
Learning Autonomous Robot Grasping

Oliver Day
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

4th Year Project Report
Artificial Intelligence and Computer Science

School of Informatics
University of Edinburgh

2021

Abstract
This work explores how robust and generalisable robotic grasping behaviours
can be learned from data. A pick and reach task is used in which a simulated
robot arm grasps a cylindrical object and lifts it out of a tray. Offline reinforce-
ment learning is a class ofmethods that train only from pre-gathered data. This
work contributes an evaluation of state-of-the-art offline reinforcement learn-
ing techniques in comparisonwith potential-integral-derivative control and on-
line reinforcement learning. Conservative Q-learning (CQL), the state-of-the-
art in offline reinforcement learning, is able to successfully learn to grasp and
complete the task. CQL is shown to closely match the data in terms of task suc-
cess rate and learned behaviours. CQL also shows some robustness to external
forces pushing the object from the end-effector and ability to generalise to per-
turbed simulation physics and dynamics settings. These offline reinforcement
learning results outperform online reinforcement learning that learns with ad-
ditional interaction data and is not able to complete the task.

i

Acknowledgements
I would like to thank Zhibin Li and his lab for their supervision and guidance. I
also give thanks to my parents for supporting me through University. Finally, I
would like to acknowledge the PyBullet team and Aviral Kumar, Aurick Zhou,
George Tucker and Sergey Levine for their open-source robotics and reinforce-
ment learning libraries that made this work possible.

ii

Table of Contents

1 Introduction 1

2 Background 3
2.1 Problem Definition . 4

2.1.1 Reinforcement Learning Problem 4
2.1.2 Offline Reinforcement Learning 6
2.1.3 Robotic Grasping . 7

2.2 Related Work . 8
2.2.1 Reinforcement Learning 8
2.2.2 Soft Actor-Critic (SAC) . 9
2.2.3 Offline Reinforcement Learning 9
2.2.4 Conservative Q-Learning (CQL) 10
2.2.5 Robotic Grasping . 10
2.2.6 Human and Animal Behaviour 11

3 Approach 13
3.1 Proportional-Integral-Derivative Contoller 14
3.2 Soft Actor-Critic (SAC) . 14
3.3 Conservative Q-Learning (CQL) 15
3.4 Architecture . 17

4 Experiments 19
4.1 Simulation . 19
4.2 Environments . 20
4.3 Experiment Setup . 21

5 Results 22
5.1 Training . 22
5.2 Evaluation . 23
5.3 Learned Behaviours . 25

6 Conclusion 29
6.1 Future Work . 29

6.1.1 Curriculum Learning & Combining Tasks 29
6.1.2 Regrasping and Error Recovery Behaviour 30
6.1.3 Sub-Optimal Data . 30

iii

A Experiment Details 32

Bibliography 34

iv

Chapter 1

Introduction

Robots are defined as “physical agents that perform tasks by manipulating the
physical world” [1]. Robot engineering draws on a wide range of sources in-
cluding perception, planning and control theory. Robotics is increasingly im-
pacting society frommanufacturing to drones and self-driving cars. Industrial
robotics is a field of robotics concerned with manufacturing tasks such as as-
sembly and welding. The first robotic arm went on sale in the 1961 [1] and the
industry is set to more than double in the next 5-10 years [2].
Approaches to robotics manipulation typically use classical planning and con-
trol methods. These methods have proved efficient and effective on the assem-
bly line for controlled tasks. However, they require manual tuning for new
tasks and can struggle in unstructured domains. Learning based approaches
aim to overcome these limitations by developing behaviours from data. The
hope is that learned behaviours can be more robust and generalisable, as well
as making it easy to train on new tasks by just providing data.
This project aims to explore how robotic grasping can be learned from be-
haviour data. It aims to evaluate the robustness and generalisability of the
learned grasping. The task is a pick and reach robotics task in which an ob-
ject must be picked out of a tray.
The contributions in this work are:

• Developed a suite of simulated robotics tasks with datasets to evaluate
learning to grasp.

• Showed that offline reinforcement learning is able to learn robotic grasp-
ing from data.

• Benchmarked a proportional-integral-derivative (PID) controller and a
state-of-the-art online reinforcement learning algorithm.

• Evaluated the robustness and generalisability of the learned policies on
the robotics tasks.

The aims of thisworkwere completed successfully and conservativeQ-learning

1

Chapter 1. Introduction 2

(CQL) is shown to learn from offline data to grasp the object and complete the
task. CQL learns to behave similarly to the behaviour data and completes the
task 73% of the time with the object randomly placed in the tray. CQL also
proves to be able to generalise to perturbed physics and dynamics settings and
robust under external forces, comparable to the dataset. Further work beyond
the original goals was completed in comparing to a state-of-the-art online re-
inforcement learning algorithm, soft actor-critic (SAC) [3]. CQL trains better
and outperforms SAC, despite SAC gathering additional online data. The code
base for this work is open-source1 and builds on outstanding open-source work
from [4], [5] and [6].
This report starts with chapter 2, a background chapter introducing the prob-
lem settings and related work in reinforcement learning and robotic manipula-
tion. Next, in chapter 3, the approach used in this work is elaborated, with de-
tails about the algorithms andmodels used. The experiment setup is explained
in chapter 4, describing the simulation, data and tasks. Chapter 5 discusses the
experiment results, showing the models’ training and evaluation performance
and examining the learned behaviours. Finally, chapter 6 concludes the report
and proposes future work.

1The code is available here and in the additional materials.

https://github.com/olliejday/ug4_project

Chapter 2

Background

Reinforcement learning is a framework for learning control from interaction.
The aim is to learn a policy to interact with an environment in a way that max-
imises the values of a reward signal. Reinforcement learning is widely applica-
ble in areas including robotics, dialogue systems andfinance. The field has seen
considerable progress in the last decade, notably with beating the world cham-
pion at the board game Go [7], achieving human-level performance at Atari
games [8] and algorithms such as proximal policy optimisation [9]. Much of
this development involves combining reinforcement learning with deep learn-
ing.
Deep learning is a subfield of machine learning that uses neural networks to
learn functions from data. With an increase in the availability of data and com-
puting resources as well as improvements in algorithms, there have beenmajor
developments in deep learning including image recognition [10], image gen-
eration [11] and natural language generation [12]. These breakthroughs have
led to a growing artificial intelligence industry with real-world applications as
broad as health [13], recommender systems [14] and speech technologies [15].
Despite its potential, reinforcement learning has not seen as much real-world
impact as deep learning. Largely because the techniques used today require
impractical amounts of experience in the environment to learn from. This is
especially an issue when interaction data are expensive (e.g. robotics) or dan-
gerous (e.g. healthcare) [16].
In standard reinforcement learning these experience data are collected through-
out training, this is referred to as the online setting. In contrast, offline reinforce-
ment learning utilises data sets gathered before training, to reduce or even elim-
inate the need for online interaction to learn optimal behaviours.
Several alternatives to offline reinforcement learning have been developed to
make better use of interaction data such as simulation to real-world transfer
[16] and iterative labelling of on-policy data as a form of imitation learning in
DAgger [17]. Offline reinforcement learning is a promising direction for real-
world applications where, despite the difficulty in gathering new interaction

3

Chapter 2. Background 4

data, there are data sets available to learn. Example applications include dia-
logue systems and healthcare [16].
The application domain in this work is learning robotic grasping. A continuous
control pick and reach task is used, requiring a robot arm to successfully grip
an object in the environment and lift it out of a tray (figure 2.1). This has appli-
cations to manufacturing and assistive robotics. For evaluation, a regrasping
task and perturbed physics task are used.

(a) Start of the task (b) Completion behaviour of the task

Figure 2.1: The pick and reach task: a PyBullet simulation of a Franka robotic arm is
controlled to grasp and lift a cylindrical object.

2.1 Problem Definition

2.1.1 Reinforcement Learning Problem
Reinforcement learning is a framework for learning a control policy from inter-
action with a system called the environment. This section defines the problem
setting in reinforcement learning as formulated in [16] and [18]. The policy
receives a state, 𝑠, from the environment and decides on an action, 𝑎, to send to
the environment. The environment updates based on the action and sends back
the new state, 𝑠′ and a scalar reward signal, 𝑟(𝑠,𝑎). This sequence 𝑠,𝑎,𝑟(𝑠,𝑎),𝑠′

is called a transition.
In reinforcement learning, sequential decisionmaking is formalised as aMarkov
decision process (MDP). AnMDP is defined as: ℳ = (𝒮,𝒜,𝑇 ,𝑑0, 𝑟,𝛾) where 𝒮
is the set of states 𝑠 ∈ 𝒮; 𝒜 is the set of actions 𝑎 ∈ 𝒜; 𝑇 is the transition proba-
bility distribution, 𝑇 (𝑠𝑡+1|𝑠𝑡,𝑎𝑡), that defines the dynamics of the system; 𝑑0 is
the distribution of initial states 𝑑0(𝑠0); 𝑟 ∶ 𝒮×𝒜 → ℝ is the reward function and
𝛾 ∈ [0,1] is the discount factor. The key assumption in the MDP setting is the
Markov property, in the formulation of the transition probability 𝑇 , that the
probability distribution over a state 𝑠𝑡+1 depends only on the previous state 𝑠𝑡
and action 𝑎𝑡 [18].
Given an MDP, the goal of reinforcement learning, as described in the reward
hypothesis, is to maximise the expected sum of discounted rewards received

Chapter 2. Background 5

Figure 2.2: Illustration comparing themain reinforcement learning settings discussed
showing environment interaction and how data are processed in: (a) on-policy online
reinforcement learning, (b) off-policy online reinforcement learning and (c) offline
reinforcement learning. From [16].

from the reward function [18]. The discounting factor, 𝛾, of the reward hy-
pothesis is comparable to the interest rate in finance and controls the value of
present and future rewards.
To construct this formally, first define the policy, 𝜋(𝑎|𝑠), a conditional prob-
ability distribution over actions, 𝑎 ∈ 𝒜, to take in each state, 𝑠 ∈ 𝒮. The pol-
icy interacts with the environment over a series of separate interactions, called
episodes, of length 𝐻 . A policy and MDP then define a trajectory distribution,
𝑝𝜋, of sequences of states and actions:

𝑝𝜋(𝑠0,𝑎0, ...,𝑠𝐻,𝑎𝐻) = 𝑑0(𝑠0)
𝐻

∏
𝑡=0

𝜋(𝑎𝑡|𝑠𝑡)𝑇 (𝑠𝑡+1|𝑠𝑡,𝑎𝑡)

The reinforcement learning objective (the reward hypothesis) 𝐽(𝜋) can then be
written:

𝐽(𝜋) = max
𝜋

𝔼(𝑠0,𝑎0,...,𝑠𝐻,𝑎𝐻)∼𝑝𝜋(⋅)[
𝐻

∑
𝑡=0

𝛾𝑡𝑟(𝑠𝑡,𝑎𝑡)] (2.1)

An array of algorithms have resulted from the MDP formulation of control. In
online reinforcement learning, algorithms gather and train on new interaction
data. This data can be on-policy, where the data are collected under the current
policy itself or off-policy where the data come from a buffer gathered under
another policy, typically previous updates of the policy during training. In of-
fline reinforcement learning, the data are gathered separately by a behaviour
policy that interacts with the MDP. These types of reinforcement learning are
illustrated in figure 2.2. Another class of techniques is model based reinforce-
ment learning which explicitly models the system dynamics 𝑇 (𝑠𝑡+1|𝑠𝑡,𝑎𝑡) and
reward function 𝑟(𝑠𝑡,𝑎𝑡) and uses these to plan behaviours.
To solve the reinforcement learning problem defined above, it is often useful to
represent the objective 𝐽(𝜋). One such representation is the Q-value, 𝑄𝜋(𝑠,𝑎),

Chapter 2. Background 6

which is the expected sum of discounted rewards given you are in state 𝑠, take
action 𝑎 and thereafter act according to the policy:

𝑄𝜋(𝑠,𝑎) = 𝔼(𝑠𝑖,𝑎𝑖)∼𝑝𝜋(⋅)[
∞

∑
𝑘=0

𝛾𝑘𝑟(𝑠𝑡+𝑘,𝑎𝑡+𝑘)∣𝑠𝑡 = 𝑠,𝑎𝑡 = 𝑎] (2.2)

The optimal Q-function, 𝑄∗(𝑠,𝑎) represents the Q-values under the optimal
policy (that maximises 𝐽(𝜋) in equation 2.1):

𝑄∗(𝑠,𝑎) = max
𝜋

𝑄𝜋(𝑠,𝑎) (2.3)

Combining this definitionwith equation 2.2 gives the Bellman optimality equa-
tions for Q. These equations express the fact that the Q-value of a state and ac-
tion under the optimal policy must be the next reward received and then the
best possible expected Q-value after that. Let 𝑎′ be the next action and 𝑠′ be the
resulting next state:

𝑄∗(𝑠,𝑎) = 𝔼[𝑟(𝑠,𝑎)+𝛾max
𝑎′

𝑄∗(𝑠′,𝑎′)]

The optimal policy can be defined as that which takes the best action in each
state:

𝜋∗(𝑎|𝑠) = max
𝑎′

𝑄∗(𝑠,𝑎′) (2.4)

This is a cyclical definition since𝑄∗ was defined based on the policy in equation
2.3. This relationship gives rise to bootstrapping and backup algorithms for
iteratively computing Q-functions and policies.

2.1.2 Offline Reinforcement Learning
Offline reinforcement learning is different from the online case in that it trains
from only a dataset 𝒟, collected under a behaviour policy 𝜋𝑏 (figure 2.2). The
behaviour policy collectingdata can be a pre-trained online reinforcement learn-
ing model or other controller. Even random environment interaction data can
be used but less optimal data make offline reinforcement learning more chal-
lenging.
In theory, off-policy online reinforcement learningmethods should apply to the
offline case, since they can learn from data collected under a different policy.
In practice, off-policy algorithms are typically used with online data from pre-
vious iterations of the policy during training. These off-policy methods have
not worked well when directly applied to offline data [16].
The main issue with applying online reinforcement learning to the offline set-
ting is the distribution shift. This shift is between the data under the behaviour

Chapter 2. Background 7

Timesteps

St
at

e
sp

ac
e

Data
Learning policy

(a) The distribution shift prob-
lem.

Timesteps

Q
(s

,a
)

Timesteps

Q
(s

,a
)

True Q-function
Q-function estimate
Conservative Q-function

(b) Q-values for out of distribution states and actions
are overestimated (left), conservative regularisation can
alleviate this (right).

Figure 2.3: Illustrative example of the distribution shift and resulting Q-value over-
estimation.

policy (the dataset) and the data under the learned policy [16]. As illustrated
in figure 2.3, the policy will take different actions to the data leading to a dif-
ferent state-action distribution. This effect compounds over time as each de-
viation takes the policy further from the data distribution. Naive Q-function
estimators then overestimate the Q-values for out of distribution states and ac-
tions. This over-optimism in values leads to poor choice of actions. This work
uses conservative Q-learning (CQL). CQL regularises the Q-function updates
to ensure out of distribution states and actions havemore conservative Q-value
estimates [4] (figure 2.3 (b, right)).
This distribution shift is also themain reasonwhy standard deep learning tech-
niques don’t work well in the offline setting. However, a more fundamental is-
sue is that the goal is to extract an optimal policy from the data which may not
be the same as the behaviour policy. For example, offline reinforcement learn-
ing could learn to splice parts from two trajectories to create a path between
two trajectories that was not seen in the data [19]. Deep learning instead aims
to learn to match or imitate the behaviour in the data directly.

2.1.3 Robotic Grasping
This work explores the pick and reach robotic grasping task. The aim is to send
a continuous control signal to a robot arm to grasp an object and lift it out of
a tray to a threshold height. A PyBullet simulation [5] of a Franka robotic arm
with a two finger gripper (see figure 2.1) is used.
Similar assumptions to [20] are made: the environment exposes robot joint an-
gles, end-effector position and orientation and object position and orientation.
Desired joint positions are the actions for the simulation. An oracle provides a
task completion reward. The data used are gathered by a proportional-integral-
derivative (PID) controller. More details about the experiment setup can be
found in section 4.

Chapter 2. Background 8

To evaluate the robustness of the policies, the pick and reach task is extended
by applying an external force requiring error recovery and by using perturbed
physics engine parameters. These tasks are only used in the evaluation and
so explore how well the trained models work in new dynamics and physics
settings.

2.2 Related Work

2.2.1 Reinforcement Learning
A rich field of reinforcement learning has developed around the problem as
described above. This section will introduce the online actor-critic approach
based on deep deterministic policy gradients (DDPG) [21]. DDPG can be seen
as an extension of deep Q-networks [8] to the continuous action space. The
seminal text on reinforcement learning [18] provides more detail and informa-
tion on other approaches.
Actor-critic utilises an actor, the policy 𝜋𝜙(𝑎|𝑠) parameterised by 𝜙, and a critic,
the Q-function 𝑄𝜃(𝑠,𝑎) parameterised by 𝜃, which evaluates actions.
The Bellman equation for Q is based on the fact that the definition of the Q-
function (equation 2.2) can be rewritten recursively. Let 𝑠,𝑎 be the current
states and actions and 𝑠′,𝑎′ the next timestep states and actions, the Bellman
equation is:

𝑄𝜋(𝑠,𝑎) = 𝑟(𝑠,𝑎)+𝔼(𝑠′,𝑎′)∼𝑝𝜋
[𝑄(𝑠′,𝑎′)] (2.5)

The temporal difference (TD) error is the discrepancy of the Q-function esti-
mates in the Bellman equation. This error gives an update objective for the
Q-function parameters:

𝐽𝑇 𝐷(𝜃) = min
𝜃

𝑟(𝑠,𝑎)+𝛾𝑄𝜃(𝑠′,𝑎′)−𝑄𝜃(𝑠,𝑎) (2.6)

In DDPG, the policy is then updated based on the Q-function definition of the
optimal policy (equation 2.4). Intuitively, the Q-values are how good an action
is in a state, so the policy should be updated to choose the value that is best in
each state. Let 𝒟 be a dataset of states:

𝐽𝐷𝐷𝑃𝐺(𝜙) = max
𝜙

𝔼𝑠∼𝒟[𝑄𝜃(𝑠,𝜋𝜙(𝑠))] (2.7)

Twin delayed DDPG improves DDPG by applying double-Q learning and tar-
get policy smoothing [22]. Soft actor-critic also uses similar techniques [3].
Other actor-critic methods include asynchronous advantage actor-critic (A3C)
[23]which usesmultiple workers in parallel that accumulate gradient updates.

Chapter 2. Background 9

This was improved in actor-critic with experience replay (ACER) [24] which
uses several modifications to A3C to construct a more sample efficient, off-
policy method.
Another class of reinforcement learning algorithms that has proven effective is
policy gradients. These methods update the policy directly without the need
for learning a value or Q-value function, such as proximal policy optimisation
(PPO) [9].

2.2.2 Soft Actor-Critic (SAC)
Soft actor-critic (SAC), is a state-of-the-art, off-policy, online actor-critic algo-
rithm that extends the above with the maximum entropy reinforcement learn-
ing framework [3]. Entropy is a measure of the uncertainty in a random vari-
able, ℋ(𝑝) = 𝔼𝑥∼𝑝[− log(𝑝(𝑥)]. By explicitly maximising the entropy of the pol-
icy, SAC aims to improve exploration and learn more generalised policies. This
is formulated as adding to the reward hypothesis objective (equation 2.1) a pol-
icy entropy term [3]:

𝐽(𝜙) = max
𝜙

𝔼(𝑠𝑡,𝑎𝑡)∼𝑝𝜋(.)[
𝑇

∑
𝑡=1

𝑟(𝑠𝑡,𝑎𝑡)+𝛼ℋ(𝜋𝜙(⋅|𝑠𝑡))] (2.8)

Such stochastic energy-basedmethods have been shown toworkwell in transfer
learning settings [25] and thus might have some resistance to the distribution
shift in offline reinforcement learning. SAC is used as a benchmark technique
in this work, more details are in section 3.

2.2.3 Offline Reinforcement Learning
The following is an overview of the main directions in offline reinforcement
learning research, a more in-depth survey is [16].
Policy constraint methods such as [26] mitigate the distributional shift by con-
straining the policy updates to stay close to the behaviour policy. This way,
the Q-function is queried for states closer to the data distribution which can be
more reliably estimated. This can be implemented as a penalty on the update
targets or as a constraint on the policy updates.
Uncertainty-based offline reinforcement learning methods attempt to estimate
the epistemic or model uncertainty of Q-function estimates. This uncertainty
should be larger for out of distribution actions and can thus be used to produce
conservative target values for the Q-function on such updates. The uncertainty
can be modelled using, for example, bootstrap ensembles [27].
Similarly to off-policy reinforcement learning,model-based reinforcement learn-
ing methods can in theory apply to the offline setting by simply training the
system dynamics model on the dataset. Some improvement can be made on
this, such as incorporating model uncertainty to mitigate bias [28]. However,

Chapter 2. Background 10

model-based offline techniques suffer from model exploitation, a problem re-
lated to distribution shift, where the model handles out of distribution states
and actions poorly.
Off-policy evaluation attempts to evaluate policies using data from another pol-
icy. This is useful for offline reinforcement learning because it allows evalu-
ation and model selection without online interaction, further improving the
data efficiency. Approaches to off-policy evaluation typically use importance
sampling, but a recent state-of-the-art method instead uses a binary classifica-
tion metric on the Q-function [29]. This evaluation correlates well with per-
formance across several environments, including a robotics task. Another ap-
proach focuses on interpretable evaluation by highlighting transitions that have
themost impact on the value estimateswhen removed [30]. Despite this progress,
off-policy evaluation remains an open challengewith deep neural network poli-
cies so online evaluation is used in this work (that is, the policy is run in the
environment).
Datasets for reinforcement learning (D4RL) [19], is a recent set of benchmark
tasks, including several robotics tasks, with datasets and simulations that help
to compare and evaluate offline reinforcement learning methods.

2.2.4 Conservative Q-Learning (CQL)
The offline reinforcement learning method used in this work is conservative
Q-learning (CQL) [4]. It is a recent work that performs state-of-the-art on sev-
eral D4RL offline reinforcement learning benchmarks. CQL augments stan-
dard actor-critic objectives described above with a Q-value regularisation term.
This change leads to learning a Q-function under which the value of a policy
lower-bounds its true value, thus mitigating the overestimation of Q-values.
More details of CQL and its implementation in this work can be found in sec-
tion 3.
CQLhas been applied in to dexterous in-handmanipulation andkitchen robotics
tasks [4]. An extension of CQL has also been applied to robotic manipulation
tasks where it is shown to learn complex behaviours from a combination of
unlabelled and task-specific datasets and to chain together behaviours on new
tasks [31].

2.2.5 Robotic Grasping
Robotic grasping is a widely researched topic. Classical planning and con-
trol is a class of explicitly programmed approaches including proportional-
integral-derivative (PID) control [32] and model predictive control [33] that
have proved effective on a range of complex tasks. Engineering robotic manip-
ulation requires knowledge of object motion and friction as well as the dynam-
ics and kinematics of the robot hand, as developed in the Stanford/JPL robot
hand [34]. Without modeling the object, tactile feedback sensing is used to
determine grasping position and detect slipping [35].

Chapter 2. Background 11

This work focuses on learning behaviours from data. Data-driven learning ap-
proaches have proved effective when applied at a large scale. In [36], they
gathered over 800,000 grasp attempts with 14 robotic arms over two months.
Using this data, they learned a controller that was able to grasp novel objects
and demonstrate error correction.
Reinforcement learning has been applied to robotics, such as [37] which trains
robotic manipulation end-to-end from vision to control. Online Q-learning
has been used with both on- and off-policy data to learn vision-based robotic
manipulation [38]. In [39], multiple expert models are combined to produce
adaptive locomotion behaviours. Each model is trained using reinforcement
learning to achieve a different task. This hierarchical reinforcement learning
approach is shown to generalise to new tasks. Deep reinforcement learning has
also been combined with imitation learning of human demonstrations to learn
humanoid locomotion tasks [40]. This is achieved by adding a data tracking
reward to the task reward.
In this work, the robustness and generalisability of the models are evaluated in
domains with varied physics and dynamics. A regrasping task is used where
the object is forced out of the gripper. Learning such regrasping behaviour
directly is explored in [41]. The second task used has randomised physics set-
tings such as gravity, object mass and friction parameters. Domain randomi-
sation [42] uses similar randomisation however they apply the perturbation
during training whereas here it is applied only at test time.
This work focuses on a setting using one robotic manipulator, but the state-of-
the-art in wider research uses bimanual manipulation. In [43], a set of base
skills, such as top-grasp, are combined by a learned policy to complete a se-
ries of bimanual manipulation tasks, including several pick and reach tasks.
Bimanual manipulation can also help in grasping objects that are otherwise
difficult or impossible to grasp [44]. The two manipulators are used collabo-
ratively to perform pregrasp manipulation that affords better grasping. These
pregrasp behaviours are learned in a deep reinforcement learning framework
and are effective over a range of objects both in simulation and transferred onto
real hardware.

2.2.6 Human and Animal Behaviour
Although the aim is to extract optimal policies from data and not to mimic be-
haviours, it is insightful to compare the learning with the natural example of
animals. In psychology, learning from other’s behaviours is called observa-
tional learning [45]. Analogously to the reward signal in reinforcement learn-
ing, psychologists define vicarious reinforcement and punishment based on the
outcomes observed of others’ behaviours [45].
One study of chimpanzees demonstrated their mechanism of social learning
[46]. A group of chimpanzees was seen to observe and model the drinking be-
haviour of another group. Young children are also able to learn behaviour from

Chapter 2. Background 12

demonstrations. In particular, a grasping task has been studied [47]. They
found that demonstrations significantly improved the strategies the children
employed to complete the task, hypothesising that it affected their task-relevant
motor strategies.

Chapter 3

Approach

The approachused in thiswork is conservativeQ-learning (CQL) [4]. TheCQL
system (figure 3.1), consists of three parts: the environment, the behaviour data
and themodel. The environment consists of the physics simulation and the task
setup and is explained in section 4. The behaviour data are the offline demon-
strations used to train CQL. These data are gathered by running a behaviour
policy which in this case is a proportional-integral-derivative (PID) controller.
The training and evaluation procedure of the D4RL benchmark is used [19].
CQL is trained offline on the behaviour data but evaluated online in the envi-
ronment.

Environment
(PyBullet)

CQL
Behaviour
data

Actions
 (a)

Observations,
Rewards
(s, r)

Actions
(a)

Observations,
Rewards
(s, r)

Gather
data

Evaluation

πB π

Actions,
obersvations,
rewards
(s, a, s', r)

Data buffer
Actions,
obersvations,
rewards
(s, a, s', r)

Figure 3.1: A system overview showing how the data flow. CQL training starts with
gathering the behaviour data using the behaviour policy 𝜋𝛽. These data are then
used to train a CQL policy which is evaluated online in the environment.

13

Chapter 3. Approach 14

3.1 Proportional-Integral-Derivative Contoller
In this work, a proportional-integral-derivative (PID) controller is used for ba-
sic grasping behaviour. The PID controller in this work is based on [6]. It only
uses the proportional and derivative terms not the integral term but the name
PID is used for consistency.
The PID output computes a desired end-effector position. This position is com-
bined with the desired orientation and an inverse kinematics solver [5] is used
to obtain desired joint positions as the control signal.
Each dimension 𝑖 is independently controlled by PID (without the integral
term) as the proportional and derivative of the error [32]:

𝑢(𝑡)𝑖 = 𝐾𝑖
𝑝𝑒𝑖(𝑡)+𝐾𝑖

𝑑
𝑑𝑒𝑖
𝑑𝑡

Where 𝐾𝑝 ∈ ℝ3 and 𝐾𝑑 ∈ ℝ3 are the gains, u(𝑡) ∈ ℝ3 is the output PID control
for the end effector position and e(𝑡) ∈ ℝ3 is the error signal at timestep 𝑡.
The error signal, e(𝑡) is just the difference between the position of the end ef-
fector x𝑒𝑒 ∈ ℝ3 and the target x𝑡𝑔𝑡 ∈ ℝ3.

e(𝑡) = x𝑡𝑔𝑡 −x𝑒𝑒

The PID gains, 𝐾𝑝 and 𝐾𝑑, are parameters that balance the proportional and
derivative terms and control the resulting behaviour. These gains were manu-
ally tuned to give the best performance of the system in the training environ-
ment.
In PID control, the proportional term is proportional to the error and used to
reduce it directly. The derivative term provides stability through damping of
oscillatory behaviour and helping prevent overshoot. The integral term is not
needed with the simulation as it is for reducing steady-state error, it could be
introduced for real-world settings. Overall, the proportional-derivative con-
troller can be interpreted as the predicted system output, where the predictions
are extrapolated into the future error using the error gradient [32].
Initially, for picking up the object, the PID controller is set to target the object
position. When a threshold distance is reached, the fingers of the gripper are
closed and the target position is set to a raised position to achieve the reach-
ing behaviour. The desired end-effector orientation is set based on the object’s
orientation directly.

3.2 Soft Actor-Critic (SAC)
Soft actor-critic (SAC) [3] is used in this work as a benchmark to compare to
conservative Q-learning (CQL), the main offline learning algorithm used. SAC

Chapter 3. Approach 15

is an online reinforcement learning algorithm however it is also off-policy, so
it can learn from data gathered under different policies. Therefore, it is a good
comparison as it can be trained online whilst also being provided with the be-
haviour data.
SAC is part of the maximum entropy reinforcement learning framework. This
augments the policy objective with a term rewarding the entropy of the policy
(equation 2.8). The introduction of entropy encourages more exploration and
capturing a more diverse set of behaviours [3].
SAC augments the actor-critic policy update (equation 2.7) with the policy en-
tropy:

𝐽𝑆𝐴𝐶(𝜙) = min
𝜙

𝔼(𝑠𝑡,𝑎𝑡)∼𝑝𝜋(.)[𝛼 log𝜋𝜙(𝑎𝑡|𝑠𝑡)−𝑄𝜃(𝑠𝑡,𝑎𝑡)] (3.1)

In this work, SAC is used with only Q-functions and a policy (no value func-
tions) to match the architecture of CQL. The resulting procedure is the same
as algorithm 1 below except the update for the Q-functions, 𝐽𝐶𝑄𝐿(𝜃). The SAC
objective for Q includes the policy entropy in the Bellman equation (equation
2.5) [48]:

𝐽𝑆𝐴𝐶(𝜃) = 𝔼(𝑠𝑡,𝑎𝑡)∼𝒟[1
2(𝑄𝜃(𝑠𝑡,𝑎𝑡)−(𝑟(𝑠𝑡,𝑎𝑡)+𝛾𝑄 ̂𝜃(𝑠𝑡+1,𝑎𝑡+1)

−𝛼 log𝜋𝜙(𝑎𝑡+1|𝑠𝑡+1)))
2
]

The implementation used is based on the original authors’ open-source code
but uses a different network structure to more closely match the CQL imple-
mentation [3].

3.3 Conservative Q-Learning (CQL)
Recall that the core issue with offline reinforcement learning is the distribution
shift between the behaviour policy data and the learning policy. This leads
to an overestimation of Q-values for the out of distribution states and actions
and so poor actions are chosen. Conservative Q-learning (CQL) addresses this
overestimation by ensuring low-value estimates on out of distribution states
and actions. In this way, the learned policy will be trained to keep closer to
the known actions in the behaviour data rather than erroneously favouring the
overestimated values.
To obtain such a lower-bound on the true Q values, CQL uses an objective,
𝑄̂𝜋

𝐶𝑄𝐿, combining the squared temporal difference error (equation 2.6), with a

Chapter 3. Approach 16

regularisation term (first line):

𝑄̂𝜋
𝐶𝑄𝐿 ∶= argmin

𝑄
𝛼 ⋅(𝔼𝑠∼𝒟,𝑎∼𝜇(𝑎|𝑠)[𝑄(𝑠,𝑎)]−𝔼𝑠∼𝒟,𝑎∼𝜋̂𝛽(𝑎|𝑠)[𝑄(𝑠,𝑎)])

+1
2𝔼𝑠,𝑎,𝑠′∼𝒟[(𝑟(𝑠,𝑎)+𝛾𝔼𝜋[𝑄̂(𝑠′,𝑎′)]−𝑄(𝑠,𝑎))

2
]

(3.2)

Where (𝑠,𝑎,𝑠′) are state, action, next state triples; 𝑟(𝑠,𝑎) is the reward; ̂𝜋𝛽(𝑎|𝑠) is
the behaviour policywhich produced the dataset𝒟; 𝜇(𝑎|𝑠) is a distribution over
actions (used in the regulariser) and 𝑄̂(𝑠,𝑎) is the Q-function approximator.
Intuitively, the CQL regularisation term minimises the Q-value estimates over
the 𝜇(𝑎|𝑠) distribution and maximises them over those of the behaviour policy,

̂𝜋𝛽(𝑎|𝑠).
Fitting a Q-function to this objective, the expected value of a policy provably
lower-bounds its true value. That is (for sufficiently large 𝛼) [4]:

𝔼𝑠∼𝑑0,𝑎∼𝜋(𝑠)[𝑄̂𝜋
𝐶𝑄𝐿(𝑠,𝑎)] ≤ 𝔼𝑠∼𝑑0,𝑎∼𝜋(𝑠)[𝑄𝜋(𝑠,𝑎)]

Developing this into an offline reinforcement learning algorithm, a family of
CQL update equations can be formulated based on the choice of action distri-
bution 𝜇(𝑎|𝑠) in equation 3.2 which impacts the regularisation. In this work,
𝜇(𝑎|𝑠) ∝ Unif(𝑎) ⋅exp(𝑄(𝑠,𝑎)) is used which gives the Q-function update objec-
tive (called CQL(ℋ) in [4]):

𝐽𝐶𝑄𝐿(𝜃) = min
𝑄

𝛼𝔼𝑠∼𝒟[log ∑
𝑎

exp(𝑄(𝑠,𝑎))−𝔼𝑎∼𝜋̂𝛽(𝑎|𝑠)[𝑄(𝑠,𝑎)]]

+1
2𝔼𝑠,𝑎,𝑠′∼𝒟[(𝑟(𝑠,𝑎)+𝛾𝔼𝜋[𝑄̂(𝑠′,𝑎′)]−𝑄(𝑠,𝑎))

2
]

(3.3)

The log ∑𝑎 exp(𝑄(𝑠,𝑎)) term is potential problematic for over/underflow so an
importance sampling approximation is usedwith 𝑁 = 10 samples fromUnif(𝑎)
and from the training policy 𝜋(𝑎) [4]:

log(1
2𝑁

𝑁
∑

𝑎𝑖∼Unif(𝑎)
[exp(𝑄(𝑠,𝑎𝑖))

Unif(𝑎)]+ 1
2𝑁

𝑁
∑

𝑎𝑖∼𝜋(𝑎|𝑠)
[exp(𝑄(𝑠,𝑎𝑖))

𝜋(𝑎𝑖|𝑠)])

The policy is updated using the entropy regularised policy gradient from SAC,
𝐽𝑆𝐴𝐶(𝜙) (equation 3.1).
This summarises the main contribution of CQL and results in a relatively small
change to standard actor-critic algorithms. In this case, CQL is adapted from
SAC [3]. The CQL training procedure is outlined in algorithm 1.
The implementation of CQL used in this work is based on an open-source im-
plementation by the original authors [4].

Chapter 3. Approach 17

Algorithm 1: Conservative Q-learning training (red shows difference from
actor-critic algorithms such as SAC) [4]
Input: A Q-function, 𝑄𝜃 with parameters 𝜃0; a policy, 𝜋𝜙, with parameters

𝜙0; learning rate 𝜂 and number of training epochs 𝑁
Output: Trained policy 𝜋𝜙𝑁

1 for step 𝑡 in {1,...,N} do
2 Update the Q-function using the CQL regularised TD-error (equation

3.3): 𝜃𝑡 = 𝜃𝑡−1 −𝜂∇𝜃𝐽𝐶𝑄𝐿(𝜃) ;
3 Update the policy 𝜋𝜙 with SAC-style entropy regularisation (equation

3.1): 𝜙𝑡 = 𝜙𝑡−1 +𝜂∇𝜙𝐽𝑆𝐴𝐶(𝜙) ;
4 end

3.4 Architecture
Both the implementations of SAC and CQL in this work makes use of double
Q-networks and target Q-networks (figure 3.2) [4], [3].

Policy

Q functions

Target
Q functions

Actions

DATA BUFFER

1

2

1

2

States States,
Rewards

Exp.
moving
avg.

Q-values

Targets

Figure 3.2: CQL uses multiple neural networks. It uses a policy, double Q functions
and target Q networks during training. Only the policy network is used for evalua-
tion.

Double Q-networks were originally introduced in [49] to address overestima-
tion of action values in online reinforcement learning and can speed up train-
ing. Here the variant from [22] is used. TwoQ-functions,𝑄𝜃1(𝑠,𝑎) and𝑄𝜃2(𝑠,𝑎),
aremaintainedwith separate parameters, 𝜃1 and 𝜃2. TheseQ functions are then
independently updated based on 𝐽𝐶𝑄𝐿(𝜃) (line 2 in algorithm 1). The min-
imum of their estimates is used to update the policy (line 3 in algorithm 1),
𝑄𝜃(𝑠,𝑎) = 𝑚𝑖𝑛{𝑄𝜃1(𝑠,𝑎),𝑄𝜃2(𝑠,𝑎)}.
Target Q-networks were developed in [8], the actor-critic variant is used here

Chapter 3. Approach 18

[50]. Thismethod introduces target networks,𝑄𝑇 𝐴𝑅𝐺
𝜃𝑖 , for each of theQ-networks.

These target networks are updated as exponentially moving averages, param-
eterised by 𝜏 , of the Q-networks and thus track the Q-network updates at a
delay. The target Q-networks are used to compute the target values for the Q-
network updates (line 2 in algorithm 1). This helps improve stability since the
Q-network being updated is itself used in the target for the update which can
lead to instability and divergences in training.
All fourQ-networks are feed-forward neural networks, as is the policy network.
They all share the same architecture, shown in figure 3.3, with three hidden
layers of dimension 256 using ReLU non-linearity (𝑓(𝑥) = 𝑚𝑎𝑥(𝑥,0)) [51]. The
Q-networks’ input is the current state from the environment and the action to
be evaluated (from the data or the policy). The Q-networks output a scalar
estimating the Q-value, 𝑄(𝑠,𝑎). The policy takes the state as input and outputs
the action, the desired joint positions for the robot. Details of the states and
actions used in this work can be found in section 4.

256
256

256

Q function: 1
Policy: 9

Q function:
29 + 9

Policy: 29

Figure 3.3: The feed-forward neural network architecture and layer sizes used in the
Q-functions and policy. The input size is 29 for the state and 9 for the actions. The
output size is 1 for the Q-value estimate and 9 for the actions. Generated with [52].

Chapter 4

Experiments

4.1 Simulation
The experiments are based on an open-source simulation [6] of a Franka Emika
Panda robot armwith a two-finger gripper shown in figure 2.1. The simulation
uses PyBullet [5] for the physics engine and rigid body dynamics. The man-
ufacturers provide the official universal robot description file (URDF) for the
Panda arm [53]. In the simulation, a small cylindrical object is dropped in the
tray at a random position and orientation (within constraints to ensure it is
reachable). The task is for the robot to pick up this object and raise it above a
threshold height.
As defined in section 2, reinforcement learning requires defining states, actions,
and rewards (figure 4.1).

Observations
Actions

Reward

0

+2000

Object
position
and
rotation

RewardReward

Object Z
Joint
angles

End-
effector
position
and
rotation

Figure 4.1: The reinforcement learning environments have states as the robot and
object position, actions as desired joint positions and reward based on a threshold of
the object Z position.

The states are based on similar assumptions to prior manipulation reinforce-
ment learningwork [20]: a good proprioceptive sensor system to get good joint

19

Chapter 4. Experiments 20

states (the real Panda arm has absolute joint position encoders); good localisa-
tion of the end-effector position and a good exteroceptive sensor system (e.g.
LiDAR) to locate the object in world space. This information for the state is ex-
posed in the simulation and the environment gathers it directly each timestep.
The state is a a vector, 𝑠 ∈ ℝ29 (dimensions in brackets):

• (9) Joint positions for the controlled joints
• (3) End effector position in world space
• (4) End effector orientation quaternion
• (3) Object position in world space
• (4) Object orientation quaternion
• (6) Distance from object to each of the two fingers in world space

The actions, 𝑎 ∈ ℝ9, sent by the policy to the environment are the desired joint
angles. 9 out of 11 of the joints are controlled. Internally these are passed to the
joint position controller of the PyBullet simulation.
Rewards are sparse, that is, zero for all timesteps except the last which is 1 on
successful completion. An oracle provides the reward from the environment
when the object Z coordinate in world space (its height) reaches a threshold
of 0.4 m. This threshold was manually set to be reachable whilst being high
enough to validate effective pick and reach behaviour. This relies on object
position data and so requires no more assumptions than the state description.
There is a 700 timestep limit to complete the task.

4.2 Environments
Three variations of the above simulation framework are used. Panda-v0 is the
standard environment for training and evaluation. PandaForce-v0 is a regrasp-
ing task and PandaPerturbed-v0 is a task with perturbed physics simulation
parameters, both used for evaluation. The simulation and physics parameters
are listed in appendix A.
Panda-v0 is the simulation as described with fixed physics parameters set to
realistic values and no external forces.
PandaForce-v0 is a regrasping task such that on the initial pickup, at a height of
0.2 m (below the threshold), an external force is applied to the object to force it
out of the grasp. The force is only applied once and so to solve this environment
the policy must learn to regrasp the object and pick it up a second time. This is
useful in examining the policy’s robustness and how it handles errors.
In PandaPerturbed-v0, each new episode of the environment is initialised with
randomly sampled physics parameters. Specifically, the gravity can range from
-20 to 0.5 m/s2, the object mass is sampled from 0.01-10 kg and the lateral fric-
tion coefficient from 0.01 to 1. Some of these boundaries, in particular positive

Chapter 4. Experiments 21

gravity, are unrealistic but intended to test the model under new and different
dynamics. In this way, the ability of the models to generalise is tested.

4.3 Experiment Setup
As a scientific community, reproducibility is an important part of reinforcement
learning research, but some results have proved challenging to replicate [54].
To ensure rigorous experimentation all results are averaged over five random
seeds with hyperparameters set based on well-tested values adjusted with a
small search. The reinforcement learning models are run for 100 epochs with
1,000 training steps per epoch. CQL is trained offline whereas SAC receives the
offline data but also trains online so gathers more data. Further details of the
parameters can be found in appendix A.
The PID agent is not trained and is a deterministic function. Nonetheless, it is
run for each random seed both to gather data and to evaluate, since the envi-
ronment dynamics contain some stochasticity such as the initial object position.
10,000 episodes (approximately 3million timesteps) of data are collected under
the PID controller. Every episode in the data completes the task successfully.
CQL is trained for each random seed offline using the PID data. It is evaluated
online during and after training in an environment instancewith the same seed.
Hyperparameters aremanually adjusted from the original authors’ choices and
technical report [4].
The SAC benchmark is trained for each random seed online in an environment
with the random seed set. The evaluation during training occurs in another
instance of the environment with the same random seed. The hyperparameters
used are based on the original author’s work and adjusted with a small search
[3]. Since this work is exploring data-driven approaches, the replay buffer of
SAC is initialised with the PID training data to learn from. Unlike CQL, SAC
also interacts with the environment online throughout training to gather more
data.
For evaluation,models are saved and evaluated for 1,400 timesteps every epoch.
Themodelwith the bestmean reward in evaluation during training is reported.
This model is run in each of the test environments for 100 episodes with the
same random seed as training.
As a reinforcement learning problem, for both training and evaluation, themet-
ric of interest is the mean episode return (sum of rewards in an episode). Since
a sparse reward is used a return of 1 indicates success and zero indicates a fail-
ure on that episode. As such, themean return can also be seen as themean suc-
cess rate for that environment, with similar interpretations for the confidence
intervals.

Chapter 5

Results

CQL is successfully able to learn to grasp from data. It completes the train-
ing task successfully 73% of the time compared to 100% by the PID agent. The
learnedCQLpolicy also performs similarly to the PID controller in generalising
to new physics settings and outperforms PID control on robustness under ex-
ternal forces. CQL significantly outperforms SACwhich is not able to complete
the task.

5.1 Training
Training CQL proved to be quite unstable but did somewhat follow a pattern
across random seeds. Figure 5.1 shows the online evaluation (in the environ-
ment) during training. There are a few early spikes as it begins to learn and
then the main period of improvement from around epoch 20. For all random
seeds, the best model was at epoch 27, this was used for evaluation. Later on
in training, the performance degrades quite abruptly after 30 epochs. This ap-
pears to be due to overfitting to the offline data leading to policy and Q-value
estimates that do not match the environment.
Figure 5.2 shows the policy loss and Q-function predictions during training,
this gives us more insight into the potential overfitting. The loss decreases ini-
tially as the reward increases in the evaluation plot. The loss spikes around
epoch 20 then decreases again from around epoch 30. This spike and decline is
evidence of overfitting because the loss is decreasing, so the training is osten-
sibly improving but at the same time, the evaluation reward is getting worse.
In the Q-function plots, around this time the Q-function predictions also start
to spike. This reaches over 1 at around 40 epochs. This spike is indicative of
overconfidence since the highest sum of returns possible is 1 for successful task
completion. Thus, when the evaluation mean reward decreases, the policy loss
and Q-function predictions both appear to be improving so this instability at
epoch 30 is likely due to overfitting.
SAC appears to learn very little during training (figure 5.1) compared to CQL,

22

Chapter 5. Results 23

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

ev
al

ua
tio

n/
Re

tu
rn

s M
ea

n

Evaluation returns during training (panda-v0)
CQL
SAC
PD agent

Figure 5.1: The mean and 95% confidence interval (shaded) of episode returns in
online evaluation during training. This can be interpreted as success rate. These are
evaluated over 5 random seeds. The PID agent is not trained but is included as a
benchmark.

despite the additional online data it gathers. It has a few small spikes, but the
mean reward never surpasses 0.1. This suggests SAC as implemented cannot
effectively make use of the data to learn this complex domain. As an off-policy
algorithm, SAC is capable of learning from the behaviour data, but this result
shows that in practice, using data in this way is not effective for learning com-
plex behaviours offline. SAC is also not able to learn online in this case likely
due to the sparsity of the reward and the complexity of the task. As it achieves
very few successes during training, it receives a very limited reward signal to
train from.

5.2 Evaluation
Figure 5.3 and table 5.1 show the performance of the best models during train-
ing in an online evaluation of 100 episodes and averaged across the 5 random
seeds. Overall, CQL performs almost as well as the PID controller across all
evaluation tasks and slightly outperforms it on PandaForce-v0. SAC evaluated
poorly on all tasks.
On Panda-v0, CQL achieves a 73% success rate where the PID agent achieves
100% success. On the best random seed, CQL achieved 90% success. This sug-
gests that CQL has learned effectively from the behaviour data and can com-
plete the task consistently.
In PandaPerturbed-v0, the PID agent achieves a 34.8% success rate and CQL
achieves 19.5%. These results are indicative of the range of physics settings sam-
pled under which the systems can complete the task. Thus, CQL has learned a
policy that can generalise well since it was trained only on the standard physics
settings and has learned to react to different settings. The PID agent is quite

Chapter 5. Results 24

0 20 40 60 80 100
Epoch

1.5

1.0

0.5

0.0

0.5

tra
in

er
/P

ol
icy

 L
os

s

Policy Loss
CQL

(a) The policy loss during training (line 3 in
algorithm 1)

0 20 40 60 80 100
Epoch

0.5

0.0

0.5

1.0

1.5

tra
in

er
/Q

1
Pr

ed
ict

io
ns

 M
ea

n

Q-function predictions
CQL

(b) TheQ-function predictions during train-
ing.

Figure 5.2: Shows the mean and 95% confidence interval (shaded) of the CQL policy
loss and Q-function predictions during training (across 5 random seeds).

panda-v0 pandaForce-v0 pandaPerturbed-v0
Environment

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Re

tu
rn

100 episode returns of trained models

Model
PD
CQL
SAC

Figure 5.3: The evaluation mean and 95% confidence interval (lines) of the episode
returns in the three environments. Evaluation is over 100 episodes and averaged over
5 random seeds. This can be interpreted as task success rate.

a simple, hard-coded controller and so there are cases in which the standard
grasping behaviour does not work well. Some settings were quite unrealistic
to test the limits of the policies. Two particularly difficult settings are with pos-
itive gravity which makes the object harder to track before grasping and very
low friction coefficients which leads to the object sliding when touchedmaking
grasping much harder.
The PandaForce-v0 environment was the most challenging. CQL achieves 4%,
the PID agent achieves 0.4% and the SAC controller achieves none. When the
object is forced out of the gripper it moves around in the traywhich can lead the
PID controller to get into difficult configurations as it tracks the object closely.
The object can often bounce out of the tray or into a difficult to reach corner.
CQL’s significantly superior performance shows that it has learned a more ro-

Chapter 5. Results 25

Panda-v0 PandaForce-v0 PandaPerturbed-v0
Mean Std Mean Std Mean Std

CQL 0.73 0.17 0.040 0.036 0.195 0.099
PID 1.00 0.00 0.004 0.009 0.348 0.028
SAC 0.00 0.00 0.000 0.000 0.024 0.009

Table 5.1: Mean and standard deviation of evaluation returns of the best models. Run
for 100 episodes and averaged across 5 random seeds. Bold indicates the best result
in each environment.

bust policy than the PID agent and is better able to recover from errors. Fur-
thermore, this demonstrates the ability of CQL to extract a more optimal policy
from the dataset, based on the rewards, than the behaviour policy that gener-
ated the data.
The final performance of SAC is poor showing the challenge of these tasks. It
is not able to complete the Panda-v0 or PandaForce-v0 tasks successfully at
all. SAC does achieve a small success rate of 2.4% on PandaPerturbed-v0. This
indicates that it did manage to complete this task successfully, but this is due
to exploiting the randomly sampled physics settings such as positive gravity
cases.

5.3 Learned Behaviours
Figure 5.6 (at the end) shows the learned behaviours of eachmodel in the stan-
dard Panda-v0 environment. Videos showing multiple runs of each model in
each environment are also available1. These videos show thefirst three episodes
in full for the same random seed.
One of the first observations of the behaviour is that, as expected from the train-
ing and evaluation results, the baseline SAC model is not able to effectively
complete the task. It often demonstrates a lack of control and misses the tray
as it does in figure 5.6.
In contrast, this figure also shows howwell the CQLmodel matches the grasp-
ing behaviour of the PID agent it learned from, with both completing the task
well. CQL has learned to get a good initial placement of the end effector and
to grasp the object well, learning only from the PID offline data.
It is interesting to compare these learned behaviours to natural examples in an-
imal and behavioural research. In figure 5.4 a study with chimpanzees’ grasp-
ing behaviours and preferences [55], shows similar reaching and grasping to
the results with CQL in figure 5.6. Both can be seen reaching over the object,
then closing the fingers to grasp and pick it. The animal studies also exam-
ined the end-state comfort effect, that is whether, like humans, primates adapt

1Videos of each trained model here and in the additional materials.

https://github.com/olliejday/ug4_project/tree/main/panda_env_dev/data/videos

Chapter 5. Results 26

Figure 5.4: Chimpanzee grasping behaviour on a pick and place task. Taken from
[55].

their initial grip in anticipation of further task-orientated actions. In a similar-
ity to reward-based CQL, they found that chimpanzees can predict the costs
of future actions and use this to select their movements [55]. In [47], young
children were examined in a similar grasping task. They found children from
3 years old were able to adapt the type of grip used in response to the demands
of the task.

Figure 5.5: Sequence of images showing the behaviour of CQL on the PandaForce-v0
task.

Figure 5.5 shows a behaviour sequence of the CQL agent in the PandaForce-v0
(regrasping) environment. After a successful initial pick and reach, the object
is pushed out of the gripper by the simulation. Although it did not manage to
regrasp and complete the task in this case, CQL demonstrates good tracking
behaviour as it continues to approach the moving object. Sometimes the CQL

Chapter 5. Results 27

model was able to grip the object throughout the external force and not drop
the object. The external force was set based on the PID agent, so this shows that
perhaps the CQLmodel was able to learn a better grasp behaviour that is more
resistant to such forces.

Chapter 5. Results 28

(a) PID agent

(b) CQL

(c) SAC

Figure 5.6: Sequences of images showing the behaviour of the trained models in the
Panda-v0 task. The PID agent and CQL both complete the task. With SAC the robot
misses the tray. Note the snapshots are taken at different timestep intervals for each
model.

Chapter 6

Conclusion

This work started by asking whether robust and generalisable autonomous
grasping behaviour can be learned from data. In a review of the literature, of-
fline reinforcement learning was chosen as the framework to address this ques-
tion, in particular, conservative Q-learning (CQL) was chosen [4]. Three pick
and reach tasks were used to evaluate the model based on a PyBullet robot
arm simulation [5]. CQL was trained on data from a proportional-integral-
derivative (PID) controller [32].
In these experiments, CQL was successfully shown to perform the tasks com-
parably to the PID controller both in terms of the learned behaviours and the
task success rate. CQL even outperformed PID in a regrasping task showing
it is able to extract a more optimal policy than that in the data. This task also
shows that CQL has learned a policy that is robust under external forces and
able to recover from errors. CQL was also able to generalise to some extent un-
der highly varied physics settings. Soft actor-critic (SAC) [3], a state-of-the-art
online reinforcement learning algorithm on which CQL is built was shown to
not be able to learn effective behaviour from the same data evenwith additional
online interaction. Overall, it was shown that CQL does contribute to improved
training in the offline setting as it was able to learn grasping behaviour from
data. This approach is promising for learning more complex robot behaviours
from data.

6.1 Future Work
Following on from the success CQL showed in this domain, several research
directions can take this work further.

6.1.1 Curriculum Learning & Combining Tasks
An interesting area in deep and reinforcement learning is multi-task learning.
In [39] multiple expert models are combined to create complex quadruped lo-
comotion behaviours that can adapt to unseen scenarios. To achieve this, each

29

Chapter 6. Conclusion 30

model is trained by reinforcement learning and combined with a gating neural
network. A similar approach could be applied to combine offline reinforcement
learning models such as those trained with different grasping tasks.
Large, unlabelled datasets also present an opportunity to learn diverse and
generalisable behaviour. Offline reinforcement learning can be used to stitch
together sub-trajectories from the data. An interesting extension would be to
uses datasets containing multiple tasks to examine the learned task combina-
tions. This approach has been used to complete robotic grasping tasks from
new initial conditions that do not have a full demonstration in the data [31].
An example of this combination is when the target object is in a drawer requir-
ing a combination of draw opening and object grasping tasks.

6.1.2 Regrasping and Error Recovery Behaviour
Task combination could be used to learn error-correcting behaviours and re-
grasping. This is done with the fall recovery behaviour in [39]. Regrasping is
explored in more detail in [41]. They show regrasping can be learned by train-
ing an online reinforcement learning algorithm from different initial states so
that the model experiences failures and can learn to recover.
Emergent examples of regrasping behaviour were examined in this work with
the PandaForce-v0 task that forced the object out of the grasp. Explicitly han-
dling regrasping‘ in the offline setting could be achieved through augmenting
the data with error recovery examples or through additional online training
after the offline training. Incorporating error recovery behaviour could lead to
more robust policies as they can persevere and regrasp if the initial grasp fails.
Another extension in this direction could utilise bimanual manipulation. Deep
reinforcement learning has been applied to bimanual pregrasping behaviours
that help to grasp in difficult or ungraspable settings [44]. Similar work could
be used to improve the resilience to and recovery from errors, especially in dif-
ficult configurations that the object can reach when dropped.

6.1.3 Sub-Optimal Data
Finally, the data used in this work was from a PID controller which, whilst
simple, achieved a 100% success rate on the training task, Panda-v0. A key
aspect of offline reinforcement learning is to be able to extract the optimal policy
(that maximises the reward signal). As such, it is interesting to explore the
use of sub-optimal data, such as human motion data. Human data are used
in [40] to combine reinforcement and imitation learning to bias the learning
towards human behaviour. Human data also presents an interesting variety
where different participants have different approaches to achieve the task.
In the extreme, random data in the environment could be used. In this way,
the learning agent has to extract the policy based on the reward signal as the
data are not based on any meaningful policy. This would also be useful in

Chapter 6. Conclusion 31

certain domains where data from an expert is difficult to achieve. Datasets for
deep data-driven reinforcement learning, a set of benchmark tasks with data
for offline reinforcement learning, include multiple tasks with data gathered
through taking random actions [19]. This is a challenging but interesting area
to explore.

Appendix A

Experiment Details

Tables A.1 and A.2 show the main parameters used in this work. Full code is
available for further review1.

Hyperparameter Value
Epochs 100
Train steps per epoch 1000
Max steps per episode 700
Eval steps per epoch 1400
Steps before training 1400
Batch size 352
Replay buffer size 2×106

Discount 1000
Policy learning rate 3×10−5

Q learning rate 3×10−4

Q target update 𝜏 5×10−3

Table A.1: The hyperparameters for training SAC and CQL. Found using a small
hyperparameter sweep starting from initial settings used in other works [4], [3].

1The code is available here and in the additional materials.

32

https://github.com/olliejday/ug4_project

Appendix A. Experiment Details 33

Panda-v0 PandaForce-v0 PandaPerturbed-v0
Low High

Gravity -10 -10 -20 0.5
Mass of object 0.1 0.1 0.01 10
Lateral friction of object 0.1 0.1 0.01 1

Table A.2: The physics parameters used in the environments. Panda-v0 and
PandaForce-v0 use the same settings except for the external force (which Panda-v0
doesn’t use). PandaPerturbed-v0 samples from the ranges shown.

Bibliography

[1] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall Press, USA, 3rd edition, 2009.

[2] Tanya M. Anandan. Robotics industry insights,
2020. https://www.robotics.org/content-detail.
cfm/Industrial-Robotics-Industry-Insights/
Industry-Trends-and-Market-Potential-What-s-Next/content_
id/9391 (Accessed: 15th March 2021).

[3] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft
actor-critic: Off-policy maximum entropy deep reinforcement learning
with a stochastic actor. volume 80 of Proceedings of Machine Learning Re-
search, pages 1861–1870, Stockholmsmässan, Stockholm Sweden, 10–15 Jul
2018. PMLR.

[4] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conser-
vative q-learning for offline reinforcement learning, 2020.

[5] Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics
simulation for games, robotics and machine learning. http://pybullet.
org, 2016–2019.

[6] Mahyar Abdeetedal. Gym panda. https://github.com/mahyaret/
gym-panda, 2020.

[7] David Silver et. al. Mastering the game of Go with deep neural networks
and tree search. Nature, 529(7587):484–489, 2016.

[8] VolodymyrMnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel
Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K.
Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik,
Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,
Shane Legg, and Demis Hassabis. Human-level control through deep re-
inforcement learning. 518(7540):529–533, February 2015.

[9] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. Proximal policy optimization algorithms. CoRR, abs/1707.06347,
2017.

34

https://www.robotics.org/content-detail.cfm/Industrial-Robotics-Industry-Insights/Industry-Trends-and-Market-Potential-What-s-Next/content_id/9391
https://www.robotics.org/content-detail.cfm/Industrial-Robotics-Industry-Insights/Industry-Trends-and-Market-Potential-What-s-Next/content_id/9391
https://www.robotics.org/content-detail.cfm/Industrial-Robotics-Industry-Insights/Industry-Trends-and-Market-Potential-What-s-Next/content_id/9391
https://www.robotics.org/content-detail.cfm/Industrial-Robotics-Industry-Insights/Industry-Trends-and-Market-Potential-What-s-Next/content_id/9391
http://pybullet.org
http://pybullet.org
https://github.com/mahyaret/gym-panda
https://github.com/mahyaret/gym-panda

Bibliography 35

[10] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet clas-
sification with deep convolutional neural networks. In F. Pereira, C. J. C.
Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in Neural In-
formation Processing Systems 25, pages 1097–1105. Curran Associates, Inc.,
2012.

[11] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-
erative adversarial nets. In Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information
Processing Systems 27, pages 2672–2680. Curran Associates, Inc., 2014.

[12] Alec Radford, JeffWu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language models are unsupervised multitask learners. 2019.

[13] Dominic King. Deepmind’s health team joins google
health. https://deepmind.com/blog/announcements/
deepmind-health-joins-google-health, 2019. Accessed: 21st Oc-
tober 2020.

[14] Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for
youtube recommendations. In Proceedings of the 10th ACM Conference on
Recommender Systems, New York, NY, USA, 2016.

[15] Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan,
Oriol Vinyals, Alexander Graves, Nal Kalchbrenner, Andrew Senior, and
Koray Kavukcuoglu. Wavenet: A generative model for raw audio. In
Arxiv, 2016.

[16] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline rein-
forcement learning: Tutorial, review, and perspectives on open problems,
2020.

[17] Stéphane Ross, Geoffrey J. Gordon, and J. Andrew Bagnell. No-regret
reductions for imitation learning and structured prediction. CoRR,
abs/1011.0686, 2010.

[18] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Intro-
duction. A Bradford Book, Cambridge, MA, USA, 2018.

[19] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine.
D4rl: Datasets for deep data-driven reinforcement learning, 2020.

[20] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani,
John Schulman, Emanuel Todorov, and Sergey Levine. Learning Complex
DexterousManipulationwith Deep Reinforcement Learning andDemon-
strations. In Proceedings of Robotics: Science and Systems (RSS), 2018.

[21] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra,
and Martin Riedmiller. Deterministic policy gradient algorithms. In Pro-
ceedings of the 31st International Conference on International Conference onMa-
chine Learning - Volume 32, ICML’14, page I–387–I–395. JMLR.org, 2014.

https://deepmind.com/blog/announcements/deepmind-health-joins-google-health
https://deepmind.com/blog/announcements/deepmind-health-joins-google-health

Bibliography 36

[22] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function
approximation error in actor-critic methods, 2018.

[23] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex
Graves, Timothy P. Lillicrap, Tim Harley, David Silver, and Koray
Kavukcuoglu. Asynchronous methods for deep reinforcement learning,
2016.

[24] Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Remi Munos,
Koray Kavukcuoglu, and Nando de Freitas. Sample efficient actor-critic
with experience replay, 2017.

[25] Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Re-
inforcement learning with deep energy-based policies. volume 70 of Pro-
ceedings of Machine Learning Research, pages 1352–1361, International Con-
vention Centre, Sydney, Australia, 06–11 Aug 2017. PMLR.

[26] Aviral Kumar, Justin Fu, George Tucker, and Sergey Levine. Stabi-
lizing off-policy q-learning via bootstrapping error reduction. CoRR,
abs/1906.00949, 2019.

[27] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy.
Deep exploration via bootstrapped dqn, 2016.

[28] Marc Peter Deisenroth and Carl Edward Rasmussen. Pilco: A model-
based and data-efficient approach to policy search. In Proceedings of the
28th International Conference on International Conference onMachine Learning,
ICML’11, page 465–472, Madison, WI, USA, 2011. Omnipress.

[29] Alex Irpan, Kanishka Rao, Konstantinos Bousmalis, Chris Harris, Julian
Ibarz, and Sergey Levine. Off-policy evaluation via off-policy classifica-
tion, 2019.

[30] Omer Gottesman, Joseph Futoma, Yao Liu, Sonali Parbhoo, Leo Anthony
Celi, Emma Brunskill, and Finale Doshi-Velez. Interpretable off-policy
evaluation in reinforcement learning by highlighting influential transi-
tions, 2020.

[31] Avi Singh, Albert Yu, Jonathan Yang, Jesse Zhang, Aviral Kumar, and
Sergey Levine. Cog: Connecting new skills to past experience with of-
fline reinforcement learning, 2020.

[32] Karl Johan Astrom and Richard M. Murray. Feedback Systems: An Intro-
duction for Scientists and Engineers. Princeton University Press, USA, 2008.

[33] M. Logothetis, G. C. Karras, S. Heshmati-Alamdari, P. Vlantis, and K. J.
Kyriakopoulos. Amodel predictive control approach for vision-based ob-
ject grasping via mobile manipulator. In 2018 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pages 1–6, 2018.

[34] Matthew T. Mason and J. Kenneth Salisbury. Robot Hands and the Mechan-
ics of Manipulation. MIT Press, Cambridge, MA, May 1985.

Bibliography 37

[35] Ronald S. Fearing and John M. Hollerbach. Basic solid mechanics for tac-
tile sensing. The International Journal of Robotics Research, 4(3):40–54, 1985.

[36] Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and Deirdre
Quillen. Learning hand-eye coordination for robotic grasping with deep
learning and large-scale data collection. The International Journal of Robotics
Research, 37(4-5):421–436, 2018.

[37] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-
end training of deep visuomotor policies. 17(1):1334–1373, January 2016.

[38] Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander
Herzog, Eric Jang, Deirdre Quillen, Ethan Holly, Mrinal Kalakrishnan,
Vincent Vanhoucke, and Sergey Levine. Scalable deep reinforcement
learning for vision-based robotic manipulation. volume 87 of Proceedings
of Machine Learning Research, pages 651–673. PMLR, 29–31 Oct 2018.

[39] Chuanyu Yang, Kai Yuan, Qiuguo Zhu, Wanming Yu, and Zhibin Li.
Multi-expert learning of adaptive legged locomotion. Science Robotics,
5(49), December 2020.

[40] Chuanyu Yang, Kai Yuan, Shuai Heng, Taku Komura, and Zhibin Li.
Learning natural locomotion behaviors for humanoid robots using human
bias. IEEE Robotics and Automation Letters, 5(2):2610–2617, April 2020.

[41] Wenbin Hu, Chuanyu Yang, Kai Yuan, and Zhibin Li. Reaching, grasping
and re-grasping: Learning multimode grasping skills, 2020.

[42] Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter
Abbeel. Sim-to-real transfer of robotic control with dynamics random-
ization. CoRR, abs/1710.06537, 2017.

[43] Rohan Chitnis, Shubham Tulsiani, Saurabh Gupta, and Abhinav Gupta.
Efficient bimanual manipulation using learned task schemas, 2020.

[44] Z. Sun, K. Yuan, W. Hu, C. Yang, and Z. Li. Learning pregrasp manipu-
lation of objects from ungraspable poses. In 2020 IEEE International Con-
ference on Robotics and Automation (ICRA), pages 9917–9923, 2020.

[45] Rose M. Spielman, Kathryn Dumper, William Jenkins, Arlene Lacombe,
Marilyn Lovett, and Marion Perlmutter. Psychology. OpenStax, Houston,
Texas, 2014.

[46] Shinya Yamamoto, Tatyana Humle, and Masayuki Tanaka. Basis for cu-
mulative cultural evolution in chimpanzees: Social learning of a more ef-
ficient tool-use technique. PLOS ONE, 8(1):1–5, 01 2013.

[47] Bianca Jovanovic and Gudrun Schwarzer. Learning to grasp efficiently:
The development of motor planning and the role of observational learn-
ing. Vision Research, 51(8):945–954, 2011. Perception and Action: Part II.

[48] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Se-
hoon Ha, Jie Tan, Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter

Bibliography 38

Abbeel, and Sergey Levine. Soft actor-critic algorithms and applications,
2019.

[49] Hado Hasselt. Double q-learning. In J. Lafferty, C. Williams, J. Shawe-
Taylor, R. Zemel, and A. Culotta, editors, Advances in Neural Information
Processing Systems, volume 23. Curran Associates, Inc., 2010.

[50] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess,
Tom Erez, Yuval Tassa, David Silver, and DaanWierstra. Continuous con-
trolwith deep reinforcement learning. In Yoshua Bengio andYannLeCun,
editors, 4th International Conference on Learning Representations, ICLR 2016,
San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016.

[51] Abien Fred Agarap. Deep learning using rectified linear units (relu).
CoRR, abs/1803.08375, 2018.

[52] Alexander LeNail. Nn-svg: Publication-ready neural network architec-
ture schematics. Journal of Open Source Software, 4(33):747, 2019.

[53] Franka Emika GmbH. Franka ROS. https://frankaemika.github.io,
2017.

[54] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina
Precup, and David Meger. Deep reinforcement learning that matters,
2019.

[55] Scott H. Frey and Daniel J. Povinelli. Comparative investigations of man-
ual action representations: evidence that chimpanzees represent the costs
of potential future actions involving tools. Philosophical Transactions of the
Royal Society, 367(1585):48–58, 2012.

https://frankaemika.github.io

	Introduction
	Background
	Problem Definition
	Reinforcement Learning Problem
	Offline Reinforcement Learning
	Robotic Grasping

	Related Work
	Reinforcement Learning
	Soft Actor-Critic (SAC)
	Offline Reinforcement Learning
	Conservative Q-Learning (CQL)
	Robotic Grasping
	Human and Animal Behaviour

	Approach
	Proportional-Integral-Derivative Contoller
	Soft Actor-Critic (SAC)
	Conservative Q-Learning (CQL)
	Architecture

	Experiments
	Simulation
	Environments
	Experiment Setup

	Results
	Training
	Evaluation
	Learned Behaviours

	Conclusion
	Future Work
	Curriculum Learning & Combining Tasks
	Regrasping and Error Recovery Behaviour
	Sub-Optimal Data

	Experiment Details
	Bibliography

