
Multiparty Session Types for

Runtime Verification

Rumyana Neykova

OOI: verification challenges

} applications written in different languages, running on

heterogeneous hardware in an asynchronous network.

} different authentication domains, external untrusted

applications based on various application protocols

} requires correct, safe interactions

MPST for Runtime Verification

The players

}Specify a global protocol (in Scribble) that describes how

the communication (use case) will proceed

} Implement processes according to the protocol (using

conversation API in Python)

}The communication is intercepted by a monitor

}The processes are verified dynamically (monitor ing) against

the protocol

3-level Verification

1. Writing correct global protocols with Scribble Compiler

2. Verify programs via local monitors

3. Build additional verification modules via annotations

1. Writing correct global protocols with Scribble Compiler

2. Verify programs via local monitors

3. Build additional verification modules via annotations

Scribble Toolchain

1. Writing correct global protocols with Scribble Compiler

2. Verify programs via local monitors

3. Build additional verification modules via annotations

Local Protocol Conformance

aǳƭǘƛǇŀǊǘȅ {Ŝǎǎƛƻƴ ¢ȅǇŜǎ aŜŜǘ /ƻƳƳǳƴƛŎŀǘƛƴƎ !ǳǘƻƳŀǘŀ ώ9{htΩмнΣ L/![tΩмоϐ

FSM Generator

Spec Store

Parser

(ANTLR)

Tree Traversal
(ANTLR)

FSM

FSM Store

aǳƭǘƛǇŀǊǘȅ {Ŝǎǎƛƻƴ ¢ȅǇŜǎ aŜŜǘ /ƻƳƳǳƴƛŎŀǘƛƴƎ !ǳǘƻƳŀǘŀ ώ9{htΩмнΣ L/![tΩмоϐ

Application

Runtime Verification: Implications

1. Globalspecificationand its
2. localprojectionsaregivenin

3. Applications for the communication are
conversation-ŀǿŀǊŜ Χ

ΧŀƴŘ Ŏŀƴ ǊŜŀŘκǿǊƛǘŜ ŎƻƴǾŜǊǎŀǘƛƻƴ ƳŜǎǎŀƎŜǎ
Header:

...

Sender: you

Receiver: me

Label: Hello

é

Transport Layer

Conversation Layer

Application Layer

protocol Hello(me, you)

{

Hello from me to you;

Hello from you to me;

}

Conversation Layer

}Participant

} addressable entity on the network, has a public address and

can be invited to take part in a conversation,

} It can also start a conversation with another addressable

entities (if he has the right capabilities)

}Conversation

}Encapsulate conversation related information like: the

protocol that will run; the roles that take part,; memory

(mapping between addresses and conversation endpoints)

}ConversationEndpointðthese are the roles in the

conversation and also the processes that we want to run,

} send(), receive()

Conversation Runtime

Conversation API

create (configuration) ὥ<ίὶȡὝ>

join (role, principal_name) ὥ<ίὶȡὝ>

send(to_role, op, args) ὯὶȟὶȦὰ<Ὡ>

receive (from_role) Ὧὶȟὶȩὰ<Ὡ>Ȣὖ

receive_async(from_role, callback)

1. Sending to roles in a conversation, not to addresses (only
the initiator knows all addresses)

2. Operation is unspecified (can be used for method name or
class name or as annotation)

3. Update the conversation header in a message and the
local routing table

API Example 1/2

