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Abstract

Robot locomotion is becoming more powerful and popular these days. Especially, lo-
comotion for the legged robot has brought the mobility of the autonomous agents to
another level. This project presents a deep reinforcement learning approach that is
capable of learning a partially observable locomotion policy with the Proximal Pol-
icy Optimisation algorithm. We propose a novel reward shaping design known as the
Dynamic Reward Strategy (DRS), which introduces great improvements of locomo-
tion in terms of velocity stability, robustness in different terrain and power efficiency.
The proposed method learns high-performance locomotion using a lightweight Deep
Neural Network without the dependency of any form of the history data. The perfor-
mance of this approach is evaluated in the OpenAl gym simulation environment and
has scored an over 90% success rate in all challenging terrain.



Acknowledgements

I would like to express my sincere gratitude towards my supervisor, Dr Zhibin Li, for
his guidance and support throughout this project, as well as, Mr Fernando Acero for
his valuable discussions and support.



Table of Contents

1 Introduction

1.1
1.2

4.3

Background . . . . .. ..o
Relatedworks . . . . . . . .. ... oL
1.2.1  Multi-expert learning of adaptive legged locomotion . . . . .
1.2.2  Learning quadrupedal locomotion over challenging terrain . .

1.3 Motivation . . . . . . . . ...
2 Background
2.1 Classical robot controlmethods . . . . . . ... ... ... ... ..
2.1.1 Preliminaries . . . . . .. .. ... ... .. ...
2.1.2 Trajectory planning . . . . . . . .. ... L.
2.1.3  Online vs. Offline planning . . . . . . . .. ... ... ....
2.1.4 Feedbackcontrol . . . ... ... ... ... ... ...
2.2 Forward Dynamics . . ... ... ... .. ... ... ........
2.3 Deep reinforcement learning . . . . . . .. ..o
2.3.1 The Markov Decision Process . . . . ... .. ... .....
2.3.2  Proximal Policy Optimisation algorithm . . . . . . . ... ..
2.4 Problem definition . . .. .. ... ... ... .. .. ... ...,
3 Methodologies
3.1 Environmentdesign . . . . . . . . ... ...
3.2 Agentdesign . . . ...
3.3 Implementing Forward Dynamics . . . . .. ... ... .......
34 PDecontroller . . . . ... ...
3.5 The training methodology . . . . . . . . .. .. ... ... ... ...
3.5.1 The training algorithm . . . . . . ... ... .........
352 Therolloutphase . . . .. .. ... ... .. .........
3.5.3 Condition of early termination . . . . . . ... ... .....
4 Experiments and evaluation
4.1 Introduction . . . . . . . . ...
4.2 The baseline experiment . . . . . . . ... ... ...

421 Rewardshaping. .. ... ... ... ... ... .......
4.2.2 Experimentresults . . .. ... ... ... ... .......
4.2.3 Experimentconclusion . . . . . . .. .. ... ... ... ..
The novel approach . . . . . . .. ... ... ... ... .. .. ...

W W NN — -

[S—
VDO oW AR

—_—



43.1 The new reward shaping . . . ... ..
43.2 Targetvelocity . .. ... .......
4.3.3 Joint angular acceleration penalty . . .
4.3.4 A better vision perception . . . . . . .
4.3.5 The Dynamic Reward Strategy . . . . .
4.4 Hyperparameter tuning . . . . . . .. .. ...
45 BEvaluation . . . .. ... ...

Conclusion and discussions

51 Conclusion . ... ...............
5.2 Limitation . . . ... .. ............
53 Futureworks . ... ..............

Bibliography

A

Hyperparameters used in DRS
A.1 Hyperparameters for training the policy network
A.2 Parameters of the function hasEntropyConverged

Parameters of the agent
B.1 Parameters of the reward function . ... . . .

B.2 Proportional-Derivative parameters for the joint-level PD controller

37
37
37
38

39

41
41
41

42
42
43



Chapter 1

Introduction

1.1 Background

Autonomy has been a hot topic in the recent decades. It has brought huge benefit to
humanity. For example, in an autonomous sorting warehouse', the “mini yellow” robot
system has reduced 60% of the labour cost while only requiring about 1/4 space if a
cross-belt sorting system were to be installed. See figure 1.1a, “mini yellow” robots
are sorting parcels into baskets.
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(a) “Mini yellow” robots in operation (b) Autonomous car by Tesla

Figure 1.1: Applications of the autonomous robots (images from the internet)

Another great example is the autonomous cars by Tesla (figure 1.1b), which is consid-
ered as a huge success in the autonomous transportation industry. Tesla cars, powered
by the Artificial Intelligence, use the Deep Neural Networks to analyse roads, objects
and make right decisions for driving the vehicle. The innovation of Tesla has brought
many convenience into to people’s life. The safety is also well guaranteed by Tesla.
According to Forbes?, the accident rate is “once per 4.59 million miles”, which is lower
than the US average, “once per 479,000 miles” (3rd quarter, 2020).

'Source:https://asia.nikkei.com/Business/Startups/China-robotics-startup-
offers-automation-in-distribution-centers

2Source:https://www.forbes.com/sites/bradtempleton/2020/10/28/new-tesla-
autopilot-statistics-show-its-almost-as-safe-driving-with-it-as-without/?sh=
1008884d1794
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https://www.forbes.com/sites/bradtempleton/2020/10/28/new-tesla-autopilot-statistics-show-its-almost-as-safe-driving-with-it-as-without/?sh=1b08884d1794
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Now talking about the legged robot locomotion, which has taken the mobility and
maneuver capability of the autonomous agents up to another level [1]. This has brought
the autonomy into a wider range of applications. For example, the BigDog by Boston
Dynamics ([2], in 2008), which is a novel approach of a quadrupedal robot that imitates
the animal gait and is capable of carrying heavy weights while climbing on a rocky
slopes up to 60 degrees, or, walking on the flat ground at about of 3 km/h under the
external force disturbances.

In 2020, T Klamt et al. [3] proposed a novel robot, Centauro robot, a quadruped robot
on wheels with two robot arms, which is able to operate in inaccessible and dangerous
environments. This robot combines the mobility of the legged robot and the manip-
ulation ability of the robot arms, and has enabled a possibility of many challenging
applications, including the autonomous disaster rescue.

In a summary, robot locomotion has a great potential in many autonomous applications
for benefiting the humanity. In this project, we only focus on the locomotion of the
quadrupedal robot.

1.2 Related works

1.2.1 Multi-expert learning of adaptive legged locomotion

There has been many successful approaches of the quadrupedal robot locomotion that
are skillful and robust. In 2020, C. Yang, K. Yuan et al. proposed a Multi-Expert
Learning Architecture (MELA) that learns to generate adaptive skills from a group of
representative expert skills [4]. MELA uses a Gating Neural Network to dynamically
synthesise the output from each expert Deep Neural Network (DNN) dynamically,
according to the situation. This novel approach has shown a robust multi-skilled loco-
motion on a real robot, including trotting, steering and fall recovery.
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Figure 1.2: The architecture of MELA

In a summary, MELA has proven the success of learning a robust locomotion at the
joint-level control, also, learning locomotion skills with individual DNNs. Their ap-
proach adopts 25 Hz sampling rate and 1000 Hz impedance control. The 25 Hz sam-
pling rate is also adopted in my project, discussed latter.
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1.2.2 Learning quadrupedal locomotion over challenging terrain

Also in 2020, J. Lee et al. proposed a novel approach of robust and adaptive blind
quadrupedal locomotion model [S]. The proposed controller is able to reliably drive
the ANYmal quadrupedal robot travelling through a variety of difficult terrain, includ-
ing mud, sand, rubble, thick vegetation, snow, running water, and a variety of other
off-road terrain. This approach uses a temporal convolutional network (TCN) that gen-
erates trajectories based on an extended history of proprioceptive states, which consists
of the measurements from joint encoders and an inertial measurement unit (IMU). See
in the figure 1.3, a snapshot from a experiment video®.

Our controller 16.8 cm step ub

Figure 1.3: A snapshot of the robot walks on a flat surface, and climbs up a stair. The
front leg trajectories are traced with red and blue lines. When the front legs hits and
have been stopped, the algorithm infers there is a step ahead. Then, the agent comes
up with a solution and has eventually climbed up the stair. (Image from the video)

More detail of their approach, they have introduced a teacher policy, which is trained
with the ground-truth information of the terrain and the robot’s contact information,
hence, the teacher policy quickly becomes an expert. Then, it is used to guide the
learning of a student controller that only observe through the on-board sensors. After
learning, the student policy is directly deployed on real robots and is proven to be a
success.

For further analysis, the teacher policy in their approach is playing an important role of
extracting useful features from the fully-observable environment. Later, when teaching
the student policy, the features are further extracted and learned with limited observa-
tion. This ideology serves as a hint to my project as: a set of well-abstracted /designed
features is one of the key factors of a successful and robust locomotion learning.

1.3 Motivation

As many people have done in the past, a robust locomotion model usually relies on a
complex model with some form of the history data as the memory. In this project, the
aim is to develop a methodology to train an online locomotion model with the aid of
the vision input, but, without the dependence of memory. Further more, this approach
should be concise, fast to learn and robust in a rugged terrain with obstacles.

3Video:https://www.youtube.com/watch?v=tPixnjLbIVE


https://www.youtube.com/watch?v=tPixnjLbTvE

Chapter 2

Background

2.1 Classical robot control methods

This chapter discusses the theories and background knowledge that are related to this
project, such as, (I) what is a “robot”, (II) the classical robot control methods, with an
intuitive mass-spring-damper example, (III) the Forward Dynamics algorithm which
is crucial for the execution of the experiments, (IV) a brief introduction to the Deep
Reinforcement Learning and the Proximal Policy Optimisation algorithm. And lastly,
the definition of the problem of this project.

2.1.1 Preliminaries

A robot is a mechanical structure consisting of many “bodies”, called links, connected
by joints [6]. There are many types of joints, as shown in the figure 2.1. In this project,
every link is considered as a “rigid body”, which means they have a fixed shape and
mass, and undeformable. Also, every joint is assumed a “revolute joint”. For each
joint, there is an electric motor embedded, which generates torque to drive the attached
link.
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Figure 2.1: Example of different types of joints

)
)

The degree of freedom (DoF) of a robot is defined as the minimum number 7 of real-
valued coordinates needed to represent the configuration of the robot. For an open-

4
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loop robot like the quadrupedal robot in this project, its DoF is the total number of
joints. The configuration space (C-space), Q, is defined as the n-dimensional space
containing all possible configurations of the robot, Q C R".

The position of a joint is denoted by 0, which is the angle measured from its rest
position. The configuration of a robot is a representation of all the joint positions
in the form of a vector. For a robot with n joints, its configuration vector, q € Q, is
defined as:

q=[01,6,...,8,)" 2.1)

Accordingly, the joint velocity vector is ¢ and the joint acceleration vector is ¢ which
are, respectively, the first and second derivatives of the configuration vector:

Joint velocity ¢ = [61,65, ...,8,]7, and (2.2)

Joint acceleration § = 6,6, ...,6,]”. (2.3)

The workspace of a robot is the set of points where its end-effector can reach. The
“end-effector” is a link or a device at the end of a structure. It can be the finger tip of
a robot hand, a rubber gripper or others. The task pace is the space in which the task
is expressed and independent to the workspace of any robot, e.g. for painting, the task
space is the 2-D surface of the canvas, but the workspace can be the 3-D space around
the canvas.

2.1.2 Trajectory planning

A trajectory is a sequence of joint positions and velocities at each timestep. It is an
interpolation from the starting configuration to the desired configuration. Depends on
the level of abstraction, this procedure can be done in either the C-space or the task
space. An example of a “C-space trajectory” and a “task space trajectory’:

Figure 2.2: A robot arm with its base fixed on the ground, its end-effector is moving
according to some trajectories: the task space trajectory (a): interpolating in 3-D. the
C-space trajectory (b): interpolating the configuration. The trajectories start and end at
the bottom left point. The length of the timestep is a fixed duration, & = 1/f, where
f is the trajectory sampling frequency at which the controller plan the trajectories. At
each timestep, the end-effector is at each point on the blue line which is a trace of the
trajectory.
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In figure 2.2, the end-effector is moving at a constant speed. For the task space trajec-
tory on the left, there is a sudden change of the end-effector velocity at each corner of
the triangle. That means some of the joints are suffering a sudden change of torques,
which is harmful to the hardware on a real robot. On the other hand, the C-space tra-
jectory, by design, is always having a smooth joint transition in time. However, the
behaviour of the task space trajectory is more intuitive and organized.

2.1.3 Online vs. Offline planning

Planning trajectories entirely before the execution is call offline trajectory planning.
Or, it can be done successively along with the motion, which is called the online tra-
jectory planning, where a fixed length of the future trajectory / > 1 is generated at each
timestep.

Planning in task space is generally much slower, because “reverse-engineering” the
configuration given only the end-effector position requires extra calculation. The
“reverse-engineering’ algorithm is called the Inverse Kinematics, which is irrelevant
to this project. Therefore, C-space trajectory planning is better suited to an online
planning application.

2.1.4 Feedback control

The Proportional-Integral-Derivative controller (PID controller) is proven to be a
novel feedback control model and is widely used in various applications [6]. It manip-
ulates the joints to desired positions by minimising the error in each joint, q.. For a
revolute joint, the PID controller is defined as:

u(t) = K,qe + Ki / Qo()df + Ky6te 2.4)

where u(z) € R”" is a vector of the output joint torques at time ¢, the control gains K,
K; and K, are positive constants, (s 1s the desired joint configuration, the joint error

qe = qrer(¢t) —q(¢) and the joint velocity error §. = Qe (t) — q(?).

Oe

m |—f

®'|::| %k‘

Figure 2.3: A linear mass-sparing-damper model: the mass can only move in 1 DoF,
so, we directly use 0 to denote its position. There is a small but non-zero external force
f applied to the mass in the positive direction. The mass is attached to a spring, k, and
a viscous damper, b. Assume the mass is 6, away from its rest position, where |6,| > 0
and the desired velocity 8,. = 0 m/s.

For a better illustration of the PID control, here we introduce a simple example of a
mass-spring-damper model (2.3). In a PID controller, the K, term is similar to the
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spring that applies a force onto the mass proportional to the error. The K; term is
similar to the viscous damper that always reduces the speed of the mass.

The response curves illustrates the resulting configuration error of the mass, under the
control of the PID controller with different settings, shown in the figure 2.4. For a
P-controller (K), > 0, and K, = K; = 0), the mass becomes an oscillator with a fixed
amplitude. For a PD-controller (K, > 0,K,, > 0, and K; = 0), the mass eventually
comes to rest after a few oscillations, but there remains a small steady-state error due
to the external force. For a PID-controller (with correct parameters K, > 0,K, > 0 and
K; > 0), the mass always returns to its rest position.

1.00 A
0.75 4
0.50 4
5 0.25 4
c
o
E 0.00 4
—0.25 A
—— P-controller
—0.50 A PD-controller
—— PID-controller
—0.75 A ——- Rest position

Time (s)

Figure 2.4: Response of a: P-controller (blue line), PD-controller (yellow line), a PID-
controller (green line). And the rest position without the external force applied (dashed
black line)

2.2 Forward Dynamics

On a real robot, the physics is in responsible of governing the robotic dynamics. How-
ever, in a simulation environment, the physics has to be simulated by an algorithm
called the Forward Dynamics (FD). The FD algorithm determines the acceleration ¢
of the robot, given the state (q,q) and the joint forces and torques.

The rigid bodies can be abstracted as point-masses in the FD calculation. The physics
property moment of inertia (inertia), I, of the rigid body is defined as:

I =mr? (2.5)

Where, m is the mass of the rigid body and r is the displacement from its center of
mass (CoM) to the joint from which the rigid body receives the torque.
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applied

Joint

Figure 2.5: Example of a rigid body (the link) attached to a joint that is fixed on the
ground. The link is at 6 degrees from the ground level, with its CoM marked in the
diagram. The A torque is applied at the joint.

As illustrated in 2.5, the actuator applies a torque at the joint, the link will start to
accelerate with an angular acceleration 0.

. T
0=— 2.6
7 (2.6)
The joint velocity is calculated as:
6= / 0 dt (2.7)

Given a time period At that is small enough, the new angular velocity is approximated:
O in =0, +6-Ar (2.8)

2.3 Deep reinforcement learning

Deep reinforcement learning (DRL) is a branch of machine leaning that learns to

make decisions by trial and error , which has shown a great success in many appli-

cations till today. For example, “Alpha GO” by DeepMind which beats the world
champions of Go chess [7].

2.3.1 The Markov Decision Process

)

state reward action
A
Rens
<> | Environment

Figure 2.6: DRL learning pattern

DRL is based on the Markov Decision Process (MDP). As shown in the figure 2.6!, an
agent at every timestep is in a state S, takes action A, receives an immediate reward
R; and transitions to the next state Sy according to the environment dynamics.

'Source: https://en.wikipedia.org/wiki/Deep_reinforcement_learning
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Mathematically, the MDP is defined as a 7-tuple {S,A,0,T,Q,R,Y}, where S, A and O
are sets of states, actions, and observations. The transition function 7' (s|s,a) defines
the distribution over the transition (s,a,s’) according to the environment dynamics.
The observation function Q(o|s’,a) defines the distribution over observations o € O
that the agent may receive in the new state s after action a, and receive an immediate
reward. The reward r; ~ R(s;,a,) defines the immediate reward of each state-action
pair. The discount factor is defined as y € [0,1). Finally, The discounted sum of
rewards over the planning horizon 4 (which can be infinite) is Zf:o Y'r.

The objective of DRL is to predict the optimal trajectories in MDPs. For example, Q-
learning, an off-policy algorithm, is proven to be successful in many DRL applications,
such as playing Atari games at expert level [8]. It directly learns the reward of each
state-action pair. This works well in the simple and/or discrete environments, e.g.
Atari games, but performs poorly in the high-dimensional continuous environments,
where the dynamics becomes much more complex (Sutton & Barto, Chapter 13 [9]
and [10]).

On-policy algorithms are subject to this challenge and they are proven to be successful
[11]. Rather than learning rewards, the on-policy DRL algorithms learn the proba-
bilities of taking each actions in different situations. The policy, 1y, is defined as a
distribution over the actions given a state:

ng(als) =Pr(a; = a|s; = 5,0) (2.9)

This policy function is approximated by a multilayer perceptron (MLP), a feedforward
Deep Neural Network, which is proven to be a good function approximator. The inputs
are fed into the input layer (figure 2.7), propagate through the hidden layers and output
from the output layer. The layers are densely connected between each other, and the
flow of data is shown as the arrows in the graph. In each neuron, there is a non-linear
activation function.

Input Layer Hidden Layer Output Layer
M neurons N neurons K neurons

Figure 2.7: An illustration of a MLP with one hidden layer (image from the internet)
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When sampling from the policy at time ¢, the state vector s; is fed into the MLP and an
action qy is returned from the MLP;

= maxTg(als;). (2.10)

By repeating this procedure at each timestep, we are able to generate a MDP trajectory
with a variable length in the form:

(50,00,51,a1,52, -+ yStyQrySt4+15At415542, -+ ) 2.11)

Then, a sequence of the actions from a MDP trajectory can be used for controlling the
robot. For example, if each action contains a robot configuration vector, , then the
actions forms a joint trajectory

(q07q15 e Qe Qe41, ) (212)

2.3.2 Proximal Policy Optimisation algorithm

In 2017, OpenAi proposed a novel off-policy DRL algorithm called Proximal Policy
Optimization (PPO) [11]. This algorithm optimises a “clipped surrogate” objective
function using stochastic gradient ascent (SGA) [12]. The estimation of the policy
gradient in the SGA is

8 =B, [Vg log mg(ay|s))A;], (2.13)

where, Tg is the stochastic policy and A, is an estimator of the advantage function,
which estimates how good an action compared to the average action for a specific
state. If the policy is improving, A, is positive, otherwise, A, is negative. The advantage
function is defined as:

A=8+ (YN8 +...+ (N8 (2.14)
where &, = r; +YV (st41) =V (S;) (2.15)

and T is the length of the trajectory segments, v is the discount factor, A is a hyper-
parameter of PPO and V(s) is a learned state-value function, e.g. the generalized
advantage estimation [13]. The objective function of PPO algorithm is defined as

[CLIPVFLS () — i, [LCLIP (8) — ¢, LY (8) + c2S[me) (51)] (2.16)

LCHP s the clipped advantage function, whose charac-

Where c1,c; are coefficients,
teristic is shown in the figure 2.8, LV is a squared-error loss (Vg(s;) — V;/“"*)? and
S[mo](s;) is an entropy bonus that ensures sufficient exploration during learning [11].

For more details,

LEHP(9) = B, [min(r,(0)A;, clip(r,(0), 1 —&, 1 +€)A,)] (2.17)
_ 7o (ayst)

(2.18)
Tceald (Clt |St)
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Where € is the clipping parameter usually one of the value in {0.1, 0.2, 0.3} and r is
the probability ratio between the old and the new policy. This means that, if the policy
deviates too far away from the old one, the probability ratio » — 0. Hence, that policy
will be ignored. Regardless the policy is becoming better or worse, r is clipped within
[1 —¢€,1+¢€]|. This mechanism ensures the new policy never deviate too much from the
old one.

LCLIP A>0

— r
0 1 1+4e LeLIP
Figure 2.8: Shows the characteristic of L¢P at a single timestep, for positive advan-

tages (left) and negative advantages (right). The red circle shows the starting point, i.e.,
r=1.

Compared to the other on-policy DRL algorithms, PPO usually takes a longer time to
converge, however, PPO has shown a good efficiency and stability on high-dimensional
continuous control problems [11]. Besides, PPO is considered easier to code than many
other DRL algorithms.

The PPO algorithm [11] is defined as
Algorithm 1: PPO algorithm

for iteration=1,2,... do

for actor=1,2,...,N do
Run policy 7y, ,, in environment for 7" timesteps

Compute advantage estimates A, ... ,Ar
end
Optimize surrogate L w.r.t 0, with K epochs and minibatch size M < NT
Oo1a < 6

end
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2.4 Problem definition

In this project, the objective is to learn a locomotion skill for a quadrupedal robot
that is capable of walking on a rugged terrain with obstacles. The specification of the
environment:

1. The terrain has a small perturbation, but is overall flat
2. There are 4 obstacles evenly placed on the terrain
3. the obstacle may be a pitfall (gap) or a stump (box)
4. the obstacles are all possible to be conquered, given an optimal agent
The specification of the experiments: an experiment is considered as a success if
1. The agent travels from start to the end of the terrain, and
2. with a total reward higher than the reward threshold, and
3. the agent body has never hit the ground or obstacles (felt down)

Otherwise, the experiment is considered as a failure. Note, the tests are evaluating on
three criterion: (I) the success rate (II) the failure rate and, (III) the falling rate. Note,
the success and failure rates always sum to 1 and the falling rate is a sub-category of
the failure rate.

A well generalised and robust locomotion policy should have:
1. A high success rate in different terrain
2. A good strategy for overcoming the obstacles
3. A stable velocity

4. An optimised and efficient gait



Chapter 3

Methodologies

3.1 Environment design

The experiments are conducted in a simulated environment, which is modified based on
the OpenAl Gym BipedalWalker environment in 2-D. The terrain is generated according
to the specification in 2.4, Figure 3.1 illustrates an example of the rendered terrain
without obstacles. The simulation environment is a vertical slice of the 3-D world,
with the gravity pointing at the negative direction of the y-axis. The green area is the
solid ground and the blue-grey area is the sky. There may by some randomly generated
clouds in the sky, which is merely a decoration without any physics property.

“

Figure 3.1: A rough terrain without obstacles

Generated terrain landscape

10.0

7.54
5.0 1

25 i — 1 =

0.0

Height (m)

0 510 15 20 25 30 35 40 45 50 55 60 65 70 75 8 8 90 95
Terrain length (m)

(a) A generated terrain with obstacles

I I R

(b) A rendered terrain with obstacles (different one from (a))

LI =

(c) A pitfall (d) A stump

Figure 3.2: Example of the rugged terrain and obstacles

13
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In a rough terrain, the total length is about 93 m and the ground is added with random
perturbation, as shown in the figure 3.2a, where the obstacles are coloured in grey.
Figure 3.2b shows a rendered terrain with obstacles. The length of the pitfall and the
size of the stumps are randomised within a reasonable range. Examples of a pitfall and
a stump are shown in the figures 3.2d and 3.2c. Each time the environment is initialised
or reset, the terrain is randomly re-generated.

The collision boundaries are exactly as the lines and rectangles shown in the figure
3.2a. All of the terrain components are fixed in position. The gravity simulation is
also simulated in the environment. An agent will be initialized at the “starting area”
above the ground, which is the flat area on right of the flag (shown in the figure 3.3b).
The agent is allowed to jump as high as it could, but never crossing the terrain surface
or through any obstacle. On the ground, there is a line with evenly spaced segments,
with an alternating colour in green and dark green. That is a distance marker, with
each segment represents a distance of 1 m. The “forward direction” is defined as the
positive direction of the x-axis.

3.2 Agent design

Explain more on the mass, joints and LIDAR location (variable range).

Body H|p joints

q Knee Jomts i

(a) The agent (b) The agent in the environment

Figure 3.3: The agent in the simulation environment

The agent is designed as shown in the 3.3a, which has 8 DoF: 4 hip joints and 4 knee
joints. The perception of the agent is a 44-D vector, consists of:

* 2-D body rotational displacement (body angle) and angular velocity

2-D body Cartesian velocity

16-D joint displacements and velocities,

4-D binary feet contact signal against the terrain, and,

20-D LIDAR (vision) at front/rare body within ranges (the red lines projected
from the body to the ground, shown in 3.3b)

The design of each component of the robot is shown in the figure 3.4 and the dimen-
sions are in meters (m). The body of the robot (figure 3.4a) is a rectangle with a cutout
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in the front. Besides, the upper leg (figure 3.4b left) and the lower leg (figure 3.4b
right) are also rectangles. All together, the agent is designed as shown is the figure
3.4c, where the mounting positions of the LIDAR sensors are marked by the orange
stars. The LIDAR sensors can have a different detection ranges, but is always fixed at
the positions as shown.

The upper legs are attached to the body by the “hip” joints, which are 14 m and 94 m
away from the left edge of the body, in figure 3.4c. The upper leg and the lower leg is
connected to the “knee” joints at the center of the bottom/top of their shorter edges.
The joints are shown as circles in the figure 3.4c, and the connection points are marked
by the red X’s in the figure 3.4d. Note that, the joints are not visible in the rendered
graphics.

The collision only happens between the agent and the terrain components, and, there is
no self-collision between the body and the legs. In addition, the legs are labeled from
0 to 3, in an order of: front left, front right, rare left and rare right. The left legs are
coloured in red-grey and the right legs are coloured in dark-red, see figure 3.3a.

100 28 —
I e +
i 8
17 Tr
s 9
(a) The body
e 34 — r— 34 ——‘
! {
8 | | 64
i )

(b) The robot legs: upper leg (left), lower leg (right)

~14

‘ Body
Rl ‘ \'
sl o

(c) Design of the agent (d) The connection points

Figure 3.4: The blueprint of the agent, in meters (m)

The friction coefficient is set to 2.5 between the legs and the obstacles/terrain. This
friction coefficient allows the agent to climb over the large stumps. On the other hand,
it is still possible for the agent to make a slip.
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In the simulation, the lengths are scaled by a factor of SCALE = 1/30. And after

scaling, the mass of each link = area of the link x e AILEZ x material density p,

« The body is 11.47 kg, where pjoay = 5 kg/m?.

* The upper leg is 0.30 kg, where p,pperieg = 1 kg/m?.
* The lower leg is 0.24 kg, where pjoyer 1eg = 1 kg/mz.

* The total mass of the robot = mp,qy +4 X (Mypper teg + Miower teg)= 13.63 kg.

PaVAN

& Upper
eg
AN rad 11 rad A

(@) (b) ()

Figure 3.5: Agent joint limits

The hip and knee joint positions are defined as o and B (figure 3.5a) for each leg.
And the joint limits are a € [—0.8, 1.1] rad (figure 3.5b) and € [—0.1, 1.6] rad (figure
3.5¢).

3.3 Implementing Forward Dynamics

Due to the lack of support of the original BipedalWalker environment, a FD algorithm
is required for the simulation. More specifically, the original environment has provided
the dynamics for handling collisions between rigid bodies. It is only the joint-level
torque control that is unsupported. According to section 2.2, the FD is implemented
and embedded into the simulation environment:

Algorithm 2: Forward Dynamics algorithm

Function GetJointVelocity (Ocum, I, T):
0« 1/1
enew «— Clip(elower limit» eupper limit» 0 X Ar + ecurr)
return 0,,.,,

The algorithm takes the moment of inertia I (provided by the simulator) and the current

joint velocity 0., and return the new joint velocity 0,,,, for the next timestep, which
is clipped by the joint velocity limits. The joint velocity limits are defined as

o [—4,4] rad- s~! for the hip joints, and

e [—6,6] rad-s~! for the knee joints.
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If assume fpp = 100 Hz, the At is 0.01 s, which is small enough for simulation, so
that, the error introduced by this approximation is almost trivial. Notice that, the joint
velocity calculated from the function GetJointVelocity is the theoretical joint velocity.
Together with other dynamics, such as collisions, the simulator calculates and provides
the real results to the agent.

3.4 PD controller

From the industry, the integral term in the PID controller is sometimes omitted. If the
desired position is unreachable, i.e. not in the C-space, the output torque will increase
monotonically. This happens because after reaching the joint limit, q.(7) becomes
a non-zero constant, so [ (. (¢)dt increases monotonically regardless of its direction.
Thus, a PD controller is used in this project.

As discussed in 1.2.1, MELA adopts 25 Hz trajectory sampling frequency for the agent
that is proven to be successful. Hence, this project also adopt the 25 Hz sampling
frequency. The PD controller is operating at another specific control frequency in Hz,
which should be sufficiently high, and also reasonable for the computing speed.

250

200+

150 4

100 A

Position (m)

50 4

0 1 2 3 4 5

Figure 3.6: Response of 25 Hz sinusoidal input with different control frequencies (plot-
ted in 250 Hz).

The figure 3.6 shows the response of the mass-spring-damper model (mentioned in
section 2.1.4) controlled under different fpp’s, a higher control frequency is shown
to have a smaller error. Especially the overshooting at the crests and troughs of the
trajectory, see in the zoom-in plot on the right of the figure 3.6. However, the improve-
ment of the response becomes too small when fpp is large. In conclusion, for 25 Hz
trajectories, 100 Hz control frequency is sufficient.

The torque limit is [—80, 80] Nm for every joint. This value is inherited from the orig-
inal environment configuration that has been adopted by many other works, such as
Song et al. [14]. For our agent, the “ratio of mass against the number of actuator” is
about 13 : 8, which is about the same as on the original agent BipedalWalker. There-
fore, this torque limit allows the agent to generate sufficient power for the locomotion.

The PD gains are fine-tuned for each actuator on the agent. With a sinusoidal trajectory
input, as the light blue curves shown in the figure 3.7, the top two rows are the response
of each joint in the blue curves and the bottom two rows are the corresponding torques
generated from the actuators.
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Figure 3.7: Response of the agent with 25 Hz sinusoidal input. We can see from the
plots, the torque response is fluctuating drastically in the first 50 timesteps, and then
becomes smooth. This is considered to be normal for accelerating the joints from the
rest, besides, the joint positions are closely following the desired values.
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Figure 3.8: Histograms of the PD error
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Together with the error histograms (3.8), in the starting phase (figure 3.8 left), although
the joint error is skewed towards 0, there are occasionally large errors that are greater
than 0.4 rad (22.9 degrees), such as 0.80 rad (45.8 degrees). After 50 timesteps, shown
in the figure 3.8 (right), joint error is basically below 0.05 rad (2.9 degrees), with
very rarely error between 0.1 to 0.25 rad (5.7 to 14.9 degrees). Under gravity, there
is an inevitable steady-state error for a PD controller, however, this performance is
considered accurate enough for this project.

3.5 The training methodology

3.5.1 The training algorithm

Based on the discussion of DRL and PPO in the section 2.3, the training algorithm is
defined as:

Algorithm 3: The training algorithm

iteration <— 0

initialise 6 ~ A (u, X)

while policy entropy not converged AND iteration < Nyygin do

while sampled length < T;4in, do
| Collect the training data with policy mg with the rollout agents

end
Split the training data into fragments of length M

for update iteration=1, ... ,NsGs do
| Optimize surrogate L w.r.t 6 with one randomly selected fragment

end
0« eoptimised
iteration < iteration + 1

end

Where Nirains Tirain, Nsgp, M are constants, u is a zero vector and X is the identity
matrix, where the dimension of y and X varies according to the dimension of the policy
network. The entropy convergence detection algorithm is defined in the algorithm 4.

The training starts with a randomly initialised policy network 7y, collect the training
data and update the policy by the SGA algorithm as mentioned in the PPO algorithm
(section 2.3.2). The hyperparameters can be found in the Appendix A.

3.5.2 The rollout phase

The training data is collected in the rollout phase. The rollout process for an individ-
ual rollout worker (agent) is illustrated in the figure 3.9. In the rollout phase, many
parallel rollout agents collects the training data independently, concurrently, in their
simulation environments. Until enough training data is collected, the sampled data are
concatenated into one big training data, which is then split into smaller fragments of
length M from the training algorithm (algorithm 3).
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Figure 3.9: Pipeline of the rollout process, from which training rollouts are collected.
The rollout agent observes from the environment, feeding the normalised observations
as an input to the policy network and receives the next action (the next trajectory) to
take. At the same time, the PD controller drives the agent to act in the environment
according to the output trajectory. Then, the simulator updates the environment and
provides a new observation to the agent. This process is repeated until the reanimation
conditions are met.

Data normalisation is important in DRL. Without the normalisation, the DNN may
experience many problems that prevents the DNN from learning correctly, e.g. the
vanishing gradient and the exploding gradient problems [15]. Therefore, the values in
the observation vector are all normalised to [—1, 1].

3.5.3 Condition of early termination

Once the policy has converged, further training may still improve the gait smoothness
by a little bit. But, too many iterations of extra training is a waste of time. Therefore,
a concise algorithm is design for finding a good balance between the training quality
and the efficiency:

Algorithm 4: Policy entropy convergence detection

Function hasEnt ropyConverged (an array of entropy, o) :
if length(o) > S then
k < the gradient of the best fit line for the last S values in o
if |k| < threshold then
| return True
end
end
return False

Where S and threshold € (0, 1) are constant parameters. With this function, the training
algorithm is able to terminate the training at a few training iterations after the policy
has converged. The parameters can be found in the Appendix A.
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Experiments and evaluation

4.1 Introduction

The following sections discuss different methodologies with evaluation. The discus-
sion begins with the experiment with the baseline model, which displays many issues.
After that, we propose a novel methodology for overcoming those problems, with the
evaluations for demonstrating its versatility and completeness.

4.2 The baseline experiment

For a recap, the DRL problem can be simplified as a maximisation problem over the
objective function, which is the reward function. The reward function defines the be-
haviour that are rewarded and the behaviour that are penalised. As discussed in the
introduction 1.2.2, the performance quality largely depends on a good the reward func-
tion. The baseline model sets the bar of the minimum quality of the task that has to be
achieved.

This project is running on a brand new derivation from the OpenAI’s BipedalWalker
challenge, which means there is no other work or baseline available for a comparison.
Hence, we introduce a “naive” experiment to serve as the baseline experiment.

4.2.1 Reward shaping

The baseline reward function is defined as:

reward, — Pratting if the agent falls down @.1)
c1(RS; —=RS;_1) —c2||T|[1 — ¢5|ve — V|, otherwise
Where.
- 0 oay|» if ¢ 2 1
RS, — X 7 lBual, ifr =1 (4.2)
0, otherwise

21
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Where ¢y, ... ,c5 and Pggyg are constants, T is a vector of the torque command, x
is the body displacement in x-axis, 0,4y is the body angle and the RS is the “Robot
Shaping” reward, that rewards the agent for a good movement or penalises for a bad
movement.

Firstly, the term ¢1(RS; — RS,_1) is the only source of gaining positive reward. If the
robot has moved forward, then X is positive, so there is a reward. But, if the robot has
moved backwards, there is a penalty. Secondly, the torque penalty c;||t/||; penalise
the use of torque, because an optimal policy should be more efficient, and therefore,
consume less power. Thirdly, the term —c4|0p,4,| penalises if the body is not flat.
Finally, if the agent’s x-velocity differs from the target x-velocity v}, there is a penalty
of ¢s|vy — v§|. This term is added as required in section 2.4, the agent is desired to have
a stable velocity.

4.2.2 Experiment results
4.2.2.1 Completeness

The training results are shown in the figure 4.1a, where the yellow shaded area is the
range of the reward value, the deep blue curve is the smoothed mean reward, the light
blue curve is the raw data of the mean reward, and the green dotted line the success
reward threshold. Note, in the training mode, the actions are sampled stochastically
from the policy network. In the testing mode, the policy network always output the
mean of the distribution. This can be the reason that the mean reward has never hit the
success reward threshold during training. Therefore, the mean reward from training
does not reflect if the training has succeeded, or not.

From the test results shown in figure 4.2a, a 0% success rate indicates the locomotion
learning has failed. Despite of that, the training algorithm is considered to be correct.
As shown in the figure 4.1b, after 900 iterations of training, the policy entropy has
converged to about 2. At the same time, the mean reward has converged to about 250.

episode_reward_mean entropy

entropy
—— smoothed entropy

mean rewards 4
—— smoothed mean rewards
---- success reward

-100

—200

6 260 460 560 860 10‘00 12'00 14b0 0 200 400 600 800 1000 1200 1400
Training iterations Training iterations

(a) The training mean reward  (b) The training entropy training

Figure 4.1: Training results of the baseline model

The result from 100 testing episodes is shown in the figure 4.2a and the histogram 4.2b.
From the testing results, we can see about 2/3 agents has fallen down and about 1/3
agent scored below the success reward threshold.
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Figure 4.2: Training results of the baseline model. (a) The failure rate is 100%, where
the falling rate takes 63% of the failing rate. (b) The minimum, mean and maximum
testing rewards are -56, 78.2 and 298.0, respectively. The distribution of the rewards is
biased towards the lower end, but with a few high scores. None of them has passed the
success reward threshold.

4.2.2.2 Conflicting velocity rewards

A major reason for causing this sub-optimal gait is that, the reward function is self-
contradictory. The term RS; —RS;_; in the reward function is unbounded, that pro-
motes the agent for being be as fast as possible in terms of the x-velocity. More for-
mally,

reward; o< ARS = A(c3X — c4|0poay|) 4.3)
Assume 05,4y is always close to zero. And because Ar is small, then
reward; o< OX = v, 4.4)

On the other hand, the term P, = —c¢5|v, — v}| is limiting the x-velocity to be steady,
therefore, there is an contradiction.

4.2.2.3 Ability of overcoming obstacles

Another issue is overcoming the obstacles. The model hasn’t learned an optimised
policy to jump over the stumps. As shown in the snapshots!, the agent is tripped over
by a small stump, which should be very easy for a well learned policy to overcome.

Figure 4.3: The baseline agent fails at a small stump (duration: 1s)

Similar to the stumps, the agent constantly gets stuck at the pitfalls. See the snapshots?
shown in the figure 4.4.

I'The video is at “attached videos/01 agent tripped by a small stump/”
2The video is at “attached videos/02 agent stuck in a pitfall /”
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Figure 4.4: The baseline agent stuck in a pitfall (duration: 1s)

4.2.2.4 Torque smoothness

Overall, the baseline policy is more intend to use the front legs for driving the agent
forward. We can see the front legs gait displays a better “walking” gait while the rare
legs are more like they are being dragged along (see the video®).

(a) The skipping agent (at about 4 m/s)

R i

(b) The crawling agent (at < 0.5 m/s)

Figure 4.5: Demonstration of the bad gaits

Figure 4.7 shows a very noisy joint trajectories, especially the knee joints. As for the
torque commands, shown in the figure 4.8), they are also very noisy. There are a lot
of sharp or irregular torques commands. Particularly, it seems that the knee of the leg
1 and 2 are less utilised, compared to the knee of leg O and 3. The above reasons
are causing the legs to shake and being inefficient. From testing, the shaky torque
command usually results in two types of gaits: skipping* (figure 4.5a) and crawling’
(figure 4.5b). Where the in a skipping gait the front legs only performs a half swing:
back swings only or front swings only (figures 4.6b and 4.6¢).

front swing back swing

TR ST =3

Time Time Time

(a) A full swing (b) Back swings only (c) Front swings only

Figure 4.6: Examples of the different leg swings

3The video is at “attached videos/02 agent stuck in a pitfall />
“The video is at “attached videos/03 skipping,/”
3The video is at “attached videos/04 crawling/”
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Figure 4.7: Example of baseline torque commands in 25 Hz
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Figure 4.8: Example of baseline torque commands in 100 Hz
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4.2.3 Experiment conclusion

Although the baseline experiment is a failure, it is still a good proof of concept to
the project. In the same time, it has revealed many issues which are useful to the
later discussions. The policy has learnt to go forward, but in a poor gait. Overall, it
has shown a great potential of active obstacle avoidance and a more stable travelling
velocity.

4.3 The novel approach

This section introduces a novel design of the reward function, the Dynamic Reward
Strategy, known as DRS. Many experiments are discussed for justifying the design of
each component, and for evaluating the performance.

Firstly, according to the problem definition, a smooth locomotion with a steady ve-
locity is preferred. Therefore, the new reward function removes the “robot shaping”
reward, function RS, from the baseline reward function. The new reward function
rewards the agent when its velocity is in a desired range at the target x-velocity v}.
The choice of limiting the x-velocity, not the 2-D velocity vector is discussed in sec-
tion 4.3.2. Secondly, to eliminate the shaky gait, DRS penalises the square of the
joint angular acceleration, which is discussed in section 4.3.3. Finally, DRS introduces
a conditional penalty strategy on the joint torque and angular acceleration to further
boost the locomotion performance. This is discussed in the section 4.3.5.

4.3.1 The new reward shaping

The new reward function removes the self-contradicting terms form the baseline re-
ward function while adding some new terms, which is defined as:

Praui if has fallen down
reward, = ¢ Jlns’ ) . . 4.5)
c1e —c3(ve —vi)?) + ki otlli + ko 0G[3,  otherwise
Where, ¢y, ... ,c3 and Pyyying are constants, T is the torque command and ¢ is the joint

angular acceleration. The symbol “o” denotes the element-wise vector multiplication.
Coefficients k; and k; are coefficient vectors that are further discussed in section 4.3.5.
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Figure 4.9: The velocity reward shaping (with v = 4.0 m/s)
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Further speaking the velocity reward, the reward shape is shown in the figure 4.9. In
the figure, the desired velocity is v*. The tolerance thresholds are vy, and vy, .,
which are cross points (2.586 m/s and 5.141 m/s) of the curve at the x-axis. Within
the thresholds, there is a positive reward that is inversely proportional to the squared
velocity error. Beyond the thresholds, i.e. if the agent moves too slow or too fast, there

is a penalty proportional to the squared velocity error.

4.3.2 Target velocity

Three experiment are trained in the rough terrain (rough means the perturbation is
included, in contrast to the flat terrain) with the new reward function but different
target velocities. Tests are conducted in both rough and flat terrain, A well generalised
agent is expected to perform equally well in either terrain, where the flat terrain is
never seen by the agents during training.

Shown in the table 4.1. The experiment 3 is considered a failure, as the success rates
are both 0%. Because, the target velocity of [5,0] " m/s is too high which is impossible
for the agent to maintain at, so, the agent has never scored a reward over the threshold.
From experiment 2, the agent scored a success rate about 80% in the both terrain,
that is 9% and 23% higher than the corresponding success rates from the experiment
1. However, the second agent is less stable, as in each terrain, the falling rates are
about 10% higher than the first agent. The target y-velocity is set to 0 m/s, as specified
in the section 2.4, the terrain is overall flat and there is no demand on the vertical
displacement. For the moment, [4,0] m/s is a better target velocity.

For experiment 1 and 2, The skipping and crawling gaits are both considered bad,
which is further discussed in the section 4.3.3. Besides, the first two experiments are
neither a robust or generalised locomotion model, because they are sensitive to the
terrain perturbation and do not perform as good as in an easier flat terrain.

Exp. Gait Target Vel. Rough terrain Flat terrain
succ. rate falling rate succ. rate falling rate
1 crawling 2,0]" 70% 2% 65% 0%
2 skipping [4,0]7 79% 13% 88% 8%
3 trotting [5,0]7 0% 20% 0% 18%

Falling is a sub-category of failure, and the failure rate = 1 - success rate
Table 4.1: Target velocity evaluation (from 100 testing episodes in each terrain)
Further analysis with the experiment 2, the agent often gets stopped by large stumps,

even if it has never felt down. For an example, See the snapshots® 4.10. Together with
many other rollouts, the agent lacks of the jumping ability.

The video is at “attached videos/05 agent failed overcoming a stump,/”
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Figure 4.10: The agent from experiment 2 is being stopped by a large stump, but, it has
never felt down, until the maximum episode length is hit, the episode has terminated.
(duration: 20s)

Inevitably, the jumping motion introduces large y-velocities during the leap, which it
is heavily penalised by the reward function with the y-velocity constrained. In the
same time, the body has to tilt in order to jump. Therefore, for learning a better jump
gait, the y-velocity and the body must not be penalised. Those penalty terms will be
removed in the final reward function design. Combining with the experiment results,
vy =4 m/s is an appropriate target velocity. This is further justified in section 4.5.

4.3.3 Joint angular acceleration penalty

As mentioned in section 4.2.2.4, the joint trajectories are not smooth. This “shaky”
behaviour can be formalised as a high frequency direction change of the joint velocities
Aq which is the integration of the joint acceleration

t+-Ot
AQ =i — / i dr 4.6)
t

Then,

t-+0t
Aq o< / { dt 4.7)
t

Therefore, an instant penalty is applied to the joint angular acceleration, at each time
step. In the end, this penalty is accumulated. The square is introduced to further
penalise the large joint accelerations. In additionally, the Euclidean norm is applied,
because each joint is penalised equally. The joint angular acceleration penalty:

penalty, o< HqH% (4.8)

With this static penalty strategy, an example of the joint trajectories and the torque
commands are shown in the figures 4.11 and 4.12. The leg 1 is not included in the
discussion below, as it is used for balancing and providing extra versatility (further
discussed later). The joint trajectories are very smooth, compared to the baseline.
The periodic trajectories enables a more natural swing motion of the legs. The torque
commands are neat and well optimised. Besides, the controller generates basically
the full range of the torque while displaying a fluent torque transition without drastic
changes.
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Figure 4.11: Example of the 25 Hz joint trajectories with the angular acceleration penalty
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penalty
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4.3.4 A better vision perception

If the agent detects an obstacle too soon, from observation, the agent usually jumps
earlier. Hence, there is a higher chance that the front legs will jump into a pitfall or
get tripped over at a stump. To address this, the range of the front and rare LIDAR
sensor is adjusted. As shown in the figure, the new LIDAR configuration is front and
rare LIDAR is sensing at ranges [—20,50] degrees (front) and [—45,34] degrees (rare),
as shown in the figure 4.13b, whereas the old ranges are [0,58] degrees (front) and
[—20, 58] degrees (rare), shown in the figure 4.13a). In the new LIDAR configuration,
the agent has a shorter range in the front, but a bigger range at the back. The ground
below the body is always well-covered by either configuration.

AR M

a) The old LIDAR configuration b) The new LIDAR configuration

Figure 4.13: Modification of the robot vision sensors

Exp. LIDAR conf. Target Vel. Terrain with perturb. Without perturb.

succ. rate falling rate succ. rate falling rate

2 old conf. [4,0]T 79% 13% 88% 8%
4 new conf. [4,0]7 85% 14% 94% 5%

Falling is a sub-category of failure, and the failure rate = 1 - success rate

Table 4.2: LIDAR configuration evaluation (from 100 testing episodes in each terrain)

Here are two experiment (table 4.2) comparing the performance between the old and
new LIDAR configurations, while other settings are kept the same. As shown in the
table, there is an 6% success rate improvement, in both terrains, after the LIDAR
configuration update. Despite the new model is still sensitive to the perturbations,
the new agent, from experiment 4, has achieved 85% success rate in the rough terrain
and a surprising 94% success rate in the flat terrain, which is impressive.

4.3.5 The Dynamic Reward Strategy

After the above experiments and evaluations, the model is still having a falling rate at
~ 15% in the rough terrain. From the sampled episodes, the falling is mainly caused
by a slip step.
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Figure 4.14: The agent falls into a pitfall by a slip

Here is an example of a slip’ (figure 4.14), the leg 0 has slipped off the ground, which
then, caused a tilt in the body and a misstep of leg O (the moment is highlighted by the
red box). Finally, the agent gets stuck in the pitfall and the experiment has failed.

The behaviour of the slip is summaries as following:
1. The legs are shaky and swings too slow in the air.
2. The lower legs take too long to land. Therefore, the agent misses good footholds.
3. The contact force is too small. Therefore, it does not support the body firmly.

Together with the new reward function, DRS is defined as:

Algorithm 5: Dynamic Reward Strategy

for each leg in the quadrupedal robot do
if the lower leg is in contact then
‘ Decrease the joint torque and joint angular acceleration penalty coefficient
else
/* if the lower leg is not in contact */
Increase the joint torque and joint angular acceleration penalty coefficient
end

end

Note that, the lower legs can only be in contact with the terrain and the obstacles. DRS
promotes a high power output when the leg is in contact, and reduces the waste of
energy of the legs, during a swing in the air. Further speaking, this strategy guides the
policy to learn following properties:

1. Smooth swings of the leg for better foot placements and

2. Fast leg swings in the air, as the angular acceleration is more consistent, so as
the joint velocity.

3. A better contact force to reduce slips and

4. A better support/acceleration of the agent, as a burst of torque is generated when
the lower leg is in contact.

DRS also reduces the swing time of the legs between the steps, while performing
stronger pushes in each step. In additional, fast joint velocity is allowed, because

"The video is at “attached videos/06 agent slips into a stump,/”’
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the angular velocity is not penalised. Also, as discussed in the Forward Dynamics
section 2.2, the joint acceleration is proportional to the applied torque, thus, the torque
command is also penalised in a close relation to the joint angular acceleration.

The implementation of this strategy is done by manipulating the penalty coefficients in
the reward function, such that, a different penalty is issued under different conditions.
For a recap, ||kj o7||; is the joint torque penalty and ||k, o §||3 is the joint angular
velocity penalty in the new reward function. The vectors T, q, kj and k; are vectors of
RN, where N is the number of the joints. The coefficient vectors are defined as:

c4, if the related foot is in contact, for leg i
Ki =k jeni..n = { 7 . (4.9)
cs, otherwise
ce, if the related foot is in contact, for leg j
ky=ky jen..n = { ’ . (4.10)
c7, otherwise
Where cy4, ... ,c7 are constants and N, as mentioned, is the number of joints. Ac-
cording to the DRS algorithm defined in 5, the constants c4, ... ,c7 have a relation of

c4 < c5and cg < 7.

4.4 Hyperparameter tuning

This project adopts an implementation of the Population Based Training (PBT) algo-
rithm [16] by Ray Tune® for tuning the DRL hyperparameters. The PBT algorithm
combines the Bayesian optimisation and the Grid search technique to optimise the
hyperparameters efficiently while training. As in the figure 4.15, each curve is one
conducted experiment. The optimal hyperparameters are attached in the appendix A.
Note, the reward is scaled up by a factor of 5 in this experiment.

o 50k 0ok 150k 200k 250k 300k 350k 400k 450k 500k 550k

Figure 4.15: The tuning results with Ray Tune.

8 A scalable Python library for experiment execution and hyperparameter tuning. Website: https:
//docs.ray.io/en/latest/tune/index.html
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4.5 Evaluation

The hyperparameters used in the DRS (experiment 6) are attached in the Appendix A.
The policy has converged after 1000 iterations of training. See the mean reward and
the entropy of training in the figure 4.16a and 4.16b. The mean reward does not reflect
if the training has succeeded or not, as mentioned in the baseline (section 4.2.2.1).

From 100 testing episodes, DRS has scored a 91% and 92% success rate in the rough
terrain and the flat terrain, respectively. Shown in the figure 4.16 (Each yellow bar
represents the success rate of a batch of 10 tests). We can see that, the model is per-
forming equally well with/without perturbation. Therefore, it is well generalised
locomotion model.

episode_reward_mean entropy

entropy
10 —— smoothed entropy

mean rewards 4
—800 1 —— smoothed mean rewards
_1000 ---- success reward 2
0 200 400 600 800 1000 0 200 400 600 800 1000
Training iteration Training iteration
(a) The training mean reward (b) The training entropy
100 100
e e
£ 80 S804
© ©
Kol Qo
g 60 ) 60
° o
ﬁ 401 Mean succ. rate=91.00% ﬁ 401 Mean succ. rate=92.00%
o 20 —— Failure rate=9.00% ¥ 20 —— Failure rate=8.00%
3 3
0 Falling rate=7.00% 0 Falling rate=5.00%
0

— T T T T T T T 0 — T T T T T T T T T
1 2 3 45 6 7 8 910 123 456 7 8 910
# Batch of 10 trails # Batch of 10 trails

(c) Rough terrain test results (d) Flat terrain test results

Figure 4.16: Training & Test results of the novel approach

As shown in the table 4.3, this novel approach (Exp. 6) has score the best success
rates across the experiments. Compared to the baseline model, the DRS approach
has about 90% improvement of the success rates in both terrains. In the rough terrain,
there is a 6% to 21% improvement in the success rate improvement compared to the
others. In the flat terrain, DRS is 2% lower than success rate of the experiment 4,
but is more than 10% higher than the success rates of the experiment 1,2 and 5. (The
experiment 3 is ignored, as it is a failure)

Another important improvement is about the falling rate, compared to the other ap-
proaches with a high target velocity, but without the dynamic penalty (experiment
2-5), DRS has scored the least falling rate of 7% and 5% in the rough terrain and the
flat terrain. Especially compared to the experiment 5, with the only difference of the
dynamic penalty, DRS yields an about 3.5 times reduction on the falling rate. This
indicates that, DRS is having a very positive impact on the stability of the locomo-
tion model.
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Real velocity

— y vel

- -~ target vel
- T
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(a) The velocity curve of this sample

b) The trotting gait of the agent

aﬂmm

¢) The agent jumps over a pitfall

(d) The agent jumps over a stump

Figure 4.17: Evaluation of DRS

As expected, the gait style of DRS displays all the desired properties as discussed in the
section 4.3.5. See the snapshots® shown in the figure, the agents performs a trotting gait
where the legs swing fast and smooth 4.17b. Even the leg 4 is less utilised, it provides
extra versatility when it is critically needed. This has largely improved the robustness
of the locomotion. At a pitfall, the agent overcomes it easily, shown in the snapshots
4.17c. At a stump, the agent performs a good jump, as in the snapshots 4.17d. In
addition, shown in the figure 4.17a, the x-velocity is very stable at 4 m/s, unless at
a stump. Overall, DRS displays an optimal locomotion policy of overcoming the
obstacles.

More about the trajectories, with DRS, the joint trajectories and the torque commands
are at the same level as the policy with a static penalty strategy, which are considered
smooth and optimal. Shown in the figures 4.18 and 4.19. Combining all from of the
above, DRS learns a versatile and robust locomotion for the quadrupedal robot.

The video is at “attached videos/07-09 novel approach/”



Chapter 4.

Joint ref. (rads) Joint ref. (rads) Joint ref. (rads)

Joint ref. (rads)

Torque (Nm) Torque (Nm) Torque (Nm)

Torque (Nm)

Experiments and evaluation

Leg 0 hip joint

Leg 0 knee joint

10 %
©
0.5 L -os
u
0.0 @ 10
o8 E -15
0 20 40 60 80 100 2\ 20 40 60 80 100
Timesteps Timesteps
Leg 1 hip joint = Leg 1 knee joint
L0 E -05
05 =
4= _10
0.0 E
-0.5 ‘é‘ 15
0 20 40 60 80 100 2\ 20 40 60 80 100
Timesteps Timesteps
Leg 2 hip joint o Leg 2 knee joint
Lo o
©
05 L -o0s
0.0 S
. @ -10
—-0.5 E s
0 20 40 60 B0 100 2\ 20 40 60 80 100
Timesteps Timesteps
Leg 3 hip joint —_ Leg 3 knee joint
10 3
0.5 g -05
Y
0.0 E -1.0
-0.5 -'é' s
0 20 40 60 80 100 2\ 20 40 60 80 100
Timesteps Timesteps

Figure 4.18: Example of the 25Hz joint trajectories of DRS
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Figure 4.19: Example of the 100Hz torque commands of DRS
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Chapter 5

Conclusion and discussions

5.1 Conclusion

This project proposes a novel approach, the Dynamic Reward Strategy (DRS), for learn-
ing a variety locomotion skills on the quadrupedal robot. The learned policy requires
only the sensory and vision inputs that is not depended on any form of the history data.
This approach has been proven to be robust and versatile in the rugged terrain with
random obstacles. The learned model has shown its redundancy of skill in 2-D, such
that, a good locomotion is performed with just three legs, while the fourth leg comes
to rescue only when the agent is out of balance.

The low-level feedback control is considered a success. Under the appropriate con-
figuration, the PD controller fundamentally provides a good manoeuvrability to the
quadrupedal robot. Experiments and evaluations have shown that, the PD controller
generates a correct and smooth torque through out the project.

At last, the training time of DRS is considered fast, where the model usually converges
within 2 hours of training using just one CPU with 3 cores at 4.0 Ghz. Although it
is not directly comparable, but for a reference, other approaches with the quadrupedal
robot in 3-D usually takes about 3 to 10 hours to converge, which also require more
CPUs and GPUs.

5.2 Limitation

The major limitation of this project is the dimensionality. It is considerably easier to
learn a locomotion model in 2-D, than learning in 3-D. Because in 3-D, the C-space
and the workspace of the robot becomes much more complicated and there are many
more issues to consider, such as the orientation of the body, the diagonal /sideway gait,
steering, foothold planning and more.
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5.3 Future works

A future work can be generalising this model to the 3-D world. There are so many
potential applications of the legged robot locomotion, such as autonomous delivering,
disaster rescue and more. Also in 3-D, more locomotion skills could be learned under
the framework of DRS, such as walk along a pre-defined path, climb up stairs and etc.
With the vision input in 3-D, this approach could also learn to behave like a guide
dog, which would cost significantly less time and money than training a real guide dog
(training for up to 2 years, $59,600 in total'). This would hugely benefit more blind
people.

Inspired by MELA [4], another direction of the future work can be learning a locomo-
tion with dynamic velocities. The goal is to learn a self-adapting locomotion that ac-
tively adjust its gait and velocity according to the user command and the environment.
For example, if walking on the ice where the friction is low, the agent automatically
slows down its velocity and starts to crawling. When climbing up a slope, the agent
knows to incline its body forward. Anyway, there is unlimited potential in the field of
the legged robot locomotion.

'Source: https://puppyintraining.com/how-nuch-does-a-guide-dog-cost/
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Appendix A

Hyperparameters used in DRS

A.1 Hyperparameters for training the policy network

MLP shape: [256, 256]

MLP activation function: ranh()

learning rate: 0.00005

lambda: 0.95

gamma: 0.99

value function loss coefficient: 0.62

entropy coefficient: 0.00045

clip parameter: 0.3

Kl coefficient: 1.0

kl target: 0.01

value function clip parameter: 10.0

stochastic gradient descent (ascent) minibatch size: 20
stochastic gradient descent (ascent) iteration: 20
train batch size: 4000

sample fragment length: 200

A.2 Parameters of the function hasEntropyConverged

Parameter Value
S 500
threshold  0.025
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Appendix B

Parameters of the agent

B.1 Parameters of the reward function

Parameter Value

Pfalling -300
Vi 4.0
c1 1.0
) 1.0
c3 0.5
C4 0.00096
Ccs 0.00024
Cc6 0.0024
cy 0.0012

Table B.1: Table of parameters for the novel reward function
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B.2 Proportional-Derivative parameters for the joint-level
PD controller

Leg 0 Leg1 Leg 2 Leg3

Hip Knee Hip Knee Hip Knee Hip Khnee
K, (Nm/rad) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
K; (Nms/rad) 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0

Table B.2: Table of the Proportional-Derivative parameters for the joint-level PD con-
troller
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