Pacific Wave 2°10Gb

MWLW.MH'MGQ | . vl - 4 7 .
Intornet2-OCN n*10Gb § 5 ’ : \ 7 Y“DC

UntraLight 10-20G

feraFiow 10GH

I oned 10GH

Multiparty Session Types for
Runtime Verification

Rumyana Neykova

OOl verification challenges

applications written irdifferent languages, running on
heterogeneous hardware in arasynchronous network.

different authentication domains, externaltrusted
applications based on various application protocols

requires correct, safe interactions

MPST for Runtime Verification

l_-—'
Global Protocol

Projection

Specification

-
(Scribbie) — l \
Local Local Local
Specifications Specifications Specifications j

\f

Source Code Source Code Source Code Static

: —p Type
Conversation Conversation Checker

Runtime Runtime

Implementation
(Java, Scala, C, 7
Ocaml, Python)

Conversation
Runtime

Verifying
Communication
(Static & Lynamic)

e, Safe Network /_)

The players 7:9

1 Specifya global protocolifq Scribble) that describes how
the communication (use case) wlioceed

+ Implementprocesses according to the protocol (using
conversation API in Python)

} The communication is intercepted by a monitor

} The processes are verifiedynamicallymonitor ing) against
the protocol

& scribble by Rabbit OOL
A pg’[hOﬂ

session Llype]

3-level Verification E

1.Writing correct global protocols witacribble Compiler
2.Verify programs viécal monitors

3.Build additional verification modules vianotations

(. Scribble ERabbrt %L

@, python

1.Writing correct global protocols witacribble Compiler

Scribble Toolchain

Scribble

Protocol Lanﬁuaﬂe

session Lype

*Scribbling is necessary for architects, either physical or computing, since all great ideas of architectural
construction come from that unconscious moment, when you do not realise what it is, when there is no concrete
shape, only & whisper which is not & whisper, an image which is not an image, somehow it staris to urge you in your

mind, in 30 small a voice but how persistent it is, at that point you start scribbling.” Kohei Honda 2007.

What is Scribble?

Scribble is a language to describe application-level protocols among communicating
systems. A protocol represents an agreement on how participating systems interact with
each other. Without a protocol, it is hard to do a meaningful interaction: participants simply
cannot communicate effectively, since they do not know when to expect the other parties to
send their data, or whether the other party is ready to receive a datum it is sending. In fact
it is not clear what kinds of data is to be used for each interaction. It is too costly to carry
out communications based on guess works and with inevitable communication mismatch
(synchronisation bugs). Simply, it is not feasible as an engineering practice.

Pocuments

Protocol Lanﬂuaﬂe Guide

Downloads

Java Tools

Com'runH'y
Discussion Forum
Java Tools

issues
Wik
Pyﬂnon Tools

lssues

Wik

2.Verify programs viéocal monitors

Local Protocol

PROJECTION

Conformance

Global Protocol

(At design time) / l\

LOCAL PROTOCOL FOR P

LOCAL PROTOCOL FORR

LOCAL PROTOCOL FOR A

FSM GENERATION

(At runtime)

local protocol Negotiation at R(role P, role A) {
offer(string) to P;
(string) from P;
consult(string) to A;
(string) from A;
rec START {
choice at R {

accept() to R;
(conditions:string) from R;

}oor {

propose(string) to P;
(reason:string) from R;
continue START;

} or {

reject() to P;
(reason:string) from R;}}}

FSM FOR P

Verification Alconsu

PROGRAM FOR P

rd

NI é

adzf A LI

It A?string

PROGRAM FOR R

{SaaArz2y

FSM FOR A

PROGRAM FOR A

aSSi /2Y"

FSM Generator

Scribble: Order(x:int) to Seller @{x==1}
AST:
PROTOCDL
|SEND |
|VA.LUE | | Oroer | [Seller | |ASSERT |
@1x==1}

O (SEND, Drder,SeIIer)>®
1 1

FSM transition_table:

(1, (send, order, seller) ->
(2, assertion_object, {"x":"int"})

FSM:

adzf GALI NIeée {Sa

Spec Store

Parser
(ANTLR)

Tree Traversal
(ANTLR)

FSM

FSM Store

arzy ¢eLlSa

| 2Y

session lype

Runtime Verification: Implications J][

protocol Hello(me, you)

1. Globalspecificatiorand its {
2. localprojectionsare givenin (& Scribble | Hellofom meto you;

Hello from youto me;

}

_ _ _ _ Application
3. Appllca_tlons for theﬁcommunlcatlon are | appiication Layer
conversatiodr g NB X Conversation Layer

Transport Layer

o Pal

XFYR OFyYy NBIFIRKGHGNRGS A |

Senderyou
Receiverime
LabelHello

sion Lype]

Conversation Layer E

1 Participant

addressable entity on the network, has a public address and
can be invited to take part in a conversation,

It can also start a conversation with another addressable
entities (if he has the right capabilities)
1 Conversation

Encapsulate conversation related information like: the
protocol that will run; the roles that take part,; memory
(mapping between addresses and conversation endpoints)

} ConversationEndpoind these are the roles in the
conversation and also the processes that we want to run,

send(), receive()

Conversation Runtime

ComersaionAPl |
create (configuration) o<i[i]d¥

join (role, principal_nampg o< i[i ¥
send(to_role, op, arg9 Qi A A

receive (from_role) Qi h Je{&x®la

receive_async(from_role, callback)

1. Sending to roles in a conversation, not to addresses (only
the initiator knows all addresses)

2. Operation is unspecified (can be used for method name or
class name or as annotation)

3. Update the conversation header in a message and the
local routing table

APl Example 1/2

