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Abstract
In this work I modify the HalfCheetah environment from OpenAI Gym to resemble

the ANYmal robot, creating a HalfANYmal environment. I provide a brief overview

of the current reinforcement learning algorithms and benchmarks to inform my choice

of reinforcement learning algorithm for this work. To improve the performance on

HalfCheetah, I explore and compare two ways of implementing PD control in MuJoCo.

One is done entirely in MuJoCo’s MJCF model definition file but does not include

gravity compensation. The other one does include it but requires changes to client

code.

After performing initial tests on the HalfCheetah environment, I apply the PPO al-

gorithm to the HalfANYmal environment and perform extensive reward shaping. I

also develop methods to evaluate the desirability of different reward functions by mon-

itoring their individual components throughout training. Finally, I demonstrate that

reinforcement learning can learn dynamic locomotion over both smooth and rugged

terrains in the HalfANYmal environment. Surpsisingly, I discover that training on

smooth surface can achieve better results on rugged terrain than training on the rugged

terrain. I propose some specific further research into this discovery.

Technical note: I recommend viewing this document in an electronic rather than paper

form as it includes clickable links to videos, and coloured plots.
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Chapter 1

Introduction

Figure 1.1: EBot robot. Pictures are

from [Wang et al., 2019], provided by

Dr. Zhibin Li.

As demonstrated by the famous videos from

Boston Dynamics1, it is possible to control

robots and achieve complex and robust loco-

motion using analytic and deterministic ap-

proaches. Such techniques have also been

researched by Wang et al. [2019] using the

EBot robot shown in figure 1.1. However,

these techniques often come with assump-

tions about the environment which might

not always hold in the real world. [Wang

et al., 2019] Considering the recent advances

in Machine Learning (ML), and the fact

that robot control is an optimisation problem

(what series of local actuations leads to the

desired global outcome the fastest or cheap-

est?), it makes sense to try to apply the ML

techniques to robot control. Reinforcement

Learning (RL) is the area of ML which does

this.

One issue with reinforcement learning is that

it learns by trial and error and often needs to make a lot of errors before it becomes

useful. This is especially problematic with physical robots where the errors can lead

to physical damage and increasing the speed of gathering experience is not as simple

as using a more powerful computer. This might be why simulators seem to be very

popular in reinforcement learning research (e.g. Schulman et al. [2017], Duan et al.

[2016], Brockman et al. [2016], and Tassa et al. [2018] all use simulators).

There are whole suites of completely artificial simulated robots meant for reinforce-

ment learning research. Brockman et al. [2016] and Tassa et al. [2018] describe two

of them. However, these do not directly solve the problems of training reinforcement

1For example https://youtu.be/rVlhMGQgDkY or https://youtu.be/fUyU3lKzoio
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8 Chapter 1. Introduction

learning algorithms on physical robots since there are no physical robots correspond-

ing to the simulation and thus any learned behaviours cannot be directly applied to an

actual robot. Although there will always be at least a small gap, between simulated

and real robot, some reinforcement learning research is being done on realistic simula-

tions of physical robots. For example, Yang et al. [2018] used a complex and accurate

simulation of a real humanoid robot.

Figure 1.2: Cheetah-Cub robot.

As discussed by Raibert et al. [2008], reliable

dynamic control for legged robots is poten-

tially of great practical value since humans

and animals can get through a much greater

variety of terrains than wheeled or tracked ve-

hicles can. The hope is that legged robots can

replicate this performance. For this reason,

Raibert et al. developed the BigDog robot

which can be seen in action in this video2

by Boston Dynamics. BigDog is similar to

EBot shown in figure 1.1. They are both large

robots suitable for carrying heavy payloads

over harsh terrains which can be useful for

example for military or rescue operations. On the other end of the spectrum are tiny

quadrupedal robots like Cheetah-Cub which is only about the size of a small house

cat. Shown in figure 1.23, Cheetah-Cub is meant primarily as an inexpensive research

platform [Spröwitz et al., 2013].

Figure 1.3: ANYmal robot is very versa-

tile.

Somewhere in the middle on the size scale

is the ANYmal robot (shown in figure 1.3)4

with is about the size of an average dog.

According to Hutter et al. [2016], ANYmal

has been designed to be fully autonomous,

unlike BigDog, which is remote-controlled.

ANYmal is best suited for inspection of

buildings or industrial sites after accidents

or natural disasters when it is unsafe for hu-

mans to enter [Hutter et al., 2016]. Such

use calls for a very versatile and robust

control system and is unlikely to be able

to accommodate the assumptions that usu-

ally come with analytic control approaches.

This makes ANYmal a particularly attrac-

tive robot to apply reinforcement learning

techniques to.

2https://youtu.be/cNZPRsrwumQ
3Picture source: https://biorob.epfl.ch/wp-content/uploads/2019/02/

CheetahCubMarkersSmall.jpg
4Picture source: https://www.anybotics.com/wp-content/uploads/2018/04/anymal_b_

elevator-300x300.jpg
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Due to aforementioned limitations of RL, I will use the MuJoCo simulator [Todorov

et al., 2012] to create a planar (2D) version of the ANYmal robot [Hutter et al., 2016].

Then I shall demonstrate that my creation can learn to walk or run using reinforcement

learning. Specifically, the goals of this project are:

• Modify an existing simulation to match the ANYmal robot;

• Use reinforcement learning to achieve stable locomotion on a flat surface in the

modified simulation;

• Use reinforcement learning to negotiate rugged terrain in the modified simula-

tion.

Once this proof of concept works, it will serve as a foundation for further research

which will try to apply my techniques to the real ANYmal robot in the Edinburgh

Centre for Robotics. (The local availability of the ANYmal robot was also an important

reason for choosing it for the experiments.)

1.1 Original contributions

In this project, I have used existing implementations of reinforcement learning algo-

rithms from OpenAI and extensively modified one of the environment implementations

from their Gym framework. I have also developed custom code to simplify execution

and evaluation of experiments. I have designed and carried out many experiments and

analysed their results. All my original contributions can be summarised as follows:

• Designing and evaluating reward functions for HalfCheetah and HalfANYmal

robots;

• Designing methods for evaluating desirability of reward functions;

• Improving efficiency of an existing python implementation of Butterworth filter;

• Adding filtering to HalfCheetah and HalfANYmal environments;

• Implementing MuJoCo HalfANYmal model and corresponding OpenAI Gym

environment;

• Implementing PD control and gravity compensation for the simulations;

• Reviewing the current literature on reinforcement learning algorithms.





Chapter 2

Background and Related Work

This chapter provides some basic information about Reinforcement Learning, includ-

ing the terminology used in this report. It also explains why I did not use the DeepMind

Control Suite as was the original aim of the project and presents the alternatives that I

chose.

2.1 Reinforcement Learning

This section describes some basic intuitions behind reinforcement learning and defines

the terms agent, environment, reward function, episode and policy . Later, I compare

the results of different reinforcement learning algorithms from the literature to choose

one to use to train the ANYmal robot.

Sutton and Barto [2018] describe reinforcement learning (RL) as learning, through

trial and error, what to do in which situation so as to maximise a numerical reward.

The two basic entities in a common reinforcement learning setup are the agent and the

environment. Figure 2.1 shows their interaction. The interaction happens in discretised

time steps. In each time step, the agent observes the state St ∈ S of the environment

and chooses an action At ∈ A (i.e. it decides what to do in the given situation), where

S is the set of all possible states called the state space and A is the set of all possible

actions called the action space. Both sets can be infinite. The selected action is then

communicated to the environment which updates its state and calculates the reward

Rt+1 = r (St ,At ,St+1) (2.1)

where r : S ×A × S → R is the reward function. The agent uses the reward to learn

whether it did well or not. [Sutton and Barto, 2018]

The time steps are usually organised into larger units called episodes. Each episode

starts with an initial state S0 and ends in a terminal state ST . The terminal state can be

determined by some condition (e.g. the agent reached the goal or failed at its task), in

which case the episodes are usually variable in length (T ). Alternatively, an episode

can be terminated after some fixed number of time steps. [Sutton and Barto, 2018]

11
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Figure 2.1: Agent-environment interaction in reinforcement learning

To make decisions, the agent uses a policy. Policy is a probability distribution over the

action space given the current state, usually denoted as

π(a|s) = P [At = a|St = s] (2.2)

for any time step t. Fundamentally, reinforcement learning algorithms try to optimise

this probability distribution to maximise the expected sum of rewards in an episode.

Intuitively, we can say that the algorithms try to make the actions that lead to higher

rewards more likely under π and the actions that lead to lower rewards less likely.

[Sutton and Barto, 2018]

2.1.1 Algorithms

The aim of this project is to develop new simulated robot, similar to the ANYmal robot

and demonstrate that it is possible to use RL to control the robot in the simulation. As

explained in the subsequent sections of this chapter, the simulation that I use as a

starting point does not come with an implementation of an RL algorithm that works

well for it so I needed to find one. I set the following criteria for a good algorithm:

• It is necessary that the algorithm has been demonstrated to achieve good perfor-

mance on the environment that I use as a starting point, and that this performance

is reproducible (i.e. the optimal hyperparameters are available).

• There should be a reliable implementation of the algorithm that I can access and

use so that I can save time and focus on developing and debugging the ANYmal

environment.

• The algorithm should not have too high computational requirements, i.e. it

should be possible to train an agent on a CPU in less than 24 hours and using

less than 8 GB of RAM. (These are roughly the resources that I have available.)

• The algorithm should be relatively simple to understand and implement in case

I needed to do so (for example if there was a problem with the implementation

or if I wanted to experiment with changing something).
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• If possible, the algorithm should not be too sensitive to hyperparameter settings

so as to maximise the chance of it working unmodified on the ANYmal environ-

ment.

Schulman et al. [2017] present the Proximal Policy Optimisation (PPO) technique and

compare it to other algorithms, namely Cross-Entropy Method (CEM), Trust Region

Policy Optimisation (TRPO), Advantage Actor Critic (A2C) and vanilla Policy Gra-

dients (PG). On the HalfCheetah environment which I use (see section 2.4), PPO per-

formed much better than all the other algorithms in terms of the achieved reward. A2C

was the second best, followed by PG, TRPO, and finally CEM performed the worst

[Schulman et al., 2017]. Duan et al. [2016] benchmarked eight RL algorithms on sev-

eral environments including HalfCheetah. The algorithms included CEM, TRPO, and

several other algorithms not covered by Schulman et al.. Duan et al. confirmed that

TRPO works better than CEM and the only algorithm to beat TRPO was Deep De-

terministic Policy Gradient (DDPG). Tassa et al. [2018] compared three algorithms

on a similar Cheetah environment (discussed in section 2.2) and DDPG achieved the

best result. The other two algorithms (A3C and D4PG) were not included in any of

the previously mentioned comparisons. In summary, PPO and DDPG showed the best

performance out of contemporary RL algorithms but there does not seem to be any

comparison between the two in current literature.

Both DDPG and PPO have open-source implementations by OpenAI (see section 2.3)

which includes tested hyperparameter settings. However, preliminary testing showed

that DDPG had much higher computational requirements1. On a CPU, DDPG executed

almost 4 times slower than PPO and its memory requirements grew with the increasing

amount of training, eventually reaching well over 8GB. PPO, on the other hand, only

consumed small and constant amount of memory (less than 1GB).

More importantly, DDPG is more complex and according to Lillicrap et al. [2016],

it does not provide any convergence guarantees meaning that it can be unstable. On

the other hand, Schulman et al. [2017] claim that PPO is stable, reliable, and simple

to implement, “requiring only few lines of code change to a vanilla policy gradient

implementation.”

Based on these findings, I use the PPO algorithm throughout this project.

2.2 DeepMind Control Suite

The DeepMind Control Suite is a collection of well-tested continuous control environ-

ments for benchmarking continuous RL algorithms [Tassa et al., 2018]. It includes the

Cheetah environment (shown in figure 2.2) which is a planar biped robot similar to the

target ANYmal robot.

Originally, my first task was to retrain the model that DeepMind used for the Cheetah

1More careful analysis later revealed that this is not as bad as I first thought and DDPG might still

fit into my compute budget.
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Figure 2.2: The Cheetah environment from DeepMind Control Suite. (Pictures gener-

ated by me, using DeepMind’s open-source code. [DeepMind Technologies, 2019])

environment to achieve the result in this video2. This way I would get a feel for the

compute requirements of training a model which would allow for better planning of ex-

periments and I would also establish a baseline which would help me see if any of my

changes to the simulation have any effect on performance. However, after inspecting

the DeepMind Control Suite’s source code [DeepMind Technologies, 2019], I discov-

ered that no learning algorithm implementation was provided, rendering DeepMind’s

results hard to reproduce.

2.3 OpenAI Baselines

OpenAI Baselines is an open-source “set of high-quality implementations of reinforce-

ment learning algorithms” [Dhariwal et al., 2017] which I decided to use. It includes

the PPO algorithm.

The main advantage of using OpenAI Baselines is reliability. Since the algorithm

implementations come from a reputable company and are checked by the open-source

community, they are unlikely to include any bugs. Together with OpenAI Gym, the

baselines package offers a full and tested solution where I can start changing one thing

at a time to observe the effects.

The close integration of OpenAI Baselines with OpenAI Gym is also a disadvantage

because it makes the algorithm implementations from the baselines package very dif-

ficult to use with tasks not within the OpenAI Gym framework (e.g. the ones from

DeepMind Control Suite). The implementations of the algorithms are also difficult to

understand as they use TensorFlow and are not very well separated from data logging

and interfacing with the task implementations.

However, it is simple to modify the OpenAI Gym environments or define new ones

which is the main aim of this project. Since I am not attempting to modify or optimise

any RL algorithms for this project, the combination of OpenAI Gym and OpenAI

Baselines constitutes the perfect platform for carrying out the project.

2https://youtu.be/rAai4QzcYbs?t=58
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Figure 2.3: The HalfCheetah environment from OpenAI Gym. (Picture generated by

me, using OpenAI’s open-source code. [OpenAI, 2018])

2.4 OpenAI Gym

Similar to DeepMind Control Suite, OpenAI Gym is a collection of environments for

benchmarking RL algorithms [Brockman et al., 2016]. However, there are two crucial

differences. Firstly, OpenAI Gym does not focus exclusively on continuous control

tasks but also includes other kinds of environments (e.g. Atari games). Secondly, the

reward design is less standardised across different environments which makes it more

difficult to interpret the learning curves.

Most importantly, OpenAI Gym includes the HalfCheetah environment (shown in fig-

ure 2.3) which uses the same physics as the Cheetah environment from DeepMind

Control Suite and only differs in some visual aspects and has a slightly different re-

ward function. I chose this environment over DeepMind’s Cheetah as a starting point

because it works with OpenAI Baselines “out of the box.”





Chapter 3

Learning Dynamic Locomotion - a

study on HalfCheetah

As previously mentioned, DeepMind did not publish the learning algorithms used to

achieve their results so I used an implementation by OpenAI. Before modifying the

simulation to match ANYmal robot (and possibly introducing bugs), I wanted to make

sure the learning algorithm works with the tested HalfCheetah environment.

The first result was slightly disappointing as the robot learned to flip on its back and

kick its legs in the air to bounce forwards as can be seen in this video1. I tried to

modify the reward function to prevent this behaviour but my first attempt was not very

successful.

After consulting with my supervisor, we identified the following problems with the

system:

• Both the original reward function and my modified version could be improved;

• The feedback signals from the simulation to the learning algorithm were not

filtered;

• The control inputs to the simulation were joint torques rather than joint positions.

3.1 Reward shaping

The default reward function in OpenAI Gym’s implementation of the HalfCheetah

environment was defined as

R = v−0.1||a|| (3.1)

where a (action) is the input vector of joint torques.

Since the afent was flipping over, I tried adding the term
(

2α

π

)8
to the reward function

to penalise the agent for rotating more than α = ±π

2
rad from the level orientation.

1https://youtu.be/FDYzYn3YHrw
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Joint back thigh back shin back foot front thigh front shin front foot

ks 240 180 120 180 120 60

kd 6 4.5 3 4.5 3 1.5

Table 3.1: Default settings of stiffness and damping

3.3 PD control

In the default implementation by OpenAI, there was no PD control so the agent con-

trolled motor torques but there were springs and dampers attached to each joint so the

resulting torque for a joint looked something like

τ(x) = x− ksα− kdα̇ (3.4)

where x is the (torque) input, ks is the spring stiffness, kd is the damping constant, α is

the joint angle, and α̇ is joint velocity. The settings of the constants are summarised in

table 3.1.

This setup meant that every input corresponded to a unique and stable configuration of

joint angles although the two were different numerically and the mapping from torques

to positions depended slightly on the current configuration of the robot (gravity, impact

forces).

To visualise how the system works, I used a dummy agent which selects 10 input

torques and holds each for 10 seconds, abruptly changing to the next one at the end

of each period. Figure 3.3 shows that the system does indeed achieve a stable state

for each input action although there is no clear direct correspondence between the

numerical value of the input torque and the resulting stable joint angle. Moreover,

figure 3.3 also shows that there is significant oscillation of the joint angle after each

change to torque. It is a common practise to use PD control to reduce or eliminate

these effects (e.g. Yang et al. [2017], Yang et al. [2018], Li et al. [2017] and Yuan et al.

[2019] all use PD control in similar settings).

To aid learning, I set out to implement proper PD control. First, I tried to do this within

the MuJoCo physics model in order to minimise the changes required to python code

for the environment. I implemented the PD control by attaching a position servo and a

velocity servo to each of the joints so the control equation looked like

τ(x) = Kp(x−α)−Kdα̇ (3.5)

where Kp and Kd are the PD gains, x is the (position) input, α is the current position

and α̇ is the velocity.

I repeated the same experiment as for the default model and used it to hand-tune2

the PD gains. The resulting performance is shown in figure 3.4. There is almost

no oscillation or overshoot and there is only a small steady-state error. Hence, this

configuration is better than the deault one in OpenAI Gym which performed on all

three metrics (figure 3.3).

2Hand-tuning is the standard practise in similar situations according to Yuan et al. [2019].







Chapter 4

Learning Dynamic Locomotion - a

study on ANYmal robot

I modified the HalfCheetah simulation to resemble the ANYmal robot (shown in fig-

ure 4.1), creating a HalfANYmal as shown in figure 4.2. The main changes include:

• Removing one link from each leg;

• Defining weights for the different body parts consistently with the real ANYmal

robot;

• Changing torso shape to a rectangle;

and are summarised in section 4.1. In addition to the changes to the simulation, I also

implemented better PD control (section 4.2), improved my methods for evaluating

reward functions and improved the reward function itself (section 4.3).

4.1 HalfANYmal model

Table 4.1 shows the dimensions of the HalfANYmal model that I implemented using

MuJoCo’s MJCF XML format. The values are based on the information kindly pro-

vided by Dr. Zhibin Li, my supervisor. The only significant change I made was to the

torso mass. This was originally 21.39 kg (plus 1.1 kg per hip motor) but that is the

mass of ANYmal’s torso. Since HalfANYmal only has half the number of legs and

half the number of motors (and consequently half the strength) compared to ANYmal,

the torso mass also needed to be halved. Otherwise, HalfANYmal would have trouble

carrying its weight and each of its feet would experience higher friction with the floor.

Hence, the torso mass of HalfANYmal is 21.39/2+2×1.1 = 12.895 kg.

At first, I received some contradictory pieces of information regarding the maximum

motor torque. I settled for 40 Nm maximum for each motor (both knee and hip) which

is what Hutter et al. [2016] report. To be precise, this is the maximum torque that ANY-

mal can deliver continuously but it can spike higher momentarily. The HalfANYmal

23
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Shape & Dimension Count
Mass [kg]

Unit Total

Torso Box of size 0.531 m by 0.26 m 1 12.895 12.895

Thigh Cylinder of 0.2 m length and 0.015 m radius 2 0.318 0.636

Knee motor Cyclinder of length 0.08m and radius 0.04 m 2 1.1 2.2

Shank Cylinder of 0.19 m length and 0.015 m radius 2 0.318 0.636

Foot Sphere of radius 0.03 m 2 0.19 0.38

TOTAL 9 16.747

Table 4.1: Dimensions of HalfANYmal body parts

does not capture this since I did not know how to implement it in MuJoCo. Simi-

larly, my model does not realistically reflect the time that ANYmal needs to change

the output torque. This could be improved in the future.

ANYmal’s joints are capable of rotating through a full revolution and are only limited

by the cabling that crosses them. Hence, I set the joint limits for HalfANYmal also

just above a full revolution. Self-collisions are not enabled in my simulation. The real

ANYmal can tilt its legs slightly to keep them from colliding but since HalfANYmal

cannot do that, I disabled the collision detection.

The HalfANYmal environment operates at 20 Hz (i.e. each time step corresponds to

50 ms1) and the underlying physics simulation runs at 200 Hz. The environment does

not have any terminal states but uses fixed-length episodes of 1,000 time steps.

4.2 Improved PD control

I have also found a better way to implement PD control for the HalfANYmal environ-

ment. MuJoCo computes gravitational forces on all the joints which can be obtained

easily and used for gravity compensation. I also took joint positions and velocities

from the simulator and used them to implement PD in python as

τ(x) = Kp(x−α)−Kdα̇+g (4.1)

where Kp and Kd are the PD gains, x are the (joint position) inputs, α are the current

joint positions, α̇ are the joint velocities and g contains the gravity biases.The x is

supplied by the agent while α, α̇ and g are supplied by the MuJoCo simulator. The

torques τ(x) are sent as inputs for the MuJoCo model. The values of the PD gains are

summarised in table 4.2).

I repeated the same experiment as for the HalfCheetah model and used it to manually

tune the PD gains. The resulting performance is shown in figure 4.3. Same as the one

from section 3.3, this implementation of PD control eliminates virtually all oscillations

and overshoot. However, thanks to gravity compensation, it achieves even slightly

1This is not necessarily real-world wall clock time since the simulation can run slower or faster.

During training, the simulator usually “speeds up the flow of time” by up to several orders of magnitude.
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experiments;

• It cannot take into account small and subtle changes;

• It cannot distinguish between small changes caused by the different reward func-

tion and those caused by different random initialisation of an episode;

• It cannot see the effects of different reward functions on the learning process.

To address these issues, I developed code to record all the joint velocities and positions,

and all the motor torques during an episode, as well as code to record the individual

reward components (e.g. reward for velocity or orientation) throughout training. The

former allows me to take two trained agents, run them for one or more episodes and

precisely compare things like what velocity do they achieve or how much torque they

use. The latter allows me to check if the learning algorithm is actually picking up on

all the reward components and how “hard to learn” those components are (i.e. how

long does the algorithm take to figure out how to collect them).

Unfortunately, both of these improvements were tricky to implement due to the poor

structure of the OpenAI Baselines library. For example, I had to change small bits

of code in many different places in order to log the few extra pieces of information I

was after during the training. The library also did not allow me to execute two dif-

ferent trained agents in a single Python process (this probably has something to do

with TensorFlow’s static graph model) so I had to use multiprocessing to execute ev-

ery agent. However, this at least allowed me to run the agents in parallel which sped

up the comparisons.

With everything implemented, I set out to do three things:

1. Find a velocity that is easy to reach and maintain as well as the maximum veloc-

ity for the HalfANYmal robot;

2. Check my hypothesis from section 3.1 about the narrow torque reward being

difficult to pick up;

3. Try to prevent HalfANYmal from walking on its knees by introducing reward

for height above ground.

4.3.1 Velocity experiments

I made another small tweak to the velocity component of the reward function, which

is now defined as

R = 0.7e
−
(

v
vdesired

−1
)2

+0.2e−α
2

+0.1e−||t||2 . (4.2)

This helps with interpretability of the results, especially the intermediate ones during

training, since the initial reward for not moving is independent of the desired velocity.

It also makes sure that the agent never starts far out on flat tail of the RBF where it

would not detect the reward signal. I used the default torque term here since I will be

trying to find the optimal width of the torque RBF in the next section.
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To investigate what velocities the HalfANYmal robot is capable of, I trained one agent

for each value of vdesired ∈ {0.5,0.8,1.0,1.5,2.0,3.0} for 20,000,000 time steps. Dur-

ing training, I recorded the evolution of all the individual reward components as de-

scribed previously. After the training, I ran each of the trained agents for 10 episodes,

recording the forward velocity (and also all other velocities, positions and torques) and

averaging it over the 10 episodes.

Figure 4.4 shows the forward velocities achieved by the different agents. The only

agent that actually achieved its target velocity was the one with vdesired = 0.5. The

agent trained with vdesired = 1 also achieved stable locomotion but only at around

0.7 m/s. Only slightly higher velocity was achieved by the agents with vdesired = 1.5
and vdesired = 3. Interestingly, the agent for vdesired = 2 achieved significantly higher

velocity of over 1.2 m/s.

Also interesting is the poor performance of the agent with vdesired = 0.8 which was

slower than 0.5 m/s. Perhaps, there is a border between two different gaits which the

vdesired = 0.8 agent did not manage to cross but the vdesired = 1 one did, but it is also

possible that vdesired = 0.8 agent just found an unlucky local optimum. Inspecting

the videos suggests the latter. The vdesired = 0.5 agent3 shows a sort of crawling mo-

tion which can probably be made arbitrarily slow but not arbitrarily fast. Indeed, the

vdesired = 1 agent4 shows similar kind of motion, but faster, occasionally even leaving

the ground which would normally be a sign of running. The vdesired = 0.8 agent5 tries

to perform a similar gait but sometimes moves its rear leg too much and gets stuck

for a while. The quickest agent (vdesired = 2) shows a distinctly different gait6 which

suggests that the vdesired = 1 agent has probably hit the limit of the crawling gait and

that is why it did not move faster.

The velocity learning curves in figure 4.5 show that it becomes more difficult to find

an optimal policy when vdesired > 1. This makes sense since, according to Hutter et al.

[2016], the ANYmal robot can achieve maximum speeds of around 1 m/s.

In conclusion, vdesired = 1 and vdesired = 2 seem to be the best settings for achieving

high speed. Increasing vdesired more actually results in significantly lower speed so

it seems like the maximum speed that the HalfANYmal robot is capable of is about

1.4 m/s.

4.3.2 Torque experiments

Figure 4.6 shows that, in the experiments from the previous section, the torque reward

component was always basically 0 so the learning algorithm did not have a chance to

pick up on it which confirms my hypothesis from section 3.1.

To help the agent find the reward, I tried widening the torque RBF. I used the reward

3https://youtu.be/WFWIhLSBewo
4https://youtu.be/h9WL2HV7MnM
5https://youtu.be/FEC74oopvdE
6https://youtu.be/XBNsz4PWqN8
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Figure 4.7 shows that none of the experiments was successful in helping the agent

pick up the reward. There was no significant change in the amount of torque used

by the trained agent during an episode and the learning curves show that the learning

algorithm did not try to optimise for torque. However, reward received was higher and

it changed noticeably with changing policy so the learning algorithm should have been

able to detect it (especially for σt = 30). It shows that the weight of the torque term

is likely too low and so the algorithm simply ignored it and optimised for velocity (as

there is an inherent trade-off between the two).

4.3.3 Height experiments

In an attempt to prevent HalfANYmal from walking on its knees, I tried to add a reward

component that would encourage the agent to keep its torso higher above the ground:

R = 0.7e
−
(

v
vdesired

−1
)2

+0.1e−α
2

+0.1e−||t||2 +0.2e
−
(

h−hdesired
0.05

)2

(4.4)

7where h is the height of the centre of the torso above the ground. The reward function

does not include the updated torque term as I performed the two sets of experiments in

parallel.

To choose vdesired , I looked at the heights achieved in the experiments of section 4.3.1.

Figure 4.8 shows that the agent trained with vdesired = 3 achieved the highest height

above the ground. Additionally, vdesired = 1 has achieved stable results in terms of

velocity. Hence I will use vdesired =∈ {1,3} in this set of experiments.

If HalfANYmal stood still with both its legs straightened and pointed down, the centre

of its torso would be h = 0.42 m above the ground. On the other hand, if the torso

is level and h > 0.22 m, the knees cannot touch the ground. Hence, in this set of

experiments, I will use hdesired ∈ {0.3,0.35,0.4} for each setting of vdesired .

This set of experiments yielded some surprising results. The height learning curves

in figure 4.9 looked promising at first since all the configurations except hdesired =
0.4,vdesired = 1 achieved close to the highest possible reward. However, the actual

heights shown in figure 4.10 contradict this since two different agents maintained the

height of around 0.13 m which corresponds exactly to HalfANYmal lying on its belly

(or back) and gives reward very close to 0.

It was very difficult to explain this conflict. Eventually, I found out that the episode

reward values reported by OpenAI Baselines were actually smoothed and even towards

the end of the training, there were still episodes in which the performance dropped back

to zero as shown in the background of figure 4.9. It is possible that OpenAI Baselines

does not save the best policy but rather the last one (although this is rather difficult

7An attentive reader may notice that the weights of the RBFs add up to 1.1 rather than 1. This was

not intentional and I only noticed it after running all relevant experiments. Fortunately, this only matters

for the interpretability of the total reward. The training process only depends on the relative sizes of the

weights and any small change to this is as good a guess as any other. On the other hand, this mistake

does make it slightly easier to compare the velocity reward with the previous experiments. I planned to

use 0.6 instead of 0.7 for the velocity weight.









Chapter 5

Learning Dynamic Locomotion on

Rugged Terrain

The last goal of the first part of this MInf project was to train HalfANYmal to walk or

run on uneven terrain. I modified and tested the HalfANYmal environment to include

such terrain and then, building on the reward shaping experience from the previous

chapter, I trained a few agents for the modified environment.

5.1 Environment modifications

In this section I describe how I generated the uneven terrain, modified the simulation

to include it and also modified the Python environment to enable the agent to sense the

terrain around itself.

To implement the uneven terrain in the simulation, I used MuJoCo’s height field. This

allows me to specify an array of heights and the simulator will create the corresponding

surface, interpolating linearly between the specified points. I used 10 cm resolution.

Since HalfANYmal’s track is 100 m long, it essentially consists of 1,000 rectangles.

Each rectangle is either level or at a slope. For any two adjacent rectangles, at least

one of them is level. The height difference between the two ends of a sloped rectangle

is approximately between 5 and 12 cm.

Normally, a robot would need some sensor(s) to detect the terrain around it and react to

it. Since I already have the ground truth, in each time step, I simply sample the heights

of a 5 m long segment of the track starting about 0.7 m behind the current position

of the HalfANYmal at 5 cm intervals. For example, a lidar sensor should be able to

provide similar data (I think), with the major difference being that my method does not

take into account potential occlusions.

Ideally, a new random height profile would be generated for every episode so that the

agent cannot just memorise the track but needs to learn to actually react to the different
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over some obstacles to begin with which should enable it to gather more experience

and find more efficient ways of negotiating obstacles. This should only require a small

change to the code to account for the different dimensionalities of the state spaces but

it would be very difficult to do with the OpenAI Baselines implementation. Nonethe-

less, the baseline results still demonstrate that HalfANYmal is capable of negotiating

uneven terrain.



Chapter 6

Conclusions and Future Work

In this first part of the MInf Project, I achieved all the goals I set out to achieve. As de-

scribed in section 4.1, I modified the HalfCheetah environment from OpenAI Gym to

resemble the ANYmal robot, creating the HalfANYmal environment. In section 4.3, I

successfully used reinforcement learning to teach HalfANYmal to walk forwards. Al-

though the resulting motion was very clumsy, I showed that HalfANYmal is physically

capable of a “nice” walking gait and hence more research into achieving such gait with

reinforcement learning would be warranted.

Finally, in chapter 5, I showed that a HalfANYmal robot trained with reinforcement

learning is capable of negotiating uneven terrains. The relevant experiments yielded

some very unexpected results where agents trained on flat ground performed quite

well on uneven terrain yet agents trained on uneven terrain failed to learn any useful

movements. This might suggest that learning to walk at all is actually significantly

more difficult, than walking over obstacles once an agent knows how to walk, but

uneven terrain makes learning to walk at all much harder.

6.1 Future work (for MInf Project Part 2)

In Part 1 of this MInf project, I focused on developing the simulation side of things

and produced a functional and tested HalfCheetah environment. In Part 2, I would like

to focus more on the machine learning and RL aspect and find methods to train better

performing agents faster and more efficiently.

The surprising results of chapter 5 provide a great ground for future research. As sug-

gested at the end of that chapter, I would like to investigate the use of transfer learning

in RL to leverage the knowledge learned by agents on a flat ground to train agents on

uneven terrains. Taylor and Stone [2009] show that using transfer learning for RL is

indeed a viable idea. Specifically, I will seek answers to the following questions:

• Does training an agent on uneven terrain with knowledge transferred from a flat-

surface agent improve, or at least retain the performance of the flat-surface agent

on the uneven terrain?

41



42 Chapter 6. Conclusions and Future Work

• Can transfer learning shorten training time or improve sample efficiency?

• Are there other places where knowledge transfer could help? For example, does

learning how to stand still with torso at a certain height help with learning how

to walk while keeping the torso at that height?

Smaller improvements may include making sure to save the best model found during

training rather than the last one (as discussed in section 4.3.3) and training the promis-

ing agent from section 4.3.3 for longer. I can also make a more thorough comparison

of the PPO and DDPG algorithms discussed in section 2.1.1 and potentially use DDPG

if it achieves significantly better performance.

Further research could also be done into evaluation of performance of different agents

and comparing different reward functions. As discussed in chapter 4, watching the

videos of trained agents is not scalable and I developed other methods, namely moni-

toring different components of the reward during training and plotting the simulation

ground truth data of quantities of interest during evaluation. However, I was not able

to find any formalised and tested methods in the current literature.
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