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Abstract
3D Visual perception has recently become very popular because of the advancements
in 3D sensor hardware and development of powerful computational devices. Today,
3D sensory information is being extensively used to automate navigation and motion
planning in autonomous systems like self-driving cars. Visual perception can be very
useful for locomotion in robots. More specifically, a 3-dimensional representation
of the surfaces present in a robot’s environment can be helpful in motion planning
tasks such as foot step planning for legged robots. However, since the information
produced by 3D sensors can be very large, it is required to create models that can
efficiently represent this information and derive useful features from it. In this project,
various models for representing 3D sensory information in the form of surfaces were
analysed. Based on the analysis, a representation model was chosen. Later, using the
chosen model a system was designed, implemented and tested. More specifically, the
designed system uses B-spline surfaces for point cloud approximation. The surfaces
generated are C2 continuous and therefore can be used to apply optimisation algorithms
to find optimal locomotion trajectories and patterns. The system provides an easy way
to extract the information needed by such algorithms. The surface approximations
produced by the system are accurate and meet all the criteria for evaluation.
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Chapter 1

Introduction

1.1 Goal and Motivation

The motivation behind this project is to enable the use of visual perception in robots
for locomotion. Visual perception is the ability to represent and extract useful informa-
tion from visual sensory data. Recently, 3D visual sensors such as LIDAR and RGB-D
cameras are being widely used in mapping, navigation and motion planning. [7] This
is because such sensors can produce 3D point-clouds very efficiently and accurately.
Unlike 2D images, 3D point clouds capture the spatial characteristics of an environ-
ment very well. This makes them ideal for mapping or performing self localisation in
an environment.

However, points are too abstract of a representation for an environment. A better repre-
sentation is a continuous surface since most objects in an environment are continuous
surfaces with certain characteristics like the slope or height. Information about such
characteristics is very useful when performing locomotion. For example, Tasks such
as walking or climbing stairs require finding of planar surfaces (see figure 1.1).

Research in cognitive science also suggests that encoding of surfaces is an elementary
and indispensable aspect of perception. Surface representation forms an important

Figure 1.1: The Valkyrie robot walking trail using updated parameters.[25]
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intermediary stage for advance visual processing tasks like object recognition and lo-
comotion in humans [15].

The goal of this project is to create a system to approximate 3D surfaces from point
clouds. This system is expected to produce C2 continuous surface approximations
of a point cloud. The generated representation is intended to be used by other robot
control systems to run optimisation algorithms that can calculate optimal trajectories
for locomotion using second order derivatives. Therefore, system has to be designed
for easy use and integration.

1.2 Summary of Work Done

• Literature Review

– Based on the objectives of the project, a criteria for evaluation of various
surface representation schemes was defined. This criteria is described in
section 3.2.

– A thorough analysis of two popular surface representation schemes was
conducted. These schemes included Polygon Meshes and Parametric sur-
faces. The analysis of each model defined in these representation schemes
included a description of the model and an evaluation based on above men-
tioned criteria. To summarize the conclusion of the analysis, Rational B-
Spline curves were chosen to perform surface approximation in the system.

• Problem Definition

– The problem of surface approximation from point clouds was formally de-
fined and a least squares solution to the problem was proposed.

– Various optimisation objectives for the least squares solution were anal-
ysed, implemented, tested, and evaluated.

• System Design

– The requirements of the system and its expected outputs were captured.
This was done by consulting with a PhD student at the University of Edin-
burgh who was to use this system in his research.

– Some key software requirements of the system were identified. These were
primarily influenced by ease of integration with other systems and the abil-
ity to efficiently implement and test various parts of the least squares fitting
algorithm. An Object Oriented design of the system was chosen.

• Implementation

– Various useful libraries were identified.

– The designed system was implemented as a python package.

• Evaluation
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– The system was evaluated for its speed and accuracy of fitting.

– The various optimisation objectives used were also evaluated.

1.3 Dissertation Structure

This document captures the course of the complete project. The document has been
structured in a way that covers the various aspects of the project incrementally, making
them easier to follow.

Chapter 2 first describes how point clouds are created and the various sensor technolo-
gies used for the purpose. This is followed by a description of algorithms used for
modelling an environment using point clouds.

Chapter 3 covers the various ways to surface representation schemes. First, the need for
a surface representation is described. Second, an evaluation criteria for the evaluation
of representation schemes is created. This is followed by an analysis of the represen-
tation schemes. Finally, the chapter is concluded by choosing B-Spline surfaces as the
mode for representation for this project.

Chapter 4 formally defines the problem of fitting B-Spline surfaces to a point cloud.
This is followed by a description of various optimisation objectives used for fitting.
Finally, the surface fitting algorithm is defined and various important aspects of it are
described.

Chapter 5 describes the design and implementation of the system.

Chapter 6 shows the results of fitting on some test cases. This is followed by an inter-
pretation of the results.

Chapter 7 summarizes the results of evaluation and discusses the possible future work.



Chapter 2

Point Clouds

In this chapter we analyse how point clouds are created and briefly examine various
technologies available for the same. Further we discuss algorithms used to combine
point clouds captured from different poses and angles to form a single point cloud as a
representation of the environment. Finally, we discuss some noise-removal techniques.

2.1 How to make your Point Cloud

Point clouds are 3-Dimensional data points collected by scanning an environment us-
ing a depth-sensor. This is similar to taking a simple photograph where we use visible
electromagnetic waves reflected by the objects in the environment to create a repre-
sentation of the environment. Photographs however, project this information onto a
2D plane losing the depth information which encodes the information about the dis-
tance of these objects from source(camera). This where point clouds are different from
photographs.

A 3D depth sensor emits a signal and detects distortion in copies of the signal received
by the sensor due to reflections from external objects. This distortion can be in the form
of change in phase or amplitude of the signal and can be used to estimate the distance of
the object that created this distortion from the sensor (Figure 2.1)[7]. Depending on the
kind of signal used, other information like the colour of the object can also be gathered
along with spatial(horizontal and vertical displacement) and depth information. For a
typical 3D Depth sensor, these estimations are done for millions of points per second
which results in a large collection of 3D points or point-clouds.

8
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Figure 2.1: The figure shows a diagram describing the detection of an object using
lasers. The distortion used for detection is phase shift caused by reflection. 1

2.2 3D Sensors

2.2.1 RGB-D Sensors

RGB-D sensors consist of two camera sensors. One of which is a typical RGB camera
and the second one is a specialised sensor which projects infrared scatter patterns on
to the environment to observe it. The sensory information from these two sensors are
combined through epipolar geometry and triangulation [7]. The disadvantages of these
senors are that there is a lot of post processing involved in extracting the actual depth
information. Also, the 2 sensor apparatus suffers from occlusion problems where the
performance of the sensor drops when an object is only visible to one of the cameras.
Asus XionPro is an example of such sensors (fig. 2.3a).

2.2.2 Time-of-Flight (TOF) Sensors

Time of flight refers to the time taken by an emitted signal to return to its source after
reflection with objects. The time of flight value is then used to estimate the distance
of an object from the source. This principle is used with different kinds of signals.
The quality of the estimates depend on the kind of signal used [7]. Some TOF sensors
include:

• Ultrasonic Sensors: These sensors use sound waves as the signal for TOF de-
tection. These sensors are very cheap to highly available. However, due to the
diverging property of sound waves, the distance estimates are not very accurate
for long ranges.

1https://home.roboticlab.eu/en/examples/sensor/lidar
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(a) Asus XionPro RGB-D sensor: Used for data
collection.

(b) Image showing various sensors in a RGB-D
camera and the output. [20]

Figure 2.2: RGB-D cameras.

• TOF-Cameras: These sensors use an array LEDs or laser diodes to illuminate
the environment. Like a camera, a lens and an image sensor is used to measure
the TOF of the received signal. Theoretically these sensors have a range in Kilo
Meters. However, most common cameras like the Microsoft Kinect V2 have a
range in tens of meters with a resolution of 1cm. The advantages of such sensors
is that the error in modelling increases linearly with distance. Which is much
better than the quadratic increase seen in RGB-D sensors [7].

• LIDAR: Light Detection and Ranging. LIDAR employs beams of lasers and
a scanner to perform TOF sensing. Using beams of laser provides these sensors
with range of a few kilo meters. Based on the scanning mechanism these sensors
can produce a surrounding view from the source mapping 360◦. However, such
sensors generally have slower frequency of operation and like the Velodyne [8],
can be very expensive.

2.2.3 Noise

As discussed above, 3D sensors depend on signals for gathering data about the envi-
ronment. This involves reliable detection of the reflected signals. Since the signals
used may already be present in the ambient environment, many signal processing tech-
niques are used to perform detection reliably. The quality of detection is quantified
using a metric called Signal-to-Noise Ratio (SNR).

2.3 Environment Modelling

The sensors discussed above can be used to gather a large amount of observations(point
clouds) of a target environment. However, depending on the structure of the environ-
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ment and the capabilities of the sensor, these observations when taken individually may
only represent a small part of the target environment. This gives rise to the problem of
Point Cloud Registration which is the process of producing a single representation of
the environment by aligning and combining multiple observations of an environment.

(a) Multiple scans of the same region. (b) Result of registration.

Figure 2.3: An example of point cloud registration. (Images taken from PCL website2

2.3.1 Point Cloud registration

Point Cloud registration generally involves computation of features capable of uniquely
identifying a point(eg. SIFT3 and FAST4). This is done for each point in the whole
point cloud dataset after which a feature matching algorithm is used to find correspon-
dences between two point clouds. A correspondence refers to finding the same point
in both the point clouds at different location. The approach to find matches can con-
sist of brute force matching or random sampling methods such as Random Sample
Consensus5 algorithm.

Later, a transformation tensor is computed such that applying the transformation (rota-
tion and translation) on a source point cloud would perfectly align the correspondences
between it and the target point cloud. This method is an offline method. Therefore,
it does not utilise additional information such as the position of the sensor when the
observations were collected.

2.3.2 Simultaneous Localisation and Mapping

Simultaneous Localisation and Mapping or SLAM is an online mapping process which
involves an agent present in an unknown environment. Since the environment is un-
known, the agent is uncertain about its own position in the environment. The SLAM
approach tries to solve the problem of mapping the agent’s environment by simulta-
neously estimating the agent’s position with respect of its environment(tracking) and
producing a representation of the environment with respect to the agent’s observa-
tions(mapping).

2http://pointclouds.org/documentation/tutorials/registration api.php
3https://en.wikipedia.org/wiki/Scale-invariant feature transform
4https://en.wikipedia.org/wiki/Features from accelerated segment test
5https://en.wikipedia.org/wiki/Random sample consensus
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To put the process in context of this project, An agent may be legged robot observing
its environment using one of the 3D depth sensors discussed above. Hence the observa-
tions generated are point clouds. Since point clouds typically consists of points in the
order of thousands, the observations generated are considered dense and the problem
is called Dense SLAM.

Most solutions to the SLAM problem proposed by robotic researchers use probabilistic
models like the Kalman Filter [23]. In such approaches, the tracking and mapping
phases are tightly linked together. The representation of the environment is stored
in the agent’s state. As the agent makes more observations, the state of the agent is
updated. These updates take into account the observation errors which is modelled
by maintaining a co-variance matrix of the state [14] [10]. Research done in [10]
demonstrates such a system that performs dense SLAM using the Extended Kalman
Filter.

However, advancements in the field of parallel processing has prompted researchers to
decouple the tracking and mapping phase in favour of enhanced computational power
offered by GPUs. This approach was first demonstrated by [11] in an attempt to use
SLAM in context of Augmented Reality.

The authors of [11] argued that probabilistic models based solutions to SLAM origi-
nating from robotics research are not optimal in situations where the agent is a hand-
held device like in the case of augmented reality. This is because the movements of
a handheld devices are quick and random while robots typically have a more con-
strained movement. ElasticFusion [24] and KinectFusion [16] are examples of some
algorithms that run tracking and mapping processes parallel to each other on a GPU to
provide very good realtime surface mapping results.

2.4 Data collection

The Asus XionPro was used to perform data collection experiments. This was because
a complete apparatus with the device set up with ElasticFusion6 was readily available at
the University Of Edinburgh. Figure 2.4 and Figure 2.5 show the point clouds collected
for experimentation. Boxes and books were used to create scenarios consisting of
surfaces with different levels of curvature.

Note: The data collection experiments were not conducted by me. I was given the
point clouds along with a description of the device and algortihm used.

2.5 Noise Removal

The point-clouds generated using the above methods are noisy. The source of the noise
can be misaligned point cloud registration and low SNR of observations collected by

6https://github.com/mp3guy/ElasticFusion
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(a) Unprocessed-1 (b) Processed-1

(c) Unprocessed-2 (d) Processed-2

Figure 2.4: Point clouds: Left figures show unprocessed point clouds and the right
figures show the corresponding processed point clouds. (a) total points: 130261 (b)
voxel-size = 0.02; total points: 1447 (c) total points: 52240 (d) voxel-size 0.005; total
points: 10467
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(a) Unprocessed-3 (b) Processed-3

(c) Unprocessed-4 (d) Processed-4

Figure 2.5: Point clouds: Left figures show unprocessed point clouds and right fig-
ures show corresponding processed point clouds: (a) total points: 67535 (b) voxel-size
= 0.01; total points: 3204 (c) total points: 54825 (d) point cloud filtered using voxel-
size=0.008; total points: 6411



Chapter 2. Point Clouds 15

(a) A noisy point cloud (b) An illustration of least squares fitting. [2]

Figure 2.6

the 3D sensors. The presence of such noise can lead to inaccuracies in the approxima-
tion of the surface. In the worst case, presence of outliers can deform the shape of the
approximating surface or keep the approximation schemes used from converging.

Moreover, A point cloud can consist of more than 100K data points. Although, more
data points mean that the fitting surface will better approximate the point cloud, large
number of data points take longer time to process and usually result in very large
system of equations that is needed to be solved for optimisation. To address the point
clouds are pre-processed before performing any fitting.

2.5.1 Statistical Noise Removal

In statistical noise removal, a small locality of points (usually of fixed size) is chosen.
Then the mean and the variance of the locality is used to filter the locality. This pro-
cess is repeated until the whole point-cloud has been processed. This method is very
effective against outlier removal.

2.5.2 Downsampling

Downsampling or Voxelisation is used to reduce the size of a point cloud. In this
process, the point cloud space is divided into small cubical volumes called voxels.
Then, for each voxel in the space, the points present on the inside of the voxel are used
to compute a single point using a designed metric. This metric usually is the mean of
all the points. The point computed is then added to the voxel and all the constituent
points are removed. Large voxel sizes result in sparse point clouds.

Although very effective for size reduction, downsampling can lead to loss of infor-
mation such as curvature of the point cloud. This introduces additional noise to the
system. Therefore, the voxel size used for downsampling is influenced by a trade-off
between speed and accuracy.
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We explore this trade-off by performing tests on point clouds of different sizes gener-
ated by using different voxel size.

2.5.3 Re-sampling using Moving Least Squares Reconstruction

Another source of noise can be misalignment of two point clouds (fig.2.4a). Misalign-
ment usually results in sections of the point cloud having redundant points representing
the same underlying surface (figure 2.6a). In such scenarios a filtering technique called
moving least squares [2] is used to re-sample these points from a local approximation
of that section. The local approximation is generated by fitting a polynomial on to a
small locality of section using least squares. The operation is performed on multiple
overlapping localities sampled from the noisy section to ensure continuity.

Figure 2.6b illustrates such an example. The original points(purple) contain redundant
or noisy points. The purple line forms the manifold of the underlying curve. The red
points show a re-sampled representation of the purple curve. The manifold formed by
the re-sampled points (red line) is the resultant approximation of the curve.

The re-sampling process removes redundant points from the curve and results in to a
smoother and more uniformly sampled representation of the section.

2.5.4 Processed Point clouds

The techniques described in previous sections were applied on the point-clouds col-
lected through experiments. This was done using the PCL library [19] which has an
implementation of all the above filtering techniques.

Notice the difference between the unprocessed and processed pairs of point clouds in
figure 2.4 and figure 2.5. The filtering process has removed most of the noise and
produced smoother point clouds. Applying re-sampling has reduced the noise caused
by misalignment in figure 2.4a. Further, down-sampling has reduced the size of the
point clouds at least by a factor of 5 while maintaining essential curvature information
for accurate approximation.



Chapter 3

Surface Representations

This chapter presents an analysis of various methods used to represent a surface. First
the need for modelling an environment using a collection surfaces is discussed. This is
followed by a discussion on the properties of a surface and the requirements a surface
should satisfy to model an environment successfully. Later we analyse techniques used
to represent surfaces and evaluate them against these properties.

Please note that the list of models analysed here is in no way an exhaustive list of sur-
face representations. The representations discussed here are currently the most popular
in fields like CAD and computer graphics.

3.1 Need for surfaces

In previous chapter we discussed how point clouds are created. Although a dense
point cloud may contain over a million points, they are not very useful to derive useful
properties of an environment. This is because: Point clouds are discrete.

A point cloud is essentially a set of discrete 3D points. Therefore the model of the
environment it presents is also discrete and full of discontinuities. But since an envi-
ronment is continuous, such a representation is not useful. Hence, a more continuous
form of representation is needed.

A better representation for an environment are Surfaces. Surfaces are continuous and
can be used to derive properties like slopes and normals at any point in the environment.
Knowledge about such properties can be used to make better decision while performing
complex tasks like locomotion.

3.2 Representation requirements

For the aim of this project, an ideal surface model should have the following attributes:

17
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1. Compact Representation. A point cloud typically consists of hundreds of thou-
sands of points. Hence, the ability to approximate an environment made up of
such high number of points using a smaller number of parameters will be useful.

2. Continuity. One of the most important properties of a surface is its continuity. In
mathematics, the continuity of a function is defined by the number of continuous
higher order derivatives that exist for that function. A function with Cn continuity
has continuous derivatives until the nth order derivative.

This is important for this project because one of the biggest advantages that vi-
sual perception brings to locomotion in robots is the ability to extract terrain
properties like gradients of various regions of an environment. For instance,
motion and path planning algorithms for legged robots use various optimisation
methods [1] that require first or second order gradients for finding optimal loco-
motion trajectories.

Some other uses of gradient information may be, distinguishing regions contain-
ing flat patches from regions containing patches with higher slope. Similarly,
information about the rate of change of gradient(2nd order derivatives) can be
used to differentiate cliffs from slightly sloped regions.

Hence, choosing a continuity constraint is critical for useful modelling of the
environment. For this project, the continuity constraint was set to C2 continuity.
C2 continuity ensures the existence of second order derivatives at all point of the
surface. This also ensures that second order optimisation algorithms can be used
with these representations.

3. Support for High variation in curvatures. Since the modeled environment
may consist of surfaces that have localities of high variation in curvature, like
edges of stairs, It is important that the surface model used is able to model such
high variances robustly.

4. Local Support. Local support means that the a change occurring in a particular
section of the modelled surface should not affect other sections of the surface.
This property is desirable for applying local optimisations during surface fitting
without deforming the surface.

3.3 Polygon Meshes

Polygon Meshes are widely used to represent surfaces. The mesh based representation
defines a surface with a collection of vertices and polygons, usually triangles. Figure
3.1 shows a surface represented as mesh.

A key characteristic of mesh based representation is that they are constructed by ex-
tracting polygons directly from the input point-cloud avoiding any kind of optimisa-
tion algorithms like least squares. This allows them to represent surfaces with arbitrary
topology.

1https://en.wikipedia.org/wiki/Polygon mesh#/media/File:Dolphin triangle mesh.png
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Figure 3.1: A mesh representation of a dolphin. 1

Since meshes use polygons faces to represent surfaces, they are not inherently smooth.
Therefore, after generating a mesh, repetitive smoothing operations are performed un-
til desired level of smoothness is achieved. In this section we will briefly discuss
algorithms used for generation of a mesh from a point-cloud. Later we discuss some
smoothing techniques and analyse the continuity of the generated smooth surfaces.

3.3.1 Mesh Generation

Some popular methods to create meshes from a set of points are:

1. Delaunay Triangulation.

2. Marching Cubes [13].

In recent years, Delaunay Triangulation has been widely used for automatic mesh gen-
eration. As the name suggests, the algorithm uses triangulation to group the input
points into a collection of triangular faces adhering to certain conditions.

In order to keep this analysis short we will not discuss the various generation algo-
rithms. Interested readers can use the mentioned references2 as a good place to start.

3.3.2 Smoothing

Smoothing of meshes is done using the subdivision operation. The subdivision oper-
ation recurrently divides the polygon faces in a mesh into smaller faces making the
surface a little smoother after each iteration. Figure 3.2 demonstrates the subdivision
operation. Applying subdivision operation on mesh infinitely guarantees a smooth
limit surface. There are many subdivision algorithms. These algorithms differ from

2https://people.eecs.berkeley.edu/ jrs/meshpapers/delnotes.pdf
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each other is in the way that they define rules for subdivision. Some of the popular
subdivision algorithms are:

Figure 3.2: Effect of Catmull-Clark subdivison on a cube.[6]

1. Catmull-Clark Surfaces [5]

2. Loop Subdivision [12]

Interestingly, Catmull and Clark in [4] prove that the subdivision algorithm they in-
vented results in a bi-cubic B-Spline surface. We discuss these kind of surfaces in the
next section. Similar methods are used to show that most subdivision algorithms result
in a B-Spline derived final surface.

3.3.3 Drawbacks

Some drawbacks of subdivision surfaces are:

• Although they are proven to demonstrate C2 continuity [5]. There are certain
points on the surface called the extra-ordinary points that only show C1 continu-
ity.

• The drawback of these algorithms is that they lack most of the mathematical
background of the other approaches. As a result error modeling is much less
rigorous, and heuristics are used to model the error. [9]

3.4 Mathematical models for Surfaces

Surfaces are well studied in mathematics. This has resulted in multiple mathematical
models to represent a surface. In this section we discuss some of these models. The
focus of the section will be to define parametric surfaces and analyse the various types
of such surfaces. The analysis will be based on flexibility, efficiency and the continuity
of the resultant surfaces.

Implicit Surface Equation

The most well known mathematical model is the implicit equation of a surface given
below.

f (x,y,z) = 0 (3.1)
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The implicit equation tightly couples all the coordinate points on the surface(x,y, and z)
together into one equation. This model works for simple and well structured surfaces
like a sphere of radius r,centered at the origin:

x2 + y2 + z2− r2 = 0 (3.2)

However, for more complex surfaces, the implicit equation form is very restricting.
An environment may consist of complex surfaces having high variability in different
sections of the surface. To model such an environment mathematically, a more flexible
model is required.

Parametric Models

Parametric models are another popular mathematical representation of a surface. To
simplify the discussion we will focus on the parametric form of curves. After analysing
the parametric curves, we will discuss Tensor Product Surfaces scheme, which allows
us to represent a surface by using two parametric curves. The analysis done on curves
will remain valid since the tensor product surface generated using these curves inherits
their properties [17].

C(u) = (x(u),y(u),z(u)) u ∈ (a,b) (3.3)

Equation 3.3 shows the parametric equation of a 3D curve, C(u), which is a vector-
valued function of a parameter u. In parametric form, each of the coordinates of a
point on the curve is represented by a separate function of the independent parameter,
u. Here, the curve coordinate points x, y and z are represented by explicit functions
x(u),y(u),z(u) respectively.

The parametric surface models are well covered in the NURBS book [17]. Some of
the most common forms are parametrisation are discussed below.

3.4.1 Power Basis Curves.

The power basis curves are the most simplest form of Parametric curves.

An nth degree power basis curve is defined as

C(u) =
n

∑
i=0

ai ui 0≤ u≤ 1 (3.4)

where, ai = (xi,yi,zi) are vectors. Therefore,

x =
n

∑
i=0

xi ui y =
n

∑
i=0

yi ui z =
n

∑
i=0

zi ui (3.5)

Hence all the explicit functions are polynomials of the parameter u.
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Matrix Representation

Generally, for a curve with degree n, the n + 1 functions {ui} are called the basis
(blending) functions. The set {ai = (xi,yi,zi)} are called geometric coefficients. It can
be seen that the curve is a linear combination of the basis functions weighted by the
geometric coefficients. This is an interesting way of looking at the parametric surfaces
because this allows to represent eq. 3.4 as a matrix multiplication.

C(u) =
[

u0 u1 .. un
]

x0 y0 z0
x1 y1 z1

..
xn yn zn

 (3.6)

Figure 3.3: A plot showing the value of power basis functions from degrees 1 to 5.

It can be observed that eq. 3.6 is of the form C (u) = uT a. Therefore, for fixed basis
function vector u and a target curve C , optimisation methods can be used to find a
set of geometric coefficients â, such that the residuals |C −uT â| is minimised. The
optimisation process is discussed in chapter 4.

Flexibility.

The basis functions of this representation are polynomials, which can potentially rep-
resent very complex surfaces for a sufficiently high value n, the degree of the curve.
However, in practise, to model complex curves using power basis functions requires
very high values of the degree. This makes this modelling technique very inefficient.

Continuity. Using basis functions of degree n results in a Cn continuous curve.

Drawbacks. Some drawback of using power basis curves for representation are:
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(a) Bernstein Polynomials of degree 5. (b) Bezeir curve of degree 5.

Figure 3.4: Plots showing properties of Beizer Curves

• The parametrisation of the power basis curves is not very intuitive. It is difficult
to reason about the effect of moving a vector a0 = (x0,y0,z0) on the curve C(u).

• The algorithm used for evaluation of such curves (Horner’s algorithm3) suffers
from instability such as rounding errors for high degree evaluations [17].

3.4.2 Beizer Curves

An nth degree Beizer Curve is defined as:

C(u) =
n

∑
i=0

Bi,n(u) Pi (3.7)

Here, Bi,n(u) are bernstein4 polynomials. These are defined by the equation (Figure
6.4d):

Bi,n(u) =
n!

i! (n− i)!
ui (1−u)n−i u ∈ [0,1] (3.8)

The geometric coefficients used in this representation, {Pi}, are called control points.
For a 3D curve, the control points are a set of 3D points in space of the form (xi,yi,zi).
The polygon formed by these control points is called the control polygon.

This parametrisation is better than that of power basis form because it provides infor-
mation about geometric properties of the curve it represents. A non-exhaustive list of
properties are shown in Figure 3.4b and discussed below:

• Points C(0) = P0 and C(n) = Pn. This provides information like the starting and
ending point of the curve.

3https://en.wikipedia.org/wiki/Horner%27s method
4https://en.wikipedia.org/wiki/Bernstein polynomial
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• The resultant curve lies inside of the convex hull of the control polygon.

Flexibilty

Since beizer curves also use polynomial basis function, they are capable of represent-
ing all the curves a power basis form can represent.

Continuity

The continuity of the beizer curve depends on the positions of the control points {Pi}
[17]. Therefore, the continuity of a Beizer curve is highly variable.

Drawbacks All the control points in a Beizer curve influence all the points on the
curve. This means, a change in one of the control points can change the shape of the
curve completely. This introduces some problematic properties like:

• They require high degree polynomials for representing a highly variable curve.

• The continuity of the curve is highly variable. Even if uniform continuity is
achieved, it is not robust against factors like, introduction of new control points
or change in position of a control point.

These problems are addressed by B-Splines which are discussed below.

3.4.3 B-Splines

B-Splines are an extension of piece-wise polynomial curves called Splines. A spline
divides its domain, say, [t0, tm] into m−1 intervals. The values in each interval [ti, ti+1)
is mapped to a value using a polynomial Pi (eq. 3.9).

S(t) =


P0(t) for t ∈ [to, t1)
P1(t) for t ∈ [t1, t2)
...

Pm−1(t) for t ∈ [tm−1, tm]

(3.9)

It can be observed in equation 3.9 that two intervals [ti, ti+1) and [t j, t j+1) are isolated.
Changing the polynomial Pi does not affect the polynomial Pj. This property of isola-
tion is exploited by b-splines to provide local support.

Since B-Splines are complex models, we first define and get familiar with some critical
attributes and terminology related to a b-spline.

A B-Spline uses a vector U to represent the division of the input domain into intervals.
If U = {u0, ...,um}, then the vector U is called the Knot Vector, the values ui, such
that i ∈ [0,m] are called knots, and an interval [ui,ui+1) is called a knot span.

A knot vector has monotonically increasing values and it can also contain duplicates.
For example, U = {0,0,0,1,2,3,4,4,4} is a valid knot vector. The number of times
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Figure 3.5: A Spline Curve and its control points.

a knot value occurs in the knot vector is called the multiplicity of that value. For
example, the knot multiplicity of 0 and 1 in U is 3 and 1 respectively.

A knot vector uniquely identifies a b-spline curve with degree p [17]. Hence, the
parameters of a b-spline curve are a knot vector U and the degree of the curve p.

A pth degree B-Splines curve is defined by the equation:

C(u) =
n

∑
i=0

Ni,p(u) Pi u ∈ [a,b] (3.10)

Ni,0 =

{
1 if ui ≤ u < ui+1

0 otherwise.

Ni,p =
u−ui

ui+p−ui
Ni,p−1(u)+

ui+p+1−u
ui+p+1−ui+1

Ni+1,p−1(u)

(3.11)

Where Ni,p is the b-spline polynomial basis function and Pi ∈ P is the set of control
points. [a,b] represents the interval over which the knot vector U is defined. Usu-
ally, [a,b] is normalised to [0,1]. The b-spline basis function Ni,p can be calculated
recursively using the equation(s) 3.11.

Although, eq. 3.10 looks very similar to eq. 3.7, it is important to note the difference
between the two representations.

In Beizer curves (eq. 3.7), variable n is equal to the degree of the curve and is fixed.
Consequently, the number of control points that can be used in beizer curves are also
fixed. Moreover, the value of the berstein polynomial functions depend on the degree
n and the parameter value u. Since the degree of a curve is fixed, the value of the basis
functions is always the same for a parameter and degree value.

In the case of B-Splines on the other hand, variable p is used to denote the degree of
the curve and n is used to represent the total number of control points which has a
minimum value of p+1 and can be increased as required. This gives more flexibility to
the shape of the control polygon created.
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Further, like the bernstein polynomial functions, the value of the B-Spline basis func-
tions depend on the parameter u, and the degree p of the curve. However, the value of
the b-spline polynomial also depends on the knot span, [ui,ui+1) that the parameter u
belongs to (eq. 3.11). This results in an interesting property:

• The value of Ni,p(u) = 0 if u is outside the interval [ui,ui+p+1).

This is significant because this doesn’t allow a change made in a span [ui,ui+1)
to affect more than p other adjoining segments. This gives b-splines the local
support property.

The continuity of the surface represented by a B-Spline depends directly on the conti-
nuity of the b-spline polynomial basis functions, Ni,p [17]. If we observe eq. 3.11, we
see that the b-spline basis polynomial of degree p is a summation of two b-spline basis
polynomials of degree p−1.

Further, it can be proved using induction that the all the b-spline basis functions are
non-negative [17]. Therefore, it implies that within a knot span(excluding the knots),
the pth degree b-spline basis function can be differentiated p times. Consequently, a p
degree b-spline has Cp continuity inside of the knot spans.

The continuity at the knot points for the same curve is defined as Cp−k. Here, k is
the multiplicity of the knot and p is the degree of the curve. Therefore to attain C2

continuity using b-splines, the degree of the curve must be set to 2+ k, where k is the
maximum multiplicity of a knot. The value of k is usually 1. Therefore, cubic b-splines
are sufficient to represent any curve with C-2 continuity.

Non-Uniform Rational B-Spline

C(u) =
∑

n
i=0 Ni,p(u) wi Pi

∑
n
i=0 Ni,p(u) wi

u ∈ [0,1] (3.12)

NURBS are a generalisation of B-Splines that have slightly better properties. The main
differences between the two are:

1. NURBS are Rational. This means that instead of polynomial basis functions,
NURBS basis functions are a ratio of polynomials (eq. 3.12). This gives them
the ability to represent closed form surfaces like spheres and cylinders. [17]

2. NURBS work in homogeneous coordinate system. This means that each control
point in a NURBS curve has a weight associated to it. The weights can be used
to increase or decrease the influence of a control point over the resultant curve.
Setting these weights to 1 results in a Rational B-Spline curve.

3. NURBS usually have non-uniformly distributed knots. This can be used to
match the distribution of the target points. This helps in providing local sup-
port.

From here on, when we refer to B-Splines, it will implicitly be a Rational B-Spline, or
a NURBS with weights = 1.
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(a) Control Points (Geometric Coefficients) of a
B-Spline surface. (b) Resultant B-Spline Surface.

Figure 3.6: An example of B-Spline Tensor Surface.

3.4.4 Tensor Product Surfaces

As discussed earlier, The parametric curve C(u) is a vector-valued function of one
parameter. It maps a straight line segment into 3D euclidean space using explicit func-
tions.

Similarly, a surface is vector-valued function of two parameters u and v. It maps a
region R in the uv plane to the 3D euclidean space. Hence a surface can be represented
using the following equation:

S(u,v) = (x(u,v),y(u,v),z(u,v)) (u,v) ∈ R (3.13)

Such a surface can be constructed using the tensor product scheme. The tensor product
scheme is widely used and is a quite popular approach to create parametric surfaces
[17].

S(u,v) =
m

∑
j=0

n

∑
i=0

f (u) g(v) bi, j where

{
bi, j = (xi, j,yi, j,zi, j)

0≤ u,v≤ 1
(3.14)

A Tensor Product Surface is essentially a bidirectional curve. Similar to the curves
discussed above, these are created using basis functions and geometric coefficients.
The basis functions used are bivariate and can be constructed by taking the product of
two univariate basis functions. The resultant surface has n×m geometric coefficients
where n and m are the total number of geometric coefficients for each of the constituent
curves.

Figure 3.6 shows a b-spline surface generated using using the tensor product scheme.
Notice that the control points are arranged in a grid structure. This is because the
surface is represented as a tensor product of two curves(one for each axis).
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3.5 Evaluation

This section presents an evaluation of the discussed representations based on the re-
quirements stated in section 3.2.

3.5.1 Meshes

Compaction

Polygon meshes use polygons generated directly from the input point-cloud to repre-
sent a surface. Since this technique requires to hold information like the vertices of the
surface and the relationship amongst them (edges of a polygon). The final representa-
tion of the surface is not compact.

Continuity

As discussed, meshes are not inherently smooth. Although the limit surfaces created
by subdivision are provably smooth, such surfaces do not show strict C2 continuity.

Support for High Variation in curvatures.

Meshes are capable of modelling surface of any topology. However, they do not ro-
bustly capture the curvature of a surface smoothly.

Local Support

Since a region of the surface represented by a mesh only depends on the polygon faces
belonging to that region, meshes provide excellent local support.

3.5.2 Parametric Surfaces

The discussion in section 3.4 suggests that B-Splines are the most powerful form of
parametric surfaces. Hence, we evaluate Parametric Surface representation based on
the properties of B-Splines.

Compaction

Since parametric surfaces define a surface as a linear combination of certain basis
functions, a surface can be efficiently represented by set of geometrical coefficients.
This results in a compact representation.

Continuity

B-Splines use piece-wise higher order functions to represent a surface. Since the conti-
nuity of a b-spline surface depends upon the continuity of the b-spline basis functions,
the constraints on the continuity of the modelled surface are directly handled by the
underlying mathematical model. In other words, choosing an optimum degree for the
surface guarantees certain continuity properties.

Support for High Variation in curvatures.
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The piece-wise nature of b-splines can capture regions of high-variations by refining
the knot vector. One drawback of this approach is that refinement of the knot vector
increases the number of control points (increasing the geometric coefficients needed
for representation).

Local Support

For a degree p surface, only p+1 control points influence a region of the curve belong-
ing into a knot span. This enables local support in b-splines.

3.5.3 Conclusion

Based on the analysis of the various surface representation techniques, (Rational) B-
Splines were chosen to implement the system for approximating surfaces.
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Surface Fitting

This chapter presents a description of surface fitting problem. First we define the
fitting of B-Splines to a point cloud as an optimisation problem. This is followed by
a discussion on the optimisation objectives commonly used for surface fitting. Finally
the core surface fitting algorithm is described.

4.1 Problem Definition

As discussed in section 3.4.1, parametric surfaces are represented using basis functions
and geometric coefficients. They can be represented in vector form as :

S = B(u,v)T
θ (4.1)

Where, B(u,v) is a vector function generating basis function values using parameters u
and v, and θ is a vector containing geometric coefficients(control points). The surface
is a linear combination of B(u,v) weighted by θ.

In the case of B-Splines, the parameters u and v are normalised to [0,1]. Therefore,
for constant knot vectors (Uu and Uv), the value of the b-spline basis function always
remains the same for the same parameters (ui,vi). Hence, the equation 4.1 can be
re-written as:

S(θ) = BT
θ (4.2)

Now, Given a point cloud X of size N, with points Xi, i ∈ [0,N) we want to find
geometric coefficients θ of a parametric surface S , such that the term E , represented
by eq. 4.3 is minimised.

E(θ) =
1
N

N

∑
i=0

D(Xi,S(θ))2 (4.3)

30
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4.1.1 Least Squares Fitting

In equation 4.3, the term E is the mean squared value of an objective function D , that
represents the distance of the point Xi from the surface S . The reason behind using
this notation is to have the flexibility of choosing an appropriate objective function for
optimisation.

Since E is the summed square of the distance, the value of E can be minimised using
least squares approximation. Using normal equation to solve the least squares approx-
imation for E results in solving the system of equations, B θ̂ = X. The solution to
which is:

θ̂ = (BT B)−1(BT X) (4.4)

where B are the b-spline basis functions, X is the point cloud and θ̂ are the new control
points.

In the next sections we discuss the various optimisation objectives that are used for
surface fitting.

4.2 Optimisation Objectives

4.2.1 Point Inversion

Earlier, We defined D as the function measuring the distance between a 3D point Xi
and the surface S . To calculate this distance, we need a point X s

i , on the surface S , that
is closest to the point Xi. We will refer to X s

i as the foot-point of Xi on S .

The process of calculating X s
i , requires finding of parameters (ui,vi) such that evaluat-

ing S at (ui,vi) using θ results in X s
i . This is called Point Inversion.

X s
i = S(θ) = B(ui,vi)

T
θ (4.5)

We use newton iteration to find the parameters (ui,vi) such that the distance |Xi−
S(ui,vi)| is minimised. The algorithm to do so is described in the NURBS book [17].

Once the parameters (ui,vi) are computed, they can be used to find the tangents and
normal at the point X s

i . This is required for some of the optimisation objectives dis-
cussed below.

4.2.2 Point Distance Minimisation (PDM)

Figure 4.1 shows one of the most common ways to define D is to define it as the
euclidean distance between the points Xi and X s

i .

D(θ) = ||Xi−X s
i || where X s

i = S(ui,vi,θ) (4.6)
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Figure 4.1: Example of Point Distance Estimation

Equation 4.3 now becomes:

E(θ) =
1
N

N

∑
i=0
|| Xi−X s

i ||2

This optimisation objective is called Point Distance Minimisation(PDM). This objec-
tive is simple to implement and consequently, is very popular in CAD industry [22].
However, Wenping Wang in [22] argued that, although simple to implement, the point
distance function does not capture the distance between the points accurately. This is
because PDM is only based on the foot-point X s

i , and X s
i is dependent on θ (eq. 4.5).

Since θ is subject to optimisation, X s
i is variable and changes after every iteration.

Therefore, the optimisation converges slowly.

4.2.3 Tangent Distance Minimisation (TDM)

In Tangent Distance Minimisation(TDM), the distance function, D is defines as:

D(θ) = (Xi−X s
i )

T Ni (4.7)

Where, Ni represents the unit normal to the surface, S at point X s
i .

Essentially, TDM tries to minimise the distance between the point Xi and the mov-
ing line Li, which is the tangent to surface S at point X s

i (figure 4.2). TDM usually
converges faster than PDM, however it is highly unstable in regions of high curvature.

In [22], the authors show that the instability of the TDM is due to the fact that it is
an approximation of Gauss-Newton1 iteration with an excessively large step size. The

1https://en.wikipedia.org/wiki/Gauss%E2%80%93Newton algorithm
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Figure 4.2: Example of Tangent Distance Estimation

large step size is caused due to omission of important curvature related information in
the true Hessian Matrix. The authors later propose an extension to the TDM objective
function that incorporates the curvature information. The proposed extension is called
Squared Distance Minimisation and it is described below.

4.2.4 Squared Distance Optimisation (SDM)

In [22], Wang Weping and others proposed squared distance optimisation as an algo-
rithm which converges faster than PDM but is also more stable than TDM in regions
of high curvature. They do this by introducing curvature information into the TDM
objective function by modifying it as shown in eq. 4.8. The term ρ represent the radius
of curvature of the surface at X s

i and the term d represents the signed distance between
X s

i and X〉, where the sign is positive if the curvature ρ and Xi are in the same direction
and negative if the opposite.

D(θ)2 =


d

d−ρ
[(Xi−X s

i )
T Ti]

2 +[(Xi−X s
i )

T Ni]
2 d < 0

[(Xi−X s
i )

T Ni]
2 0≤ d < ρ

(4.8)

D(θ)2 = β [ (Xi−X s
i )

T Tu,i +(Xi−X s
i )

T Tv,i]
2 +[(Xi−X s

i )
T Ni]

2 (4.9)

Considering the complexity of the term and keeping in mind that the above function
was created and tested for curves (not surfaces), for which calculation of ρ is straight-
forward, during implementation, the factor d

d−ρ
was replaced by a constant weight, β.

eq. 4.9



Chapter 4. Surface Fitting 34

4.3 Core Algorithm

In this section, the core algorithm to fit a B-Spline surface to a point cloud is built
and discussed. Algorithm 1 shows the pseudocode of the core algorithm highlighting
important aspects of the algorithm as functions. Each of these aspects are described
below:

Algorithm 1: Surface Fitting Algorithm for B-Spline Surface
Result: B-Spline fitted to the input point cloud
input: A point cloud X with N points
input: Error Tolerance γ

input: Max iterations k
parameter: S : B-Spline Surface
parameter: θ: control points
parameter: loop: iteration count
parameter: ε: error

1 S ← InitialiseSurface(X );
2 ε← inf;
3 loop← 0;

4 while ε > γ & loop ¡ k do
5 θ← GetControlPoints(S);

6 for i← 0 to N−1 do
7 Xi← X [i];

8 //section 4.2.1
9 X s

i ← PointInversion(S ,Xi);

10 // add point constraint to system of eqs based
11 // on one of eq. 4.6, 4.7, 4.8
12 addConstraint(Xi,X s

i );
13 end

14 θ̂← Solve(); // solve system of eqs.
15 θ← UpdateSurface(θ̂);
16 ε← CalcError(S(θ),X ); // eq. 4.3
17 loop← loop + 1;
18 end

4.3.1 Surface Initialisation

When fitting B-Spline surface to a point cloud, the rate convergence is affected by the
initial position of the surface control points [22][17]. Therefore, it is important that
the surface is initialised at a good position. Initialising a B-Spline surface consists
specifying the knot vectors Uu and Uv and the control points θ.

Initialisation of control points
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Figure 4.3: (left)A B-spline curve being initialised using PCA decomposition of a point
cloud (black points). (right) The resultant B-spline surface after fitting. [18]

The most intuitive way to perform initialisation would be to have the surface aligned
with the axes of maximum co-variance of the point cloud. This can be done by per-
forming the PCA decomposition of the input point cloud and choosing the eigenvec-
tors, v1 and v2, with maximum corresponding eigenvalues. The initial control points, θ

can then be initialised in a grid along the axes v1 and v2. This intialisation works under
the assumption of the existence of two major axes in the point cloud. This assumption
is valid in the case of modelling an environment since this is true for most naturally
existing environments. [18]

The number of control points that the initial surface has depends on the type of the
fitting algorithm. Typically, there are two types of algorithms, one starts with minimum
number of control points (degree of surface + 1) and increases the total number of
control points using knot insertion until convergence. The other type starts with total
number of points much greater than the minimum value and decreases the number of
control points using knot removal in each iteration until the error value has increased
over a certain threshold (or min number of control points has reached)[17].

In this project, the initial number of control points are set to the minimum value and
incrementally increased upto a threshold of approximately 1200 points.

Initialisation of knot vectors

The params (u,v) of a B-Spline are normalised to [0,1]. Theoretically, the degree of
a curve p, total control points, n+ 1 and total knots m+ 1 are constrained with the
equation : m = n+ p+1 [17].

Since a B-Spline curve is a tensor product of two curves, and parameters u and v are
independent of each other. The knot vectors Uu and Uv can be generated by dividing
the parameter space of u and v, respectively, into m+1 knots uniformly.

4.3.2 Adding Constraints

The function addConstraints represents the optimisation objectives discussed in sec-
tion 4.2. This function essentially adds an constraint to the system of equations men-
tioned in section 4.1.1 based on the definition of the distance function D .
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For a point Xi in the point cloud, the corresponding constraint equation is given by:

Bi θ̂ = Xi

where Bi is the vector containing the values of the b-spline surface basis function at
the parameters (ui,vi) computed using Point Inversion of Xi.

4.3.3 Updating Surface

Solving the equation 4.4 gives the control points θ̂, such that the value E from eq. 4.3
is minimised. The control points θ can be updated in the direction of θ̂ to minimise
error. For a step size α, the update equation is as follows:

θ = θ+α (θ̂−θ) α ∈ (0,1] (4.10)

Setting α = 1 replaces θ with θ̂.



Chapter 5

System Design and Implementation

This chapter documents the design and implementation of the Surface Approximation
System built in this project.

5.1 Design

5.1.1 Core System

The main design requirement for the core system was the ability to easily implement,
test and evaluate various aspects of the core algorithm (Alg. 1) independently.

It was observed that the core system could be divided into multiple objects that inter-
acted with each other in a fixed way. These objects were:

• Surface: A class that represents the surface models that can be fitted to a point
cloud. All aspects of algorithm 1 relating to the parametric surface could be
abstracted into the Surface class. The main task of this object would to compute
a surface based on given set of parameters ((u,v) and θ).

• Distance Metric: A class that could represent the various optimisation objec-
tives that could be used for surface fitting. This object of this class could use the
Surface object and a given point cloud to create a system of equations(eq. 4.4)
using one of the distance functions discussed in section 4.2.

• Solver: A class to hold all the logic related to the solving of the above generated
system of equations. An object of this class would represent a solution such as
LU decomposition or SVD decomposition.

• Optimiser: A container object that could perform the optimisation process using
the above objects.

• Configuration: To make performing experiments easy, a configuration object
could be created that specified the inputs to the Algorithm 1 and the kind of
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objective function to use. The Optimiser object could then use this configuration
object to run the optimisation process.

Dividing the system in this way made it easier to isolate the different aspects of the
system. This made it very easy to implement various parts of the system and conduct
experiments targeted at individual parts.

5.1.2 Integration Requirements

Since other robot control systems(clients) were supposed to interact with the core sys-
tem. It was essential to make these interactions easy. Moreover, since the motivation
behind this project was to enable visual perception, it was also important to extend the
core system to add support for extracting certain attributes about the surface that the
client systems needed.

To understand these requirements better, a PhD student at the University of Edinburgh
was consulted. The final design requirements for the extended system were:

• Support for MATLAB. This was because the optimisation algorithms that were
to use the system were running in MATLAB.

• Ability to specify tolerable error in estimates.

• Ability to extract the following attributes of the surface:

1. The height map

2. The tangents and normals at each point

3. The higher order derivatives at each point.

4. An estimated value of error in the estimate.

5.1.3 Libraries

These libraries were used during the development process. Point Cloud Library

The Point Cloud Library (PCL)[19] is an open-source large scale project for point
cloud processing. It is completely written in C++ and contains state of the art algo-
rithms for point-cloud filtering, feature estimation, point cloud registration and surface
reconstruction.

Open3D

Open3D is another open-source library that contains point cloud processing algorithms
for filtering, reconstruction and registration. The library exposes both c++ and python
API and is designed for rapid development of 3D point cloud related software. [26]

NURBS-Python (geomdl)
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NURBS-Python (geomdl) is an object-oriented, open-source, B-Spline and NURBS
evaluation library written in pure python. [3]. The library contains implementations
of numerous algorithms mentioned in the NURBS book [17], making working with
B-Spline surfaces very convenient. This library also provides rendering routines to
visualize the b-spline surfaces.

Numpy. Numpy is a linear algebra library for python. [21]

5.2 Implementation

The initial experiments were performed using the PCL library which is written in C++.
However, the final implementation of the project was decided to be done in python.
This was motivated by the ease of using python packages in MATLAB and the avail-
ability of well developed and light-weight libraries for B-Spline Surfaces [3], point-
cloud processing [26], and linear algebra [21].

5.2.1 Surface Module

B-Spline Surface

The NURBS.Surface class of the NURBS-Python library was used to represent a B-
Spline surface. This made the process of evaluating the 3D point, the normal, the
tangents and, the higher order derivatives for a set of parameters (u,v) very convenient.

Surface Initialisation

A separate module was created for for surface initialisation. This module consisted
of an abstract class that defined an interface for surface initialisation. This class was
extended to implement the initialisation scheme discussed in section 4.3.1. This was
done to make it easy to implement and use other initialisation schemes.

5.2.2 Solver module

A solver object was created to implement the system of equations that could be con-
strained and solved for optimisation. The object essentially consisted of two matrices,
B and X (eq. 4.4) and an interface to add constraints to the matrices. Numpy’s linear
algebra functions are used to solve the system of equations.

5.2.3 Distance Metrics

The distance metric module consists of the implementations of PDM, TDM and SDM
optimisation objectives discussed in section 4.2. The structure of this module was
adapted from the PCL library [19] which has an implementation of the PDM and the
TDM objectives.



Chapter 5. System Design and Implementation 40

During the implementation of the module, it was noticed that the implementation of
the TDM objective in the PCL library was incorrect. Instead of optimising the equation
4.7, the implementation optimised the following equation:

D(θ)2 = [ β [(Xi−X s
i )

T Tu,i +(Xi−X s
i )

T Tv,i]+ [(Xi−X s
i )

T Ni] ]
2 (5.1)

Which is very similar to the SDM objective (a2 + b2 6= (a+ b)2). It was assumed
that this was a new optimisation objective that was a hybrid of SDM and TDM. This
function was also used in evaluation was referred to as PCL-TDM.

During evaluation it was noticed that building the constrained system of equations
was a bottleneck for the whole algorithm. To remove the bottle neck, the code was
extensively refactored by dividing the module into simpler routines that could be par-
allelized. This is discussed further in evaluation.

The biggest performance boost was achieved by parallelizing point inversion across
all(8) CPU cores. The run-time of the system was reduced to a third of its original
value.

Configuration

A configuration class was created that was used to specify the parameters of the opti-
misation process. These parameters included:

• The maximum tolerable error of the fit.

• Maximum number of iterations

• Type of optimisation objective to use

• Type of Solver to use. (This specified the algorithm to use for solving. example:
LU decomposition)

Creation of this class made performing evaluation experiments easier. It also makes
the system more configurable.

5.2.4 Optimiser

A class was created to contain the whole optimisation process described in Algorithm
1. This class uses an instance of the configuration object (mentioned above) to initialise
the algorithm (A1) and perform optimisations.

The class also contained definitions of routines to collect metrics such as the run-time
and the fitting errors. Utility methods for saving/loading objects were also imple-
mented.

Query

The same class as above was extended to include methods that served as an interface
to query the final surface. All the attributes mentioned in section 5.1.2 was supported
through these functions. The client system can specify an array of 2D (x,y) or 3D
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(x,y,z) points and get the information about the height (z), tangents and normal to
the surface at these points. A cache was implemented to avoid running expensive
computations for query consisting of the same points that had already been processed.



Chapter 6

Evaluation of System

In this chapter, the performance of the system on the collected test cases are evaluated.
The evaluation is based on the convergence rate and the approximation error of the
resultant surface. First the evaluation setup is described. This is followed by a series
of figures showing the results of surface fitting algorithm on all the test cases. This is
followed by a discussion on the results collected.

6.1 Evaluation Setup

As discussed in section 4.3.1, the algorithm is designed to start with minimum number
of control points and increases the number of points over the iterations until desired
error level is reached. During the evaluation phase, the maximum number of allowed
control points were set to 1225. This was due to memory limitations. All experiments
were conducted on a machine equipped with 8 core Intel Core i7 processors and 8GB
of ram.

For evaluation, the system was run on 4 processed point clouds (figure 2.5) using all 4
optimisation objectives and bi-cubic b-spline planes. All experiments were run for 15
iterations.

6.2 Results

This section consists of a series of figures showing the results of performing surface
fitting on the point clouds seen in figure 2.5 and 2.4. For each test case, there is an
image of the input cloud, the resultant surface and plots showing comparison between
the fitting error and run-time of all the optimisation objectives that were tested.
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(a) Input Point Cloud (b) Fitted Surface

(c) Error of the objective functions

(d) Runtimes of the algorithms

Figure 6.1: Input, output, and performance: Test-case 1. (1447 points)
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(a) Input Point Cloud (b) Fitted Surface

(c) Error of the objective functions

(d) Runtimes of the algorithms

Figure 6.2: Input, output, and performance: Test-case 2. (3204 points)
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(a) Input Point Cloud (b) Fitted Surface

(c) Error of the objective functions

(d) Runtimes of the algorithms

Figure 6.3: Input, output, and performance: Test-case 3. (10467 points)
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(a) Input Point Cloud (b) Fitted Surface

(c) Error of the objective functions

(d) Runtimes of the algorithms

Figure 6.4: Input, output, and performance: Test-case 4. (6411 points)
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Distance Metric Test Case Avg. run-time (secs) Min. Fitting Error Total points

PDM Test-1 5.75 0.00040 1447
TDM Test-1 8.00 0.00062 1447
SDM Test-1 8.27 0.00038 1447

PCL-TDM Test-1 10.07 0.00046 1447
PDM Test-2 14.27 0.00032 3204
TDM Test-2 17.10 0.00031 3204
SDM Test-2 20.74 0.00030 3204

PCL-TDM Test-2 22.83 0.00031 3204
PDM Test-3 44.68 0.00026 10467
TDM Test-3 58.27 0.00029 10467
SDM Test-3 62.40 0.00031 10467

PCL-TDM Test-3 62.32 0.00037 10467
PDM Test-4 33.15 0.00162 6411
TDM Test-4 38.59 0.00210 6411
SDM Test-4 46.72 0.00143 6411

PCL-TDM Test-4 36.90 0.00172 6411

Table 6.1: Table summarizing results of all the experiments.

6.3 Discussion

Table 6.1 summarises the results of fitting experiments performed using the system. It
can be seen that surface approximated using SDM objective has slightly better fitting
error than other algorithms.

6.3.1 Fitting Error

The system was consistently able to approximate surfaces with an error less than the
value of 0.01. It was seen that SDM performed overall slightly better than other op-
timisation objectives. One interesting observation was that even though none of the
optimisation objectives performed well on the fourth test case, SDM performed a lot
better than other optimisation objectives while TDM performed the worst.

This behaviour can be attributed to the curvature associated with the fourth test case
and hence the claim made by Wenping Wang and other in [22] about the instability
of TDM near regions of high curvature due to lack of curvature in formation can be
verified.

6.3.2 Runtime

Figure 6.5 shows how the average runtime of the optimisation objectives behave with
increase point cloud size.
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(a) Plot of average runtime/iter vs the point cloud size.

(b) Plot showing relationship between total runtime and point inversion time
per iteration.

Figure 6.5: An analysis of effect of point cloud size on runtime
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It can be seen that although SDM produces slightly better approximations, it takes
almost 1.5 times the time to run one iteration of fitting than that taken by the PDM.
Keeping this in mind and considering that PDM sometimes outperforms SDM and the
average difference between the two is only 0.000045, the use SDM objective function
over PDM cannot be considered viable.

Further, it is observed that the runtime of the algorithm increases approximately lin-
early with the increase in the size of the dataset.

The low values of the run-times of all the objective functions during the first five iter-
ations is explained by the control point initialisation scheme employed. Initially, the
number of control points are set to the minimum allowed value. Through iterative knot
insertion [17], the number of control points reached the defined limit in 5 iterations.

Figure 6.5b shows the relationship between the total run-time and time taken by point
inversion in an iteration. It can be seen that the total runtime constitutes majorly of the
point inversion time. This shows the bottleneck created by performing newton iteration
for point inversion in this algorithm.

6.3.3 Convergence

It is interesting to note that although the average runt-imes of the algorithms are large
for large points cloud like the test case number 3, the fitting algorithms are well within
the error value of 0.001 within 5 iterations. The value of the error does not decrease
much after that.

6.3.4 Query API

The figure 6.6 shows plots of the results from querying the normal and tangents at
5 randomly selected points on the fitted surfaces. The same functionality was tested
by importing the module into MATLAB. The module was successfully imported and
could be seamlessly used for fitting surfaces to point clouds and querying.

6.3.5 Curvature

The Figure 6.7 shows the first and second derivatives of the Z values w.r.t the parameter
u and v of the surface. Since the axes u and v may not align with the axes x and y, the
shape of the plots will be slightly different from the plots seen until now. The purpose
of these plots is to demonstrate proof of C2 continuity.
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Figure 6.6: Plots of results for querying 5 random points on the fitted surfaces: The
red lines show the estimated normal, the blue lines show the tangent corresponding
to the curve represented by the parameter u, and the green lines show the tangent
corresponding to the curve represented by the parameter v.
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(a) Non differentiated z values (u facing) (b) Non differentiated z values (v facing)

(c) First derivative of z w.r.t u (d) First derivative of z w.r.t v

(e) Second derivative of z w.r.t u (f) Second derivative of z w.r.t v

Figure 6.7: Derivatives of the z values of a modelled surface w.r.t. u and v params
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Conclusion and Future work

7.1 Summary of achievements

In this project, a system to approximate 3D surfaces from point clouds was successfully
implemented. This was done by first understanding the need for such a system and
subsequently identifying the steps that had to be taken to accomplish this task. These
steps included:

• getting familiar with the technologies that enable such a system. Such as various
3D sensors and the methodology to create and process point clouds.

• carefully understanding the requirements that this system must fulfill to be suc-
cessful. This included the constraints of C2 continuity and general requirements
needed for easy integration.

• a thorough review and evaluation of the literature available on surface represen-
tation to identify the best representation to use in the system.

• a thorough analysis of the tools available to build the system. This involved
compiling and experimenting with various libraries like the PCL [19], PyMesh1

etc.

• designing the system in a way that it captures all the requirements. This included
a personal motivation to create a system that can be easily adapted to extend the
work that has been accomplished in this project.

• Implementing the design and several iterations of refactoring to ensure optimal
performance of the system.

1https://github.com/PyMesh/PyMesh
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7.2 Summary of Evaluation

The results discussed in the last section indicate the system met all the evaluation
criteria that were identified.

• The approximations generated by the system were smooth with an appropriately
small value of fitting error.

• The surfaces produced were C2 continuous which satisfied a key objective of this
project. Using b-splines made it possible to add this constraint into the design of
the solution avoiding the need of any external optimisations to achieve this.

• The maximum number of control points that were allowed were 1225, and yet
the system was able to approximate a point cloud with approximately 10000
points very accurately. This satisfies the compaction criteria we created.

• The system was successfully used and tested from within the MATLAB environ-
ment.

7.3 Criticism of work done

Although, the fitting accuracy of the system is good and the properties of the resulting
surfaces adhere to all the requirements, the runtime of the algorithm is still not optimal.
This is because, even though parallelizing the execution of newton iteration for point
inversion increased the performance of the system, as the size of the point cloud grows
this method of point inversion still becomes a bottleneck in the algorithm. In order
to make the system more scalable, it is important to find an alternative, more efficient
method to perform point inversion.

7.4 Future Work

Since the motivation behind this project is visual perception and visual perception usu-
ally happens in real-time, exploring ways to make the surface approximation process
work in real-time comes as a natural extension to this project.
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