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Abstiact— The synthesisof many texturescan be simpli ed if they are
rst decomposednto simpler subtextures. Such bootstrap procedure al-
lowsto rst considera ‘label texture', that capturesthe layout of the sub-
textures, after which the subtexturescan be lled in. A companion paper
focuseson this latter aspect. This paper describesan approach to arrive
at the label texture. Pairwise pixel similarities are computed by match-
ing simple color and texture featureshistogramsin pixel neighbourhoods,
using ef cient mean-shift seacch. A graph-based,unsupervised algorithm
segmentghe imageinto subtextures,basedon the similarities.
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I. INTRODUCTION

Marny texturesaresocomple thatfor their analysisandsyn-
thesisthey canbetterbe considereda compositionof simpler
subtetures.A goodcasein point arelandscapéextures.Open
pasturezanbe mixed with patcheof forestandrock. Thedi-
rect synthesisof the overall texture would defy existing meth-
ods. Thewhole only appeargo be onetexture at a very coarse
scale.In termsof intensity colors,andsimple Iter outputssuch
scenecannot be consideredhomogeneous'The homogeneity
ratherexistsin termsof theregularity (in astructuralor stochas-
tic sense)n thelayoutof simplersubtextures.

Texturecanbethoughtof asaregularlayoutof simplerstruc-
tures,which themseles can be consideredn suchway. This
processof decompositioncan end at the point where the re-
maining subtexturesare homogeneous termsof very simple
featureslike color or simple Iter outputs.This recursve de -
nition suggests hierarchicatexturemodelingschemeThispa-
perdiscusseanapproacho analyzeonelayerof this hierarchy
directly above thelevel wherethe subtexturescanbediscovered
on the basisof simplefeatures.An unsupervisedeggmentation
schemas proposedthatdecomposeatextureinto suchsubtex-
tures.

Sectionll discusseshe simpletexture featuresthat we use,
and how they are comparedo group pixels into the different
subtetures.Sectionlll describeshecliquepartitioningmethod
thatlies at the heartof this groupingprocessSectionlV shows
somesegmentatiorresults.SectionV concludeghepaper

1. PIXEL SIMILARITY SCORES

For the descriptionof the subtextures,both color andstruc-
tural informationis taken into account. Local statisticsof the
color coordinatesand the wavelet detail coefcients
(horizontal verticalanddiagonallarederived. We used
a Haarwavelet, but anotherwaveletfamily or Iterbank could
beusedto optimizethe system.

Theinitial -colorand -structuralfeaturevec-
tor of animagepixel arebothreferredto as . Thelocal
statisticsof thevectors nearthepixel arecapturedoy alo-
cal histogram
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Fig. 1. (top left) patcheswith identicaltexture and differentillumination. (bot-
tom left) traditional intensity histagramsof the paces. (right) weightedhis-
togramsof the patces.

A. WeightedFeature histograms.

To avoid problemswith sparsehigh-dimensionahistograms,
we rst quantizethefeaturespacein thesameveinasthetexton
analysisin [7]. The bin centersare obtainedby hierarchically
clusteringthevectors until a x ednumberof binsis reached
(we choseB) or anerroris exceeded.

Insteadof assigninga pixel to a singlebin, eachpixel is as-
signedavectorof weightsthatexpressts af nity to thedifferent
bins(textons). Theweightsarebasedntheeuclideardistances
to thebin centerslf is thedistancebetweer
featurevalue andthe -th bin center we computethe corre-
spondingweightas

(1)

Theresultinglocal weightedhistogram  of pixel is obtained

by averagingtheweightsoveraregion
2

In our experiments,
diusof pixels.

Theresultingweightedhistogramcanbeconsiderecasmooth
versionof thetraditionalhistogram.Theweightingcausesmall
changesn the featurevectors(e.g. dueto non-uniformillumi-
nation) to resultin small changesn the histogram. In tradi-
tional histogramshis is often not the caseas pixels may sud-
denlyjumpto anotheibin. Figurelillustratesthisby computing
histogram®f two rectangulapatchegrom a singleBrodatztex-
ture. The patcheshave similar texture, only theillumination is
different.Clearlytheweightedhistogramgright) arelesssensi-
tiveto thisdifferenceThisisre ectedin ahigherBhattacharyya
score(3).

Color andstructuralhistogramsare computedseparately In
a nal stagethecolorandstructurehistogramsaresimply con-

waschosenra circularregion, with ara-



Fig. 2. (left) normal comparisonbetweentwo pixels, the dashedlines indi-
catethesupports and  of the histagrams. (right) comparisorwith shifts,
avoidingproblemsneartexture borders.

catenatedhto asingle,longerhistogramandthe arescaled
to ensurethat .

In orderto compareghefeaturehistogramswe have usedthe
Bhattacharyyaoefcient . Itsde nition for two frequeng his-

tograms and is
3)

This coefcient is provento be morerobust[8] in the caseof

zerocountbins andnon-uniformvariancethanthe chi-squared
statistic. In fact, after a few manipulationsone can shav the

following relation:

(4)

Anotheradwantageof the Bhattacharyyaoefcient overthe -
measures thatit is symmetricwhichis morenaturalwhensim-
ilarity hasto beexpressed.

B. ShiftedMatching.

In orderto evaluatethe similarity betweentwo pixels, their
featurehistogramsare not simply compared.Rather the com-
parisonof the histogramfor the rst pixel is madewith thoseof
all pixelsin a neighbourhooaf the second.The bestpossible
scoreis taken asthe similarity betweerthe two pixels.
This allows the systemto assessimilarity without having to
collecthistogramdrom largeregions . Theadwantagds that
boundariedhetweensubteturesare betterlocated,asis shovn
in gure 2.

Thesearchor thelocationwith the bestmatchinghistogram
closeto the secondpixel is basedon the meanshift gradientto
maximizethe Bhattacharyyaneasurg6]. This avoids having
to performan exhaustve search.Comparisonsarein factalso
carriedout over a numberof differentscales. This is to cater
for perspectie effectsandthelik e thatmayexist within asingle
subteture. A nal re nementis by de ning a symmetricsimi-
larity measure : .

As shiftedmatchegauseneighbouringixelsto have anexact
match,the similarity scoresareonly computedor a subsample
(a regular grid) of the imagepixels, which alsoyields a com-
putationaladvantage.Yet, after segmentationof this sample,a
high-resolutionsggmentationmapis obtainedasfollows. The
histogramof eachpixel is rst comparedo eachentryin the
list of neighbouringsamplehistogramgqattruescaleonly). The
pixel is thenassignedo the bestmatchingclassin thelist.

Our particular segmentationalgorithm requiresa calibrated
similarity matrix ~ with entries indicatingthat pixels are
likely to belongtogetherand entries indicatingthe oppo-
site. Theabsolutevalueof the entryis ameasuref con dence.
Sofar, all thesimilarities have positive values.We subtracta
constanwalue,whichin all our experimentavaskeptthesame.
With this x edvalueimageswith differentnumbersof subtex-
turescould be sggmentedsuccessfully Hence,the numberof
subtetureswas not given to the system,aswould e.g. bere-
quiredin -meansclustering.Having this thresholdin the sys-
tem canbe an advantageasit allows the userto expresswhat
heor sheconsiderdo be perceptuallysimilar.

[1l. PIXEL GROUPING
A. Cliquepartitioning

In orderto achieve the intended,unsupervisedegmentation
of the compositetexturesinto simplersubtetures,pixels need
to begroupednto disjointclassesbasedntheir pairwisesimi-
larity scores Takenontheirown, thesesimilaritiesaretoo noisy
to yield robustresults. Pixels belongingto the samesubteture
may e.g. have a nggative score(false negative) and pixels of
differentsubtexturesmay have positive scoregfalsepositives).
Neverthelesstaken altogetherthe similarity scorescarry quite
reliableinformationaboutthe correctgrouping. Thetransitiity
of subtexture membershigs crucial: if pixels arein the
sameclassand too,then and mustbelongto the
sameclass.Evenif oneof thepairsgetsafalselynegative score,
thetwo otherscanoverridea decisionto split. Next, we formu-
late the texture segmentatiorproblemso asto exploit transitiv-
ity to detectandavoid falsescoresWe presenftime-optimised
adaptatiorof the groupingalgorithmwe rst introducedin [9].
We constructcompletegraph whereeachvertex representa
pixel andwhereedgesareweightedwith the pairwisesimilarity
scores.We partition  into completelyconnectedlisjoint sub-
setsof vertices(cliques)soasto maximizethetotal scoreonthe
remainingedges(Clique Partitioning, or CP). The transitvity
propertyis ensuredy the clique constraint:every two vertices
in a clique are connectedand no two verticesfrom different
cliguesare connected.The CP formulationof texture segmen-
tation is madepossibleby the presenceof positive and nega-
tive weights: they naturallyleadto the de nition of a bestso-
lution withoutthe needof knowing the numberof cliques(sub-
textures)or the introductionof arti cial stoppingcriteriaasin
othergraph-basedpproachebasedn strictly positive weights
[3], [1]. Ontheotherhand,ourapproacheedgheparameter
thatdetermineshesplitting pointbetweerpositive andnegative
scoresBut, asourexperimenthave shovn, thesameparameter
valueyieldsgoodresultsfor awide rangeof images.Moreover,
the samevalueyields goodresultsfor exampleswith a variable
numberof subtetures.Thisis muchbetterthanhaving to spec-
ify this numberaswould e.g. be necessaryn a -meansclus-
teringapproach.

CP canbe solved by Linear Programmindg?2] (LP). Let
be the weight of the edgeconnecting , and
indicatewhetherthe edgeexistsin the solution. Thefollowing
LP canbeestablished:



maximize
subjectto

(5)
The inequalitiesexpressthe transitvity constraintswhile the
objective functionto be maximizedcorrespondgo the sum of
theintra-cligueedges.

B. Afastapproximation

Unfortunately CP is an NP-hardproblem[2]: LP (5) has
worst caseexponentialcompleity in the number  of vertices
(pixels), makingit impracticalfor large . Thechallengeis to
nd a practicalway out of this compleity trap. The correct
partitioningof the examplein gure 3is A
simple greedystratgly memging two vertices if
failsbecausé memes asits rst move. Suchanapproach
suffers from two problems:the generatedgolutiondependson
the order by which verticesare processe@andit looks only at
local information.

We proposethe following iterative heuristic. The algorithm
startswith the partition

composeaf singletoncliqueseachcontaininga differentver-
tex. Thefunction

de nesthecostof memingcliques . We considerthefunc-

tions

representingrespectiely, the scoreof the bestmeming choice
for clique andtheassociatedliqueto memgewith. We memge
cligues if andonly if the threefollowing conditionsare
metsimultaneously

In otherwords, two cliquesare mergedonly if eachonerep-
resentsthe bestmeming option for the other and if memging
themincreaseghe total score. At eachiterationthe functions
are computed,andall pairsof cliquesful lling the
criteriaaremerged. The algorithmiteratesuntil no two cliques
canbe memed. At eachiteration,the function canbe pro-
gressvely computedfrom its valuesin the previous iteration.
Thebasicobsenationis thatfor any pairof mergedcliques
, thefunctionchangeso

for all . This stronglyreducegheamountof opera-
tionsneededo compute andmakesthealgorithmmuchfaster
thanin [9].

Fig. 3 shawvs aninterestingcase.In the rst iteration is
merged with and with . Notice how is, cor
rectly, not mergedwith eventhough

Fig. 3. Anexamplegraph and two iterations of our heuristic. Not displayed
edgshavezeo weight.

In the seconditeration is correctly merged with ,
resistingthe (false) attraction of ( ,
). The algorithmterminatesafter the third it-
erationbecause . The second
iterationshaws the power of CP. Vertex is connectedo unre-
liable edgeq is falsepositive, is falsenggative). Given
vertices only, it is notpossibleto derivethecorrectpar
titioning ; but, aswe addvertices ,theglobal
informationincreasesandCP arrivesat the correctpartitioning.

The proposedheuristicis order independenttakes a more
global view thana direct greedystratey, andresolhessereral
ambiguoussituationswhile maintainingpolynomial comple-
ity. Analysis revealsthat the exact amountof operationsde-
pendson the structureof the data,but it is at most in the
averagecase. Moreover, the operationsare simple: only com-
parisonsand sumsof real values(no multiplication or division
is involved).

In the rst iterations, being biasedtoward very positive
weights, the algorithmrisks to take wrong memging decisions.
Neverthelesour merging criterion ensureshis risk to quickly
diminish with the size of the cliquesin the correctsolution
(numberof pixels forming eachsubteture) and at eachitera-
tion, asthe cliquesgrow and increasetheir resistanceagainst
spuriouswveights.

C. Performanceof the approximation

Thepracticalshortcutfor theimplementatiorof CPmayraise
somequestionsasto its performance.n particular how much
noise on the edgeweights(i.e. uncertaintyon the similarity
scores)anit withstand?And, how well doesthe heuristicap-
proximationapproactthe true solution of CP?We testedboth

[ Vert. | Cliques | Diff % | Err % LP | Err % Approx |

15 3 0.53 6.8 6.93

12 2 0.5 2.92 3.08

21 3 0.05 2.19 2.14

24 3 0.2 113 1.33
TABLE |

Comparisorof LP andour approximation.Thenoiselevel is 25%. Diff % is
theavemage percentualdifferencebetweerthe partitioningsproducedby the
two algorithms.Thetwo Err columnsreportthe aveiage percentaye
misclassi edverticesfor ead algorithm.

LP andthe heuristicon randominstancef the CP problem.
Graphswith a priori known, correctpartitioning were gener
ated. Their sizesdifferedin that both the numberof cliques
andthe total numberof vertices(all cliqueshadthe samesize)



[ Vertices | Cliques | Noiselevel | Err % Approx |

40 4 25 0.33
60 4 25 0.1
60 4 33 2.1
120 5 36 1.6
1000 10 40 0.7
TABLE Il

Performanceof the CP appoximationalgorithmon variousproblemsizes.

werevaried. Intra-cliqueweightswereuniformly distributedin

with realnumberwhile inter-cligueweightswereuni-
formly distributedin , yielding an ill-signed edgeper
centageof —. This noiselevel couldbe controlledby varying
theparameter . Let thedifferencebetweertwo partitioningsbe
theminimumamountof verticesthatshouldchangeheir clique
membershign one partitioning to get the other The quality
of the producedpartitioningsis evaluatedin termsof average
percentaye of misclassi edvertices the differencebetweerthe
producedpartitioningandthe correctone,averagecver100in-
stancesanddivided by the total numberof verticesin a single
instance.

Table Il reportsthe performanceof our approximationfor
larger problemsizes. Given 25% noiselevel, the averageer-
ror alreadybecomesngjligible with clique sizesbetweenl0
and 20 (lessthan 0.5%). In problemsof this size, or larger,
the algorithm canwithstandeven highernoiselevels, still pro-
ducinghigh quality solutions. In the caseof 1000verticesand
10 cligues,even with 40% noiselevel ( ), the algorithm
producessolutionswhich arecloserthan1% to the correctone.
This caseis of particularinterestasits sizeis similarto thetyp-
ical texture sggmentationproblems. Table!l shavs a compari-
sonbetweenour approximationto CP andthe optimal solution
computedby LP on variousproblemsizes,with constaninoise
level setto 25% ( ). In all caseghe partitioningsproduced
by the two algorithmsarevirtually identical: the averageper
centualdifferences very smallasshown in the third columnof
thetable. Dueto the very high computationalslemandsgposed
by LP, the largestproblemreportedherehasonly 24 vertices.
Beyondthatpoint, computatiortimesrun into the hours,which
we considetastooimpractical.Notethattheaveragepercentage
of misclassi cationquickly dropwith the sizeof thecliques.

Theproposecdeuristicis fast: it completedheseproblemsn
lessthan 0.1 secondsgexceptfor the 1000verticesone, which
took about4 second®n the average. The ability to dealwith
thousandsf verticeds particularlyimportantin ourapplication,
asevery pixel to beclusteredwill correspondo avertex.

Fig. 4 shavstheaverageerrorfor aproblemwith 100vertices
and>5 cliquesasa function of the noiselevel ( variesfrom 3
to 5.5). Althoughthe error grows fasterthanlinearly, andthe
problemhasrelatively small size,the algorithmproduceshigh
quality solutionsin situationswith asmuchas36%of noise.

Theseencouragingesultsshav CP's robustnesso noiseand
supportour heuristic as a good approximation. Cliquesin
theseexperimentswere only given the samesize to simplify
the discussion.The algorithmitself dealswith differentlysized
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Fig. 4. Relationshiphetweemoiselevel anderror, for a 100vertices,5 cliques
problem. The aveiage percentaye of misclassi edvertices(X-axis)is still low
with asmud as36%noiselevel.

cliques.

IV. EXPERIMENTAL RESULTS

Performanceof the algorithm was testedon both compos-
ite textures and textured landscapes. Figure 5 shows a tex-
ture collage. The image was processedn three ways. In
(a) we appliedhistogrammatchingwithout allowing “shifted”
matches(i.e. a similarity match for pair is simply

). (c) shaws the sgmentationusing mean shift to
achieve an optimal match, which clearly solves the problems
atboundariedetweersubtetures. Sggmentation(d) wascom-
puted with the normalized cuts algorithm [3], available at

http://www.cs.berkeley.edu alongwith astandard
setof parametersi-iguresté and8 shaw resultsof ouralgorithm
on sometexturesandlandscapesFinally gure 7 shavs a full
synthesi®btainedrom its sggmentatiormap. For moredetails,
we refer to the paper“Parallel CompositeTexture Synthesis”,
elsavherein the proceedings.

V. CONCLUSIONS

The paperdescribedhe sggmentationpart of a methodthat
synthesizesexturesby rst segmentingtheminto simplersub-
textures. An effective method,basedon a very time-efcient
approximatiorof clique partitioning,wasproposedThis builds
on robust color and structurerelatedsimilarity scores. Future
work will includetexture hierarchieof morethantwo levels.
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Fig.5. (a) original image (texture collage) and sggmentation®btained(b) with
CP and no shiftedmatdiing. (c) using CP and shifted matding (meanshift
optimization)and(d) usingNormalizedCuts.

Fig. 6. S@mentatiorof compositdexturesusingour algorithm (CP andshifted
matding).

Fig. 8. Landscapesementation§CP andshiftedmatding)

Fig. 7. Original image andsynthesisThesynthesisvasobtainedby sepaately
synthesizinghe subteturesfromthelabelmapin gure 6 (bottomleft).



