Entangled State Monads

Extended abstract

James Cheney, James McKinna,
Perdita Stevens
School of Informatics, University of Edinburgh
firstname.lastname@ed.ac.uk

Jeremy Gibbons, Faris Abou-Saleh
Dept. of Computer Science, University of Oxford
firstname.lastname@cs.ox.ac.uk

ABSTRACT

We present a monadic treatment of symmetric state-based bidirectional transformations, and show how it arises naturally from the well-known asymmetric lens-based account. We introduce two presentations of a concept we dub the “entangled” state monad, and prove their equivalence. As a step towards a unifying account of bidirectionality in general, we exhibit existing classes of state-based approaches from the literature as instances of our new constructions. This extended abstract reports on work in progress.

1. INTRODUCTION

This extended abstract describes work in progress towards unifying approaches to formalisation of bidirectional transformations (bx). For purposes of this paper, a bx is a device for maintaining consistency between two or more information sources. In model driven development, such sources are usually models; for example, UML models of a system to be developed. Other artefacts treated with these techniques could include database tables, XML files, abstract syntax trees, code, etc. We use the (admittedly overloaded) term ‘models’ broadly to refer to any of these information sources.

There are multiple dimensions over which notions of bx vary. For example, they may operate on only two information sources, or several. They may insist that one source be a strict abstraction of the others (asymmetric case), or not (symmetric case).

Our main motivation is to lay foundations that we will later use to work towards a uniform, typed understanding of the extra information that is used by bx, besides the current states of the models that are to be synchronised. We begin in this paper with state-based bx, including those with explicit complement.

In formal semantics, stateful computations are often expressed in terms of monads [3], giving a unified account of impure side-effects in pure functional languages. They have since become an essential programming pattern in such languages [6], and we follow suit.

2. BACKGROUND

Monads for Effectful Functional Programming. The essential idea of monads in functional programming is to encapsulate a computation with side-effects, taking inputs of type A and returning a result of type B, as a function of type A → M B for a suitable type constructor M, known as a monad. Whereas inhabitants of the plain type A denote pure values, those of the monadic type M A denote computations, which may incur computational effects before yielding a value of type A. For instance, one may describe non-deterministic computations of type A → B in terms of the List monad – i.e., as functions A → List B, where each value a : A is assigned a list of possible return values [b₁, b₂, ...] : List B. Monads can be used to capture side-effects, input/output, exceptions, probabilistic choice, and many other computational effects. In this paper we are concerned with computations which may depend on, and modify, various forms of mutable state; such computations are described by the state monad, as defined shortly.

More formally, a monad is a type constructor M equipped with the following structure of typed operations (parametric in A, B):

\[
\begin{align*}
\text{return} &: A \rightarrow MA \\
(\gg=) &: MA \rightarrow (A \rightarrow MB) \rightarrow MB \\
(\gg) &: MA \rightarrow MB \rightarrow MB \\
ma \gg= mb &= ma \gg= \lambda a . mb
\end{align*}
\]

(We borrow the Haskell convention of writing an infix operator \(\oplus\) in parentheses \((\oplus)\) in order to refer to it without arguments.) Here, the operation return simply returns its argument with no other effect. The ‘bind’ operation \(ma \gg= f\) runs a computation \(ma\) returning an A, then runs a computation \(f\), parameterized over \(A\) and returning a B, finally returning that B value. The definable operation ‘sequence’ \(ma \gg= mb\) is a special case of ‘bind’ in which the computation \(mb\) does not depend on the \(A\) value returned by \(ma\).

We work in the equational theory of the \(\lambda\)-calculus, as is common when discussing monads in Haskell; our presentation is a special case of the general categorical treatment of monads. The monad operations are required to satisfy the following three equational laws. The first two assert that return is a left and right unit for the ‘bind’ operation and the third that ‘bind’ is associative. (As usual, \(\lambda\)-binding scope extends as far to the right as possible. In the third equation, \(a\) is not free in \(g\).

\[
\begin{align*}
\text{return} a \gg= f &= f a \\
ma \gg= \text{return} &= ma \\
ma \gg= (\lambda a . (f a \gg= g)) &= (ma \gg= f) \gg= g
\end{align*}
\]

As a corollary, ‘sequential composition’ \((\gg)\) is associative, with left unit return ()

The State Monad. A distinguished instance of the above concept is \(M S\), the state monad on type \(S\), representing computations with access to a single updateable memory cell of type \(S\). We define \(M S A = S \rightarrow A \times S\) so that a computation of type \(A \rightarrow M S B\) takes input \(a : A\), and then can query the (old) state \(s : S\), before return-
ing a new state \(s' : S \) and a result \(b : B \). The monadic operations of
\(M_S \) are defined below. The return operation takes a value \(a : A \) and
produces a computation which, for any initial state \(s : S \), returns
the value \(a \) and leaves the state \(s \) untouched. The ‘bind’ operation \(\gg= \)
chains together two stateful computations, using the final state \(s' \) of
the first computation as the initial state of the second.

\[
\begin{align*}
\text{return} : & A \to (S \to A \times S) \\
\text{return} a &= \lambda s . (a, s) \\
(\gg=) : & (S \to A \times S) \to (A \to (S \to B \times S)) \to (S \to B \times S) \\
ma \gg= f &= \lambda s . (\text{let} \ (a, s') = ma \ s \ f \ a \ s')
\end{align*}
\]

In addition to the generic operations return and \(\gg= \), the state monad supports two operations \(\text{get}, \text{set} \), to read and write the state:

\[
\begin{align*}
\text{get} : & M_S S \\
\text{get} &= \lambda s . (s, s) \\
\text{set} : & S \to M_S () \\
\text{set} s' &= \lambda s . ((), s')
\end{align*}
\]

In general, one may characterise state monads with multiple memory
cells in terms of an algebraic theory of reads and writes, with
seven equations [4]. In the restricted setting of a single memory
cell, the theory reduces to the following four equations:

\[
\begin{align*}
(GG) \quad & \text{get} \gg= \lambda s . \text{get} \gg= \lambda s' . k \ s' = \text{get} \gg= \lambda s . k \ s \\
(GS) \quad & \text{get} \gg= \text{set} = \text{return} () \\
(SG) \quad & \text{set} s \gg= \text{get} = \text{set} s \gg= \text{return} s \\
(SS) \quad & \text{set} s \gg= \text{set} s' = \text{set} s'
\end{align*}
\]

It is routine to verify that the above definitions of \(\text{get} \) and \(\text{set} \) satisfy
these laws. However, in the algebraic perspective, one abstracts
away from the specific representation \(M_S \) and the corres-
ponding implementations of \(\text{get} \) and \(\text{set} \), and instead considers
a ‘state monad on \(S \)’ abstractly to be any monad \(M \) equipped with
the additional structure of \(\text{get} \) and \(\text{set} \) satisfying the above four laws.

Asymmetric lenses via the state monad. An asymmetric
lens [1] between \(S \) and \(V \) consists of a pair \(l \) of functions, usually
called ‘get’ and ‘put’, which we write as follows:

\[
\begin{align*}
l . \text{get} : & S \to V \\
l . \text{put} : & S \to V \to S
\end{align*}
\]

The idea is that \(S \) and \(V \) represent **source** and **view** data, e.g. in
a database; \(V \) is derived from \(S \) using \(l . \text{get} \) and \(l . \text{put} \) computes a modified \(S \) on the basis of an old \(S \) and an updated \(V \).

Given such a lens \(l \), the state monad \(M_S \) admits computations
\(\text{get}_l, \text{set}_l \), where \(\text{set}_l \) takes input from \(V \), updates the state \(S \),
and returns void; and \(\text{get}_l \) is the trivially stateful operation that queries
but doesn’t change the state \(S \), and returns the \(V \) view of it:

\[
\begin{align*}
\text{get}_l : & M_S V \\
\text{get}_l &= \lambda s . (l . \text{get} s, s) \\
\text{set}_l : & V \to M_S () \\
\text{set} v &= \lambda s . ((), l . \text{put} s v)
\end{align*}
\]

These computations do not allow us to observe, or update, the
underlying state \(S \), except via the view type \(V \). But viewed as abstract
operations relative to an arbitrary monad \(M \), the structure

\[
\begin{align*}
\text{get}_l : & M V \\
\text{set}_l : & V \to M ()
\end{align*}
\]

defines a state monad on \(V \), provided that the equational laws hold.

In the special case of the **identity** lens \(l = \text{id} \), between \(S \) and \(S \),
where \(\text{id} . \text{get} \) just reads the state, and \(\text{id} . \text{set} \) updates it, we have:

\[
\begin{align*}
\text{get}_\text{id} &= \lambda s . (s, s) \\
\text{set}_\text{id} s' &= \lambda s . ((), s')
\end{align*}
\]

i.e. we obtain the state monad structure \((M_S, \text{get}_\text{id}) \) on \(S \).

Thus, an asymmetric lens \(l \) gives rise to **two** distinct state monad
structures, one on \(V \) derived from \(l \), the other on \(S \) corresponding to
the special case \(\text{id} \). Each accesses the **same** underlying state;
we say the two structures are **entangled**. In the rest of this paper,
we consider such entangled state monads in general. The generalisation
turns out to be both simple and powerful: several other bx
formalisms are instances of this notion, corresponding to monads
which present two updateable views of some shared, possibly hidden,
state. In the next section we give details of the generalisation.
We revisit the discussion of asymmetric (and other) lenses, in more
detail, in Section 4.

3. **ENTANGLED STATE MONADS**

We now show that a monad that exhibits the structure of a state
monad in two ways is essentially a bidirectional transformation.
We do this by introducing two definitions, those of ‘set-bx’ (cor-
responding directly to state monads) and ‘put-bx’ (corresponding
more closely to symmetric lenses) and showing that they are equiva-
 lent. (The proofs are included in an extended paper currently in
preparation.) We use the umbrella term ‘entangled state monad’ for
these two formulations.

3.1 Set-bx

Given types \(A, B \), we define a **set-bx between \(A \) and \(B \) to be a monad \(M \), equipped with four operations:

\[
\begin{align*}
\text{get}_A : & M A \\
\text{get}_B : & M B \\
\text{set}_A : & A \to M () \\
\text{set}_B : & B \to M ()
\end{align*}
\]

that satisfy the three laws for \(\text{get}_A \) and \(\text{set}_A \)

\[
\begin{align*}
(GG) \quad & \text{get}_A \gg= \lambda s . \text{get}_A \gg= \lambda s' . k \ s' = \text{get}_A \gg= \lambda s . k \ s \\
(GS) \quad & \text{get}_A \gg= \text{set}_A = \text{return} () \\
(SG) \quad & \text{set}_A a \gg= \text{get}_A = \text{set}_A a \gg= \text{return} a
\end{align*}
\]

and symmetrically for \(\text{get}_B \) and \(\text{set}_B \). A set-bx that in addition satisfies the following:

\[
\begin{align*}
(SS) \quad & \text{set}_A a \gg= \text{set}_A a' = \text{set}_A a'
\end{align*}
\]

(and symmetrically in \(B \)) is called **overwriteable**.

We write \((\text{get}_A ; \text{get}_B; \text{set}_A; \text{set}_B) : A \leftrightarrow B \) to indicate that \(M \) is a
set-bx between \(A \) and \(B \) equipped with operations \(\text{get}_A \), etc. When
discussing more than one such structure, we write \(t : A \leftrightarrow B \) and
\(t . \text{get}_A \) and so on for the operations of \(t \).

3.2 Put-bx

Given types \(A, B \), we define a **put-bx between \(A \) and \(B \) to be a monad \(M \), equipped with four operations:

\[
\begin{align*}
\text{get}_A : & M A \\
\text{get}_B : & M B \\
\text{put}_A : & A \to M B \\
\text{put}_B : & B \to M A
\end{align*}
\]

satisfying the following laws:

\[
\begin{align*}
(GG) \quad & \text{get} \gg= \lambda s . \text{get} \gg= \lambda s' . k \ s' = \text{get} \gg= \lambda s . k \ s \\
(GP) \quad & \text{get}_A \gg= \text{put}_A = \text{get}_A \\
(\text{PG}_1) \quad & \text{put}_B a \gg= \text{get}_A = \text{put}_B a \gg= \text{return} a \\
(\text{PG}_2) \quad & \text{put}_B a \gg= \text{get}_B = \text{put}_B a
\end{align*}
\]

(and symmetrically, swapping \(A \) and \(B \)).
A put-bx that in addition satisfies the following:

\[\text{(PP)} \quad \text{put}_A^B a \gg \text{put}_A^B d' = \text{put}_B^B d' \]

(and symmetrically in \(B\)) is called overwriteable.

As above, we write \((\text{get}_A, \text{get}_B, \text{put}_A^B, \text{put}_B^B) : A \xrightarrow{M} B\) to indicate that \(M\) is a put-bx with operations \(\text{get}_A\), etc., and write \(t : A \xleftrightarrow{M} B\), \(t.\text{get}_A\) and so on when discussing more than one such structure.

3.3 Relating set-bx and put-bx

We will show that set-bx and put-bx are equivalent in the following sense: for each set-bx \(t : A \xleftrightarrow{M} B\) we can construct a put-bx \(\text{set2pp}(t) : A \xrightarrow{M} B\) and for each put-bx \(u : A \xleftrightarrow{M} B\) we can construct a set-bx \(\text{pp2set}(u) : A \xrightarrow{M} B\). Moreover, the two constructions are inverses: \(\text{pp2set}(\text{set2pp}(t)) = t\) and \(\text{set2pp}(\text{pp2set}(u)) = u\). This means that any equation satisfied by all set-bxs translates to an equation that holds for all put-bxs, and vice versa. So, we can work with set-bx or put-bx as convenient, justifying our overloaded notation \(t : A \xleftrightarrow{M} B\).

The translations are defined as follows. Given set-bx \(t : A \xleftrightarrow{M} B\), define put-bx \(\text{set2pp}(t)\) by:

- \(\text{set2pp}(t).\text{get}_A = t.\text{get}_A\)
- \(\text{set2pp}(t).\text{get}_B = t.\text{get}_B\)
- \(\text{set2pp}(t).\text{put}_A^B a = t.\text{set}_A^B a \gg t.\text{get}_B\)
- \(\text{set2pp}(t).\text{put}_B^B b = t.\text{set}_B^B b \gg t.\text{get}_A\)

Likewise, given put-bx \(u : A \xrightarrow{M} B\), we define set-bx \(\text{pp2set}(u)\) as follows:

- \(\text{pp2set}(u).\text{get}_A = u.\text{get}_A\)
- \(\text{pp2set}(u).\text{get}_B = u.\text{get}_B\)
- \(\text{pp2set}(u).\text{put}_A^B a = u.\text{put}_B^B a \gg \text{return }()\)
- \(\text{pp2set}(u).\text{put}_B^B b = u.\text{put}_A^B b \gg \text{return }()\)

Lemma 1. If \(t : A \xleftrightarrow{M} B\) is an (overwriteable) set-bx then \(\text{set2pp}(t) : A \xleftrightarrow{M} B\) is an (overwriteable) put-bx.

Lemma 2. If \(u : A \xleftrightarrow{M} B\) is an (overwriteable) put-bx then \(\text{pp2set}(u) : A \xleftrightarrow{M} B\) is an (overwriteable) set-bx.

Lemma 3. Translations \(\text{pp2set}()\) and \(\text{set2pp}()\) are inverses.

3.4 Entanglement

Note that the state monad on pairs \(M_{A \times B}\) determines a set-bx, with

\[
\begin{align*}
\text{get}_A &= \text{return } \gg \lambda(a,_.) . \text{return } a \\
\text{get}_B &= \text{return } \gg \lambda(_.b) . \text{return } b \\
\text{set}_A a &= \text{return } \gg \lambda(a,_.) . \text{set}(a, b) \\
\text{set}_B b &= \text{return } \gg \lambda(_.b) . \text{set}(a, b)
\end{align*}
\]

However, this structure also satisfies stronger laws than our definitions require; in particular, commutativity of sets:

\(\text{set}_A a \gg \text{set}_B b = \text{set}_B b \gg \text{set}_A a\)

This law is not required of a set-bx; it is consistent with the set-bx laws that the \(A\) and \(B\) components of the state be “entangled”, in the sense that setting one component also changes the other to restore consistency; in other words, that \(\text{set}_A\) and \(\text{set}_B\) need not commute. The monad \(M_{A \times B}\) arises simply as a special case of our general analysis of algebraic bx in Section 4 below, in which the consistency relation is universally true: \(\text{set}_A\) automatically restores consistency without the need to change \(B\) and vice versa.

4. INSTANCES

In this section we justify our view that set-bx (and hence also put-bx) structures are a general form of state-based bx, by showing how they capture the usual presentations such as asymmetric and symmetric lenses. Even though symmetric lenses subsume asymmetric lenses and algebraic bx, it is instructive to start with the simpler cases. We also give a simple example of a stateful bx that is not (isomorphic to) a symmetric lens. Investigation of other instances, and their relationships, is ongoing work.

Asymmetric lenses. Let \(l : A \xRightarrow{M} B\) be a classic asymmetric lens, i.e. \(l.\text{get} : A \rightarrow B\) and \(l.\text{put} : A \rightarrow B \rightarrow A\). We may construct a set-bx \(l : A \xleftrightarrow{M} B\) (where \(M_A\) is the state monad on state type \(A\), as introduced in Section 2 above) as follows:

- \(\text{get}_A = \lambda a . (a, a)\)
- \(\text{get}_B = \lambda a . (l.\text{get} a, a)\)
- \(\text{set}_A a' = \lambda a . ((a, a'), (a', a'))\)
- \(\text{set}_B b' = \lambda a . ((a', b'), (a, (l.\text{put} a'))\)

If \(l\) is a so-called ‘well-behaved’ lens, then it also satisfies:

- \(l.\text{put} (l.\text{put} a) (l.\text{get} a) = a\)
- \(l.\text{put} (l.\text{put} a) b = b\)

Finally, an asymmetric lens may optionally satisfy:

- \(l.\text{put} (l.\text{put} a) b' = l.\text{put} a b'\)

in which case it is called very well-behaved.

Lemma 4. If the asymmetric lens \(l : A \xRightarrow{M} B\) is well-behaved, then the above definitions indeed make \(l : A \xleftrightarrow{M} B\) into a set-bx. If \(l\) is very well-behaved, then \(l : A \xleftrightarrow{M} B\) is also overwriteable.

Algebraic bx. Let \((R, \overrightarrow{R}, \overleftarrow{R})\) be an algebraic bx \(A \leftrightarrow B\) in the style of Stevens [5], i.e., \(R \subseteq A \times B\), \(\overrightarrow{R} : A \times B \rightarrow B\), \(\overleftarrow{R} : A \times B \rightarrow A\), satisfying the conditions

\[
\begin{align*}
&\text{(Hippocratic)} \quad R(a,b) \Rightarrow \overrightarrow{R}(a,b) = b \\
\end{align*}
\]

and symmetrically for \(\overleftarrow{R}\). We say \(R\) is history-ignorant if it also satisfies

\[
\begin{align*}
&\text{(HI)} \quad \overrightarrow{R}(a, \overrightarrow{R}(a',b)) = \overrightarrow{R}(a,b) \\
\end{align*}
\]

and symmetrically for \(\overleftarrow{R}\).

Let \(M_R\) be the state monad over \(R\), viewing \(R\) as a set of pairs, \(R \subseteq A \times B\). Then we define the following operations:

\[
\begin{align*}
&\text{get}_A = \lambda (a, b) . (a, (a, b)) \\
&\text{get}_B = \lambda (a, b) . ((a, b), (b, (b, a))) \\
&\text{set}_A a' = \lambda (a, b) . ((a', (a, a'), (a', a'))) \\
&\text{set}_B b' = \lambda (a, b) . ((b', (b, b'), (b', b')))
\end{align*}
\]

The condition (Correct) ensures that \(\text{set}_A a'\) and \(\text{set}_B b'\) are well-defined functions \(R \rightarrow () \times R\), and thus preserve the consistency of pairs \((a, b)\) \(\in R\).

Lemma 5. For any algebraic bx \((R, \overrightarrow{R}, \overleftarrow{R})\), the above operations make \(M_R\) into a set-bx. If \((R, \overrightarrow{R}, \overleftarrow{R})\) is history-ignorant, then \(M_R\) is also overwriteable.
Symmetric lenses. Let \(l : A \leftrightarrow B \) be a symmetric lens as presented by Hofmann et al. [2]. That is, let \(l = (\text{put}, \text{putr}) \) consist of a pair of functions

\[
\begin{align*}
\text{put} : A \times C &\rightarrow B \times C, \\
\text{putr} : B \times C &\rightarrow A \times C
\end{align*}
\]

which satisfy

\[
\begin{align*}
(\text{PutRL}) \quad \text{put} (a, c) = (b, c') \Rightarrow \text{put} (b, c) = (a, c') \\
(\text{PutLR}) \quad \text{put} (b, c) = (a, c') \Rightarrow \text{put} (a, c) = (b, c')
\end{align*}
\]

Let \(M_I \) be the state monad \(M_T \) over the set \(T \) of consistent states in \(A \times B \times C \), i.e., those triples \((a, b, c) \in A \times B \times C \) satisfying

\[
\text{put} (a, c) = (b, c) \quad \text{and} \quad \text{put} (b, c) = (a, c)
\]

Then define the following operations for \(M_I \):

\[
\begin{align*}
\text{get}_A &= \lambda (a, b, c). (a, (a, b, c)) \\
\text{get}_B &= \lambda (a, b, c). ((b, b, a), (b, b, a)) \\
\text{put}^\prime_{A} a' &= \lambda (a, b, c). \text{let} (b', c') = \text{put} (a', c) \text{ in } (b', (a', b', c')) \\
\text{put}^\prime_{B} b' &= \lambda (a, b, c). \text{let} (a', c') = \text{put} (b', c) \text{ in } (a', (a', b', c'))
\end{align*}
\]

We need to show that these operations are well defined in the sense that they preserve consistency of the state, and this is where we need the symmetric lens laws – once this is done, it is easy to see that these definitions satisfy the put-bx laws.

Lemma 6. Given any symmetric lens \(l = (\text{put}, \text{putr}) : A \leftrightarrow B \), the above operations are well-defined and make \(M_I \) into a put-bx.

Stateful bx. We now consider an example that performs I/O side-effects, and thus by definition cannot be a symmetric lens (or any of the other bx mentioned above). We define a monad \(M \) that combines stateful updates (just on integer states, for simplicity) with Haskell-style monadic I/O; the latter is captured via a monad \(IO \) and an operation \(\text{return} : \text{String} \rightarrow IO () \). The return and \(\gg \gg \) operations of \(M \) are therefore defined in terms of those of \(IO \), so to be explicit we use subscripts below to disambiguate.

\[
\begin{align*}
MA &= \text{Integer} \rightarrow IO (A, \text{Integer}) \\
\text{return}_{M} x &= \lambda s . \text{return}_{IO} (x, s) \\
m a \ggg f &= \lambda s . m a \ggg_{IO} A(a, s') . f a s' \\
\text{get}_{A} &= \lambda s . \text{return}_{IO} (s, s) \\
\text{get}_{B} &= \lambda s . \text{return}_{IO} (s, s) \\
\text{set}_{A} a &= \lambda s \cdot \text{if } s \neq s \text{ then print "Changed A" else return}_{IO} () \ggg_{IO} \text{return}_{IO} () (a) \text{ end} \\
\text{set}_{B} b &= \lambda s \cdot \text{if } b \neq s \text{ then print "Changed B" else return}_{IO} () \ggg_{IO} \text{return}_{IO} () (b)
\end{align*}
\]

That is, a computation in monad \(M \) yielding a result of type \(A \) amounts to an \(IO \)-computation yielding a pair of an \(A \) and a new \(\text{Integer} \) state, given as input an old \(\text{Integer} \) state. This is a set-bx: in particular, its behaviour satisfies the laws (GG), (GS) and (SG). Its set operations are side-effecting, but the side-effects only occur when the state is changed. For simplicity, we have taken the underlying bidirectional transformation to be trivial, but we should be able to add similar stateful behaviour to any (symmetric) lens or algebraic bx following a similar pattern.

5. CONCLUSIONS

Lenses are traditionally presented asymmetrically, whereas many bx applications such as model synchronisation are entirely symmetric. Symmetric lenses [2] and algebraic bx [5] cover the more general symmetric case, but both formulations go beyond equational logic. We have shown a very simple equational characterisation that unifies lenses, symmetric lenses, and algebraic bx, by a natural generalisation of the ‘get’ and ‘set’ operations of the state monad. Interestingly, the notions of consistency for algebraic bx and complement disappear into the hidden state of the monad. We expect to be able to accommodate bx with richer complements or witness structures in the same way. Moreover, our approach offers the possibility of generalisation to reconcile effects such as I/O, nondeterminism, exceptions, or probabilistic choice with bidirectionality, drawing on the rich theory of monads, and possibly leading to a theory of bidirectional programming with effects.

This is work in progress. We are currently investigating the central issues of equivalence and composition of entangled state monads. Symmetric lenses are quotiented by an equivalence relation in order for properties such as associativity of composition to hold. We expect something similar to be needed for entangled state monads. Indeed, the question of whether entangled state monads can be composed seems nontrivial; some restrictions on the class of monads considered may be necessary for composability.

We have considered entangled state monads only in relatively standard settings, such as the category of sets and functions (in the guise of Haskell types and functions). Another interesting direction may be to explore other settings, such as partial orders, metric spaces, or topologies, which may offer insights into notions of least change or predictable behaviour.

Acknowledgements

We thank the participants at the Banff Bx workshop, and Benjamin Pierce, for helpful comments, as well as the anonymous reviewers for their generous and thoughtful remarks. The work is partly supported by EPSRC grants EP/K020218/1 and EP/K020919/1.

6. REFERENCES

