: [kBpInA = theDecrypteItem.dd.k] 

 

29:premsgSec3()  $$ A -> B : {rA, nA, rB, x} : kBpInA  

<precondition>: isNewKey(x) 

<postcondition>: [out, source = i, sink = j, theCryptedPayloadSecure3.contents = 

acrypt(kBpInA,DataSecure3(rA,i,rBinA,x)), theCryptedPayloadSecure3.at = 

cp(Acp4), theCryptedPayloadSecure3.dest = SetofCryptpoint(Bcp4)] 

 

30:msg(out)   

 

31:checkmsg()  $$ A -> B : {rA, nA, rB, x} : kBpInA  

<invariant>: [in.source=i, in.sink=j] 

<postcondition>: [cryptedDataSecure3.contents = 

in.theCryptedPayloadSecure3.contents] 

 

32:aDecrypt(kApInB,cryptedDataSecure3.contents)   

<precondition>: cryptedDataSecure3 encrypts DataSecure3 

<postcondition>: [theDecryptedItem.at = cp(Bcp4), theDecryptedItem.orig = 

SetofCryptpoint(Acp4)] 

 

33:checkdecrypt()   

<invariant>: [theDecryptedItem.dd.nonceOfA=rAinB, 

theDecryptedItem.dd.nameOfA=nA, theDecryptedItem.dd.nonceOfB=rB] 

<postcondition>: [xInB = theDecryptedItem.dd.sKey] 

 

34:premsgSendSecure(m)   

<precondition>: isNewMsg(m) 

<postcondition>: [out, source = i, sink = j, 

theCryptedPayloadDataSecure.contents = crypt(x,DataSecure(m)), 

theCryptedPayloadSendSecure.at = cp(Acp5), theCryptedPayloadSendSecure.dest = 

SetofCryptpoint(Bcp5)] 

 

35:msg(out)   

<invariant>: [out:Msg] 

<postcondition>: [in = p] 

 

36:checkmsg()   

<invariant>: [in.source=i, in.sink=j] 

<postcondition>: [cryptedM.contents = in.theCryptedPayloadDataSecure.contents] 

 

37:decrypt(xInB,cryptedM.contents)   

<precondition>: cryptedM encrypts DataSecure 

<postcondition>: [theDecrypteItem.orig = SetofCryptpoint(Acp5), 

theDecrypteItem.at = cp(Bcp5)] 

 

38:checkdecrypt()   

<postcondition>: [mInB = theDecryptedItem.dd.theInfo] 
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Conclusions 
The approach to protocol modelling for LySa analysis has first been described in [GC2]. However, it should 

be noted that there we used UML profiles to support modelling. Experience with modelling in the last year 

has suggested that the protocol designer can make better use of a reusable package as a design framework. 

Besides, we used two profiles, to keep distinct what is actually needed to implement the protocol from what 

is additionally needed for the analysis. In this document we concentrate on the analysis, and abandon that 

distinction. 

 

Another difference with respect to [GC2] is that now also asymmetric cryptography is considered. 

 

Finally, the experience with the DEGAS cases studies suggests that a simpler profile should be formulated 

instead, to help the application designers that want to exploit verified protocols in expliciting the links 

between the application and the verified protocol. This is left to further research. 
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Appendix A 
We report here the LySa code generated by ForLySa for the two examples in the text. 

From section The specification language. 

 
/* Restrict symmetric keys of A, B */ 

( ( new_{i=1} kA_{i} ) 

  ( new_{j=1} kB_{j} ) 

/* Restrict asymmetric keys of A, B, S */ 

  ( new +- kS ) 

  ( new_{i=1} +- kA_{i} )  

  ( new_{j=1} +- kB_{j} )  

 

/* Processes for A */ 

   (((|_{i=1}(|_{j=0} 

 

   !< I_{i},A,I_{-1},S, {| I_{i},A,kA+_{i} |}: kS+ [at Acp1_{i,j} dest {Scp1}] 

>. 

/* 1.0 premsg1A $$ A -> S: {A,kAp}:kSp  

<pre> null 

<post> [out, source = i, sink = s, theCryptedPayload1A_1.contents = 

acrypt(kSp,DataCert(i,kAp)), theCryptedPayload1A_1.dest = SetofCryptpoint(Scp1), 

theCryptedPayload1A_1.at = cp(Acp1)] 

*/  

 

    0 ) )) 

 

/* Processes for B */ 

 

    |((|_{j=1}(|_{i=0} 

   !0 ) )) 

 

/* Processes for S */ 

 

     |((|_{i=0}(|_{j=0} 

   !( I_{i},A,I_{-1},S ; certAinS_{i,j}). 

/* 3.0 checkmsg$$ A -> S: {A,kAp}:kSp  

<inv> [in.source=i, in.sink=s] 

<post> [certAinS.contents = in.theCryptedPayload1A_1.contents] 

*/  

 

    decrypt certAinS_{i,j} as {| I_{i},A ; kApInS_{i,j} |} : kA+_{i} 

    [ at Scp1 orig {Acp1_{i,j}} ] 

/* 4.0 aDecrypt 

<post> [theDecryptedItem.at = cp(Scp1), theDecryptedItem.orig = 

SetofCryptpoint(Acp1)] 

5.0 checkdecrypt 

<inv> [theDecryptedItem.dd.p=i] 

<post> [kApInS = theDecryptedItem.dd.k] 

*/  

in 0 ) )) 

/* Makes public keys available (kSp,kAp,kBp) */ 

      |( <kS+, I_{0}, A, I_{0}, B, kA_{0}, kB_{0}, kA-_{0}, kB-_{0}>.0 ) 

       |( ( |_{i=0} <kA+_{i}, kB+_{i}>.0 ))  

 )  

)  
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From section An extended example 
 

/* Restrict symmetric keys of A, B */ 

( ( new_{i=1} kA_{i} ) 

  ( new_{j=1} kB_{j} ) 

/* Restrict asymmetric keys of A, B, S */ 

  ( new +- kS ) 

  ( new_{i=1} +- kA_{i} )  

  ( new_{j=1} +- kB_{j} )  

 

/* Processes for A */ 

   (((|_{i=1}(|_{j=0} 

 

   !< I_{i},A,I_{-1},S, {| I_{i},A,kA+_{i} |}: kS+ [at Acp1_{i,j} dest {Scp1}] 

>. 

/* 1.0 premsg1A $$ A -> S: {A,kAp}:kSp  

<pre> null 

<post> [out, source = i, sink = s, theCryptedPayload1A_1.contents = 

acrypt(kSp,DataCert(i,kAp)), theCryptedPayload1A_1.dest = SetofCryptpoint(Scp1), 

theCryptedPayload1A_1.at = cp(Acp1)] 

*/  

 

    ( I_{-1},S,I_{i},A ; certA_{i,j}). 

/* 8.0 checkmsg 

<inv> [in.source=s, in.sink=i] 

<post> [certA.contents = in.theCryptedPayload2A_1.contents] 

*/  

 

     (( new rA_{i,j} )  

      < I_{i},A,I_{j},B,I_{i},A,rA_{i,j},certA_{i,j} >. 

/* 17.0 premsgSec1 $$ A -> B : A, RA, certA  

<pre> isNewNonce(rA) 

<post> [out, source = i, sink = j, thePayloadSecure1.sender = i, 

thePayloadSecure1.nonce = rA, thePayloadSecure1.cert = certA] 

*/  

 

       ( I_{j},B,I_{i},A ; cryptedDataSecure2_{i,j}). 

/* 24.0 checkmsg 

<inv> [in.source=j, in.sink=i] 

<post> [cryptedDataSecure2.contents = in.theCryptedPayloadSecure2.contents] 

*/  

 

        decrypt cryptedDataSecure2_{i,j} as {| rA_{i,j},I_{j},B ; 

rBinA_{i,j},certBinA_{i,j} |} : kA-_{i} 

        [ at Acp2_{i,j} orig {Bcp3_{i,j}} ] 

/* 25.0 aDecrypt 

<post> [theDecrypteItem.orig = SetofCryptpoint(Bcp3), theDecrypteItem.at = 

cp(Acp2)] 

26.0 checkdecrypt 

<inv> [theDecryptedItem.dd.nonceOfA=rA, theDecryptedItem.dd.nameOfB=j] 

<post> [rBinA = theDecryptedItem.dd.nonceOfB, certBinA = 

theDecryptedItem.dd.certOfB] 

*/  

 

         in decrypt certBinA_{i,j} as {| I_{j},B ; kBpInA_{i,j} |} : kS+ 

            [ at Acp3_{i,j} orig {Scp4} ] 

/* 27.0 aDecrypt 

<post> [theDecrypteItem.orig = SetofCryptpoint(Scp4), theDecrypteItem.at = 

cp(Acp3)] 

28.0 checkdecrypt 

<inv> [theDecryptedItem.dd.p=j] 

<post> [kBpInA = theDecrypteItem.dd.k] 
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*/  

 

             in (( new x_{i,j} )  

                 < I_{i},A,I_{j},B, {| rA_{i,j},I_{i},A,rBinA_{i,j},x_{i,j} |}: 

kBpInA_{i,j} [at Acp4_{i,j} dest {Bcp4_{i,j}}] >. 

/* 29.0 premsgSec3 $$ A -> B : {rA, nA, rB, x} : kBpInA  

<pre> isNewKey(x) 

<post> [out, source = i, sink = j, theCryptedPayloadSecure3.contents = 

acrypt(kBpInA,DataSecure3(rA,i,rBinA,x)), theCryptedPayloadSecure3.at = 

cp(Acp4), theCryptedPayloadSecure3.dest = SetofCryptpoint(Bcp4)] 

*/  

 

                  (( new m_{i,j} )  

                   < I_{i},A,I_{j},B, { m_{i,j} }: x_{i,j} >. 

/* 34.0 premsgSendSecure  

<pre> isNewMsg(m) 

<post> [out, source = i, sink = j, theCryptedPayloadDataSecure.contents = 

crypt(x,DataSecure(m)), theCryptedPayloadSendSecure.at = cp(Acp5), 

theCryptedPayloadSendSecure.dest = SetofCryptpoint(Bcp5)] 

*/  

 

                    0 

                  ) 

                   

                ) 

        

     ) 

     ) )) 

 

/* Processes for B */ 

 

    |((|_{j=1}(|_{i=0} 

   !< I_{j},B,I_{-1},S, {| I_{j},B,kB+_{j} |}: kS+ [at Bcp1_{i,j} dest {Scp3}] 

>. 

/* 9.0 premsg1B $$ B -> S: {B,kBp}:kSp  

<pre> null 

<post> [out, source = j, sink = s, theCryptedPayload1B_1.contents = 

acrypt(kSp,DataCert(j,kBp)), theCryptedPayload1B_1.dest = SetofCryptpoint(Scp3), 

theCryptedPayload1B_1.at = cp(Bcp1)] 

*/  

 

    ( I_{-1},S,I_{j},B ; certB_{i,j}). 

/* 16.0 checkmsg 

<inv> [in.source=s, in.sink=j] 

<post> [certB.contents = in.theCryptedPayload2B_1.contents] 

*/  

 

     ( I_{i},A,I_{j},B ; nA_{i,j},nAType_{i,j},rAinB_{i,j},certAinB_{i,j}). 

/* 19.0 checkmsg 

<inv> [in.source=i, in.sink=j] 

<post> [nA = in.thePayloadSecure1.sender, rAinB = in.thePayloadSecure1.nonce, 

certAinB = in.thePayloadSecure1.cert] 

*/  

 

      decrypt certAinB_{i,j} as {| nA_{i,j},nAType_{i,j} ; kApInB_{i,j} |} : kS+ 

      [ at Bcp2_{i,j} orig {Scp4} ] 

/* 20.0 aDecrypt 

<post> [theDecryptedItem.at = cp(Bcp2), theDecryptedItem.orig = 

SetofCryptpoint(Scp4)] 

21.0 checkdecrypt 

<inv> [theDecryptedItem.dd.p=nA] 

<post> [kApInB = theDecryptedItem.dd.k] 

*/  
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       in (( new rB_{i,j} )  

           < I_{j},B,I_{i},A, {| rAinB_{i,j},I_{j},B,rB_{i,j},certB_{i,j} |}: 

kApInB_{i,j} [at Bcp3_{i,j} dest {Acp2_{i,j}}] >. 

/* 22.0 premsgSec2 $$ B->A : ( rA, B, rB, certB}:kAp  

<pre> isNewNonce(rB)  

<post> [out, source = j, sink = i, theCryptedPayloadSecure2.contents = 

acrypt(kApInB,DataSecure2(rAinB,j,rB,certB)), theCryptedPayloadSecure2.at = 

cp(Bcp3), theCryptedPayloadSecure2.dest = SetofCryptpoint(Acp2)] 

*/  

 

            ( I_{i},A,I_{j},B ; ). 

/* 31.0 checkmsg$$ A -> B : {rA, nA, rB, x} : kBpInA  

<inv> [in.source=i, in.sink=j] 

<post> [cryptedDataSecure3.contents = in.theCryptedPayloadSecure3.contents] 

*/  

 

             decrypt cryptedDataSecure3_{i,j} as {| 

rAinB_{i,j},nA_{i,j},nAType_{i,j},rB_{i,j} ; xInB_{i,j} |} : kApInB_{i,j} 

             [ at Bcp4_{i,j} orig {Acp4_{i,j}} ] 

/* 32.0 aDecrypt 

<post> [theDecryptedItem.at = cp(Bcp4), theDecryptedItem.orig = 

SetofCryptpoint(Acp4)] 

33.0 checkdecrypt 

<inv> [theDecryptedItem.dd.nonceOfA=rAinB, theDecryptedItem.dd.nameOfA=nA, 

theDecryptedItem.dd.nonceOfB=rB] 

<post> [xInB = theDecryptedItem.dd.sKey] 

*/  

 

              in ( I_{i},A,I_{j},B ; cryptedM_{i,j}). 

/* 36.0 checkmsg 

<inv> [in.source=i, in.sink=j] 

<post> [cryptedM.contents = in.theCryptedPayloadDataSecure.contents] 

*/  

 

                  decrypt cryptedM_{i,j} as {  ; mInB_{i,j} } : xInB_{i,j} 

                  [ at Bcp5_{i,j} orig {Acp5_{i,j}} ] 

/* 37.0 decrypt 

<post> [theDecrypteItem.orig = SetofCryptpoint(Acp5), theDecrypteItem.at = 

cp(Bcp5)] 

38.0 checkdecrypt 

<inv> [] 

<post> [mInB = theDecryptedItem.dd.theInfo] 

*/  

in 0 

             

          ) 

     ) )) 

 

/* Processes for S */ 

 

     |((|_{i=0}(|_{j=0} 

   !( I_{i},A,I_{-1},S ; certAinS_{i,j}). 

/* 3.0 checkmsg 

<inv> [in.source=i, in.sink=s] 

<post> [certAinS.contents = in.theCryptedPayload1A_1.contents] 

*/  

 

    decrypt certAinS_{i,j} as {| I_{i},A ; kApInS_{i,j} |} : kS- 

    [ at Scp1 orig {Acp1_{i,j}} ] 

/* 4.0 aDecrypt 

<post> [theDecryptedItem.at = cp(Scp1), theDecryptedItem.orig = 

SetofCryptpoint(Acp1)] 
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5.0 checkdecrypt 

<inv> [theDecryptedItem.dd.p=i] 

<post> [kApInS = theDecryptedItem.dd.k] 

*/  

 

     in < I_{-1},S,I_{i},A, {| I_{i},A,kApInS_{i,j} |}: kS- [at Scp2 dest 

{Acp2_{i,j}}] >. 

/* 6.0 premsg2A $$ S -> A: {A,kAp}:kSm  

<pre> null 

<post> [out, source = s, sink = i, theCryptedPayload2A_1.contents = 

acrypt(kSm,DataCert(i,kApInS)), theCryptedPayload2A_1.at = cp(Scp2), 

theCryptedPayload2A_1.dest = SetofCryptpoint(Acp2)]] 

*/  

 

         ( I_{j},B,I_{-1},S ; certBinS_{i,j}). 

/* 11.0 checkmsg 

<inv> [in.source=j, in.sink=s] 

<post> [certBinS.contents = in.theCryptedPayload1B_1.contents] 

*/  

 

          decrypt certBinS_{i,j} as {|  ; 

nBinS_{i,j},nBinSType_{i,j},kBpInS_{i,j} |} : kS- 

          [ at Scp3 orig {Bcp1_{i,j}} ] 

/* 12.0 aDecrypt 

<post> [theDecrypteItem.orig = SetofCryptpoint(Bcp1), theDecryptedItem.at = 

cp(Scp3)] 

13.0 checkdecrypt 

<inv> [] 

<post> [nBinS = theDecryptedItem.dd.p, kBpInS = theDecryptedItem.dd.k] 

*/  

 

           in < I_{-1},S,I_{j},B, {| nBinS_{i,j},nBinSType_{i,j},kBpInS_{i,j} 

|}: kS- [at Scp4 dest {Bcp2_{i,j}}] >. 

/* 14.0 premsg2B $$ S -> B : {B,kBp} : kSm  

<pre> null 

<post> [out, source = s, sink = j, theCryptedPayload2B_1.contents = 

acrypt(kSm,DataCert(nBinS,kBpInS)), theCryptedPayload2B_1.at = cp(Scp4), 

theCryptedPayload2B_1.dest = SetofCryptpoint(Bcp2)] 

*/  

 

               0 

          ) )) 

/* Makes public keys available (kSp,kAp,kBp) */ 

      |( <kS+, I_{0}, A, I_{0}, B, kA_{0}, kB_{0}, kA-_{0}, kB-_{0}>.0 ) 

       |( ( |_{i=0} <kA+_{i}, kB+_{i}>.0 ))  

 )  

)  

 

 


