Session Types Revisited

Ornela Dardha

School of Computing Science
University of Glasgow

January 10, 2014

(Joint work with Elena Giachino and Davide Sangiorgi)
Gentle Intro

- In complex distributed systems communicating participants agree on a protocol to follow, specifying type and direction of data exchanged.

- **Session types** are a formalism to model structured communication-based programming.

- Designed for
 - process calculi
 - multithreaded functional languages
 - object-oriented languages
 - ...

- Guarantee privacy, communication safety and session fidelity.
Example of Session Types

Distributed Auction System:
sellers, that want to sell items,
auctioneers, that sell items on their behalf,
bidders, that bid for an item being auctioned.

seller: $\oplus\{\texttt{selling} : !\text{Item} . !\text{Price} . \& \{\texttt{sold} : ?\text{Price} . \text{end}, \texttt{not} : \text{end}\}\}$

auctioneer: $\&\{\texttt{selling} : ?\text{Item} . ?\text{Price} . \oplus \{\texttt{sold} : !\text{Price} . \text{end}, \texttt{not} : \text{end}\}\}$,

register: $?\text{Id} . !\text{Item} . ?\text{Bid} . \text{end}$

bidder: $\oplus\{\texttt{register} : !\text{Id} . ?\text{Item} . !\text{Bid} . \text{end}\}$
Key words for sessions

1. **Sequentiality** of input/output operations explicitly indicating type of data transmitted.
 (Guarantees *session fidelity*)
Key words for sessions

1. **Sequentiality** of input/output operations explicitly indicating type of data transmitted.
 (Guarantees *session fidelity*)

2. **Duality** of session types corresponding to opposite endpoints of a session channel.
 (Guarantees *communication safety*)
Key words for sessions

1. **Sequentiality** of input/output operations explicitly indicating type of data transmitted. (Guarantees *session fidelity*)

2. **Duality** of session types corresponding to opposite endpoints of a session channel. (Guarantees *communication safety*)

3. **Connection** establishes a fresh session channel between two parties. (Guarantees *privacy*)
Background on π types

- Channel type $\#T$: types a channel used in input or output to transmit values of type T, many times.
Background on π types

- Channel type $\#T$: types a channel used in input or output to transmit values of type T, many times.
- Input/output channel type iT/oT: types a channel used *only* in input/output to transmit values of type T, many times.
Background on π types

- Channel type $\# T$: types a channel used in input or output to transmit values of type T, many times.
- Input/output channel type iT/oT: types a channel used only in input/output to transmit values of type T, many times.
- Linear input/output type $\ell_i T/\ell_o T$: types a channel used only in input/output and exactly once to transmit values of type T.
Background on π types

- Channel type $\# T$: types a channel used in input or output to transmit values of type T, many times.
- Input/output channel type iT/oT: types a channel used only in input/output to transmit values of type T, many times.
- Linear input/output type $\ell_i T/\ell_o T$: types a channel used only in input/output and exactly once to transmit values of type T.
- Linearized channel: linear channel used multiple times but only in a sequential manner ($?, !$) and with the same carried type.
Background on π types

- Channel type $\# T$: types a channel used in input or output to transmit values of type T, many times.
- Input/output channel type iT/oT: types a channel used only in input/output to transmit values of type T, many times.
- Linear input/output type $\ell_i T/\ell_o T$: types a channel used only in input/output and exactly once to transmit values of type T.
- Linearized channel: linear channel used multiple times but only in a sequential manner (?!, !) and with the same carried type.
- Variant type: labelled disjoint union of types ($\&$, \oplus).
Key words for π

We saw:

1. Sequentiality
2. Duality
3. Connection
Key words for π

We saw:

1. Sequentiality
2. Duality
3. Connection

4. Linearity forces a π channel to be used exactly once.
Key words for π

We saw:

1. Sequentiality
2. Duality
3. Connection

1. **Linearity** forces a π channel to be used exactly once.
2. **Capability** of input/output of the same π channel split between two partners.
Key words for π

We saw:

1. Sequentiality
2. Duality
3. Connection

1. **Linearity** forces a π channel to be used exactly once.
2. **Capability** of input/output of the same π channel split between two partners.
3. **Restriction** construct permits the creation of fresh private π channels.
Standard π-types

$\tau ::= \emptyset[\tilde{T}]$ channel with no capability
$l_i [\tilde{T}]$ linear input
$l_o [\tilde{T}]$ linear output
$l_\# [\tilde{T}]$ linear connection

$T ::= \tau$ linear channel type
$\langle l_i - T_i \rangle_{i \in I}$ variant type
$\# T$ standard channel type
Bool boolean type
\cdots other constructs
Standard π-processes

\[P, Q ::= \begin{array}{ll}
0 & \text{inaction} \\
x!(\tilde{v}).P & \text{output} \\
x?(\tilde{y}).P & \text{input} \\
P \mid Q & \text{composition} \\
(\nu x)P & \text{channel restriction} \\
\text{case } v \text{ of } \{l_i x_i \triangleright P_i\}_{i \in I} & \text{case process} \\
\end{array} \]

\[v ::= x \quad \text{variable} \\
b \quad \text{boolean values} \\
l.v \quad \text{variant value} \]
Semantics

Just to understand *case normalisation*...

\[(R_{\pi-\text{COM}})\]

\[x!\langle\tilde{v}\rangle.P \mid x?(\tilde{z}).Q \rightarrow P \mid Q[\tilde{v}/\tilde{z}]\]

\[(R_{\pi-\text{CASE}})\]

\[\text{case } l_j\cdot v \text{ of } \{l_i\cdot x_i \triangleright P_i\}_{i \in I} \rightarrow P_j[v/x_j] \quad j \in I\]
Session Types

\[
S ::= \begin{array}{ll}
\text{end} & \text{termination} \\
\bang T.S & \text{send} \\
\question T.S & \text{receive} \\
\uplus \{l_i : S_i\}_{i \in I} & \text{select} \\
\& \{l_i : S_i\}_{i \in I} & \text{branch}
\end{array}
\]

\[
T ::= \begin{array}{ll}
S & \text{session type} \\
\# T & \text{standard channel type} \\
\text{Bool} & \text{boolean type} \\
\ldots & \text{other constructs}
\end{array}
\]
Session Processes

\[P, Q ::= \begin{align*} & 0 \quad \text{inaction} \\
& x!\langle v \rangle.P \quad \text{output} \\
& x?(y).P \quad \text{input} \\
& x \triangle l_j.P \quad \text{selection} \\
& x > \{ l_i : P_i \}_{i \in I} \quad \text{branching} \\
& P \mid Q \quad \text{composition} \\
& (\nu x y)P \quad \text{session restriction} \\
& (\nu x)P \quad \text{channel restriction} \end{align*} \]

\[\nu ::= \begin{align*} & x \quad \text{variable} \\
& b \quad \text{boolean values} \end{align*} \]
Types Encoding

[Bool] def = Bool
[end] def = ∅[
[!T.S] def = l_o [[[T], [S]]
[?T.S] def = l_i [[[T], [S]]
[⊕{l_i : T_i}_{i ∈ I}] def = l_o [⟨l_i¬[[T_i]]⟩_{i ∈ I}]
[&{l_i : T_i}_{i ∈ I}] def = l_i [⟨l_i¬[T_i]⟩_{i ∈ I}]
Example of Encoding: Types 1/2

Let \(x : T \) and \(y : \overline{T} \) where

\[
T = ?\text{Int.}?\text{Int.}!\text{Bool}.\text{end}
\]

and

\[
\overline{T} = !\text{Int.}!\text{Int.}?\text{Bool}.\text{end}
\]
Example of Encoding: Types 2/2

The encoding of these types is as follows:

\[
[T] = \ell_i [\text{Int}, \ell_i [\text{Int}, \ell_o [\text{Bool}, \emptyset]]]]
\]

and

\[
[\overline{T}] = \ell_o [\text{Int}, \ell_i [\text{Int}, \ell_o [\text{Bool}, \emptyset]]]]
\]
Example of Encoding: Types 2/2

The encoding of these types is as follows:

$$\llbracket T \rrbracket = \ell_i [\text{Int}, \ell_i [\text{Int}, \ell_o [\text{Bool}, \emptyset[]]]]$$

and

$$\llbracket \overline{T} \rrbracket = \ell_o [\text{Int}, \ell_i [\text{Int}, \ell_o [\text{Bool}, \emptyset[]]]]$$

NB

*duality on session types boils down to opposite capabilities (i/o) of channel types, only in the outermost level!***
Terms Encoding

\[
\begin{align*}
\llbracket x \rrbracket_f &= f_x \\
\llbracket b \rrbracket_f &= b \\
\llbracket 0 \rrbracket_f &= 0 \\
\llbracket x ! \langle v \rangle . P \rrbracket_f &= (\nu c) f_x ! \langle v, c \rangle . \llbracket P \rrbracket_f, \{ x \mapsto c \} \\
\llbracket x ? (y) . P \rrbracket_f &= f_x ? (y, c) . \llbracket P \rrbracket_f, \{ x \mapsto c \} \\
\llbracket x \triangleleft l_j . P \rrbracket_f &= (\nu c) f_x ! \langle l_j . c \rangle . \llbracket P \rrbracket_f, \{ x \mapsto c \} \\
\llbracket x \triangleright \{ l_i : P_i \}_{i \in I} \rrbracket_f &= f_x ? (y) . \text{case } y \text{ of } \{ l_i . c \triangleright \llbracket P_i \rrbracket_f, \{ x \mapsto c \} \}_{i \in I} \\
\llbracket P \mid Q \rrbracket_f &= \llbracket P \rrbracket_f \mid \llbracket Q \rrbracket_f \\
\llbracket (\nu x y) P \rrbracket_f &= (\nu c) \llbracket P \rrbracket_f, \{ x, y \mapsto c \}
\end{align*}
\]
Example of Encoding: Terms 1/2

server \overset{\text{def}}{=} x?(nr1).x?(nr2).x!(nr1 == nr2).0

client \overset{\text{def}}{=} y!(3).y!(5).y?(eq).0

The system is given by

$$(\nu xy)(\text{server} | \text{client})$$

The encoding of the above system is

$$[(\nu xy)(\text{server} | \text{client})]_f = (\nu z)[(\text{server} | \text{client})]_f,\{x,y\mapsto z\}$$
Example of Encoding: Terms 2/2

Where the encodings of server and client processes are as follows:

\[
\begin{align*}
\llbracket \text{server} \rrbracket_{f, \{x, y \mapsto z\}} & \overset{\text{def}}{=} \ z? (nr1, c). c? (nr2, c'). (\nu c'') c! \langle nr1 == nr2, c'' \rangle. 0 \\
\llbracket \text{client} \rrbracket_{f, \{x, y \mapsto z\}} & \overset{\text{def}}{=} (\nu c) z! \langle 3, c \rangle. (\nu c') c! \langle 5, c' \rangle. c'? (eq, c''). 0
\end{align*}
\]

Output actions create new channels \(c, c', c'' \) which are sent to the communicating party along with the value.
Guaranteeing Communication Properties

- Privacy is guaranteed because a channel is used \textit{at most} once.
- Communication safety is guaranteed because a channel is used \textit{at least} once.
- Session fidelity is guaranteed because of continuation-passing.
Theorem (Correctness of the Encoding)

\[\Gamma \vdash P \text{ if and only if } [\Gamma]_f \vdash [P]_f. \]
Theorem (Correctness of the Encoding)

\[\Gamma \vdash P \text{ if and only if } [\Gamma]_f \vdash [P]_f. \]

Theorem (Operational Correspondence)

Let \(P \) be a process in the \(\pi \)-calculus with sessions. The following hold.

1. If \(P \rightarrow P' \) then \(\exists Q \) such that \([P]_f \rightarrow Q \) and \(Q \hookrightarrow [P']_f \), where \(\hookrightarrow \) denotes a structural congruence possibly extended with a case normalisation.

2. If \([P]_f \rightarrow^{\equiv} Q \) then, \(\exists P' \) such that \(P \rightarrow P' \) and \(Q \rightarrow^* \equiv [P']_f \).
Theorem (Correctness of the Encoding)

\[\Gamma \vdash P \text{ if and only if } \llbracket \Gamma \rrbracket_f \vdash \llbracket P \rrbracket_f. \]

Theorem (Operational Correspondence)

Let \(P \) be a process in the \(\pi \)-calculus with sessions. The following hold.

1. If \(P \rightarrow P' \) then \(\exists Q \) such that \(\llbracket P \rrbracket_f \rightarrow Q \) and \(Q \leftrightarrow \llbracket P' \rrbracket_f \), where \(\leftrightarrow \) denotes a structural congruence possibly extended with a case normalisation.

2. If \(\llbracket P \rrbracket_f \rightarrow^{\equiv} Q \) then, \(\exists P' \) such that \(P \rightarrow P' \) and \(Q \rightarrow^{*\equiv} \llbracket P' \rrbracket_{f'} \).

Corollary

Subject Reduction and *Type Soundness* on session types.
Extensions of the Encoding of Sessions
Subtyping

Theorem

\(T <: T' \text{ if and only if } \llbracket T \rrbracket \leq \llbracket T' \rrbracket. \)
Subtyping

Theorem

\(T <: T' \text{ if and only if } \llbracket T \rrbracket \leq \llbracket T' \rrbracket. \)

Derived from the encoding:

- Reflexivity and Transitivity of Subtyping.
- Lemmas (ex. Substitution, Narrowing...) follow from the corresponding ones in \(\pi \).
- Nothing to prove for other type constructs added.
Encoding Parametric Polymorphism

\[
\begin{align*}
[X] & \overset{\text{def}}{=} X \\
[[X; T]] & \overset{\text{def}}{=} \langle X; [T] \rangle \\
\langle T; v \rangle_f & \overset{\text{def}}{=} \langle [T]; f_v \rangle \\
\text{open } v \text{ as } (X; x) \text{ in } P_f & \overset{\text{def}}{=} \text{open } f_v \text{ as } (X; f_x) \text{ in } [P]_f
\end{align*}
\]
Encoding Bounded Polymorphism

$$[B] \overset{\text{def}}{=} B$$

$$\left[\oplus \{ l_i(X_i <: B_i) : T_i \} \right]_{i \in I} \overset{\text{def}}{=} \ell_0 \left[\langle l_i(X_i \leq B_i) \}_i \overset{\text{def}}{=} \ell_1 \left[\langle l_i(X_i \leq B_i) \}_i \right.$$}

$$\left[x \triangleleft l_j(B).P \right]_f \overset{\text{def}}{=} (\nu c).f_x! \langle l_j(B) \}_c \right).\left[P \right]_f,\{x \mapsto c\}$$

$$\left[x \triangleright \{ l_i(X_i <: B_i) : P_i \} \right]_{i \in I} \overset{\text{def}}{=} f_x?(y).$$

case y **of** \{ l_i(X_i \leq B_i) \}_c \triangleright \left[P_i \right]_f,\{x \mapsto c\} \}
Theorem (Correctness of Typing Unpacking)

\[\Gamma; \Delta \vdash \text{open } v \text{ as } (X; x) \text{ in } P \text{ if and only if } \]
\[\llbracket \Gamma; \Delta \rrbracket_f \vdash \llbracket \text{open } v \text{ as } (X; x) \text{ in } P \rrbracket_f. \]
Parametric and Bounded Polymorphism

Theorem (Correctness of Typing Unpacking)

\[\Gamma; \Delta \vdash \text{open } v \text{ as } (X; x) \text{ in } P \text{ if and only if } \llbracket \Gamma; \Delta \rrbracket_f \vdash \llbracket \text{open } v \text{ as } (X; x) \text{ in } P \rrbracket_f. \]

Theorem (Correctness of Typing Bounded Polymorphic Processes)

\[\Gamma; \Delta \vdash Q \text{ if and only if } \llbracket \Gamma; \Delta \rrbracket_f \vdash \llbracket Q \rrbracket_f, \text{ where either } \]
\[Q = x \downarrow l_j(B).P, \text{ or } Q = x \uparrow \{l_i(X_i \leq B_i) : P_i\}_{i \in I}. \]
Observations

Derived from the encoding:

- Modification in the calculus as expected
- Encoding of polymorphism constructs: an homomorphism.
- Again, **Subject Reduction** and **Type Soundness** derived for free (considering just the constructs added).
Higher-Order

\[\sigma ::= \begin{array}{l}
T \quad \text{general type} \\
\Diamond \quad \text{process type}
\end{array} \]

\[T ::= \begin{array}{l}
T \rightarrow \sigma \quad \text{functional type} \\
T \mathbf{1} \rightarrow \sigma \quad \text{linear functional type}
\end{array} \]

\[P ::= \begin{array}{l}
PQ \quad \text{application} \\
\nu \quad \text{values}
\end{array} \]

\[\nu ::= \begin{array}{l}
\lambda x : T.P \quad \text{abstraction}
\end{array} \]

And encoding is an homomorphism...
Higher-Order Results

Theorem (Correctness: Typing HO$_\pi$ Processes)

\[\Phi; \Gamma; S \vdash P : \sigma, \text{ if and only if } [\Phi; \Gamma; S]_f \vdash [P]_f : [\sigma]. \]
Higher-Order Results

Theorem (Correctness: Typing HOπ Processes)

$\Phi; \Gamma; S \vdash P : \sigma$, if and only if $[\Phi; \Gamma; S]_f \vdash [P]_f : [\sigma]$.

Derived from the encoding:

- Session π augmented with cbv λ.
- Encoding of the new constructs: an homomorphism.
- Again, Subject Reduction and Type Soundness derived for free.
Presented an encoding of session types into ordinary π-types. Encoding proved faithful, in that it allows us to derive all the basic properties of session types from π-types. Encoding proved robust (Subtyping, Polymorphism, HO).
Conclusions 1/2

- Presented an encoding of session types into ordinary \(\pi \) types.
Conclusions 1/2

- Presented an encoding of session types into ordinary π types.
- Encoding proved faithful, in that it allows us to derive all the basic properties of session types from π types.
Conclusions 1/2

- Presented an encoding of session types into ordinary π types.
- Encoding proved faithful, in that it allows us to derive all the basic properties of session types from π types.
- Encoding proved robust (Subtyping, Polymorphism, HO).
Elimination of redundancy: syntax of types and terms in sessions.

Derivation of properties: subject reduction and type soundness in sessions come as straightforward corollaries from the theory of π.

Duality on session types boils down to opposite capabilities of standard channel types.

Robustness of the encoding allows us to easily obtain extensions of the session calculus.
Conclusions 2/2

- Elimination of redundancy: syntax of types and terms in sessions.
Conclusions 2/2

- Elimination of redundancy: syntax of types and terms in sessions.
- Derivation of properties: subject reduction and type soundness in sessions come as straightforward corollaries from the theory of π.
Conclusions 2/2

- Elimination of redundancy: syntax of types and terms in sessions.
- Derivation of properties: subject reduction and type soundness in sessions come as straightforward corollaries from the theory of π.
- Duality on session types boils down to opposite capabilities of standard channel types.
Conclusions 2/2

- Elimination of redundancy: syntax of types and terms in sessions.
- Derivation of properties: subject reduction and type soundness in sessions come as straightforward corollaries from the theory of π.
- Duality on session types boils down to opposite capabilities of standard channel types.
- Robustness of the encoding allows us to easily obtain extensions of the session calculus.
Questions?
About the encoding...

Theorem (Operational Correspondence)

Let \(P \) be a process in the \(\pi \)-calculus with sessions. The following hold.

1. If \(P \rightarrow P' \) then, \([P]_f \rightarrow^* \equiv [P']_f\);

2. If \([P]_f \rightarrow \equiv Q\) then, \(\exists P', \mathcal{E}[] \) such that \(\mathcal{E}[P] \rightarrow \mathcal{E}[P'] \) and \(Q \rightarrow^* \equiv [P']_{f'} \), where either \(f' = f \) or \(\text{dom}(f') = \text{dom}(f) \cup \text{BV}(\mathcal{E}[]) \).
Subtyping in standard π-calculus

\[
\frac{T \leq T}{(S\pi-\text{REFL})} \quad \frac{T \leq T'}{T \leq T''} \quad \frac{T' \leq T''}{(S\pi-\text{TRANS})}
\]

\[
\frac{\tilde{T} \leq \tilde{T}'}{\ell_i [\tilde{T}] \leq \ell_i [\tilde{T}']} \quad \frac{\tilde{T}' \leq \tilde{T}}{\ell_o [\tilde{T}] \leq \ell_o [\tilde{T}']} \quad \frac{\tilde{T}' \leq \tilde{T}}{(S\pi-\text{OO})}
\]

\[
\frac{I \subseteq J \quad T_i \leq T'_j \quad \forall i \in I}{\langle l_i - T_i \rangle_{i \in I} \leq \langle l_j - T'_j \rangle_{j \in J}} \quad \frac{I \subseteq J \quad T_i \leq T'_j \quad \forall i \in I}{\langle l_i - T_i \rangle_{i \in I} \leq \langle l_j - T'_j \rangle_{j \in J}} \quad \frac{I \subseteq J \quad T_i \leq T'_j \quad \forall i \in I}{(S\pi-\text{VARIANT})}
\]
Semantics of Bounded Polymorphism

\[(\nu xy)(x \triangleleft l_j(B).P \mid y \triangleright \{ l_i(X_i \leq B_i) : P_i \}_{i \in I} \mid R) \rightarrow (\nu xy)(P \mid P_j[B/X_j] \mid R) \quad j \in I\]

\[\text{case } l_j(B) _ \nu \text{ of } \{ l_i(X_i \leq B_i)__ x_i \triangleright P \}_{i \in I} \rightarrow P_j[B/X_j][\nu/x_j] \quad j \in I\]
Parametric Polymorphism

Example of polymorphism in pi with/without sessions:

\[x : !\langle X; D \rangle.\text{end} \quad y : ?\langle X; D \rangle.\text{end} \]

\[\vdash x!\langle \text{Int}; 5 \rangle \mid y?(z). \text{open } z \text{ as } (X; w) \text{ in } nj!\langle w \rangle \]

\[\rightarrow \text{open } \langle \text{Int}; 5 \rangle \text{ as } (X; w) \text{ in } nj!\langle w \rangle \]

\[\rightarrow nj!\langle 5 \rangle \]
Encoding Higher-Order

\[
\begin{align*}
\llbracket T \to \sigma \rrbracket & \overset{\text{def}}{=} \llbracket T \rrbracket \to \sigma \\
\llbracket T \to \sigma \rrbracket & \overset{\text{def}}{=} \llbracket T \rrbracket \to \sigma
\end{align*}
\]

\[
\begin{align*}
\llbracket \lambda x : T . P \rrbracket_f & \overset{\text{def}}{=} \lambda x : \llbracket T \rrbracket . [P]_f \\
\llbracket PQ \rrbracket_f & \overset{\text{def}}{=} \llbracket P \rrbracket_f \llbracket Q \rrbracket_f
\end{align*}
\]

Where \(\sigma ::= T \mid \Diamond \)
Up-side-down point of view

- Linear channel transmitting a value and a new linear channel
 \((\nu b)\bar{a}\langle\nu, b\rangle\ldots\)
Up-side-down point of view

- Linear channel transmitting a value and a new linear channel \((\nu b)\bar{a}\langle v, b \rangle \ldots\)
- Linear channel transmitting a value and itself \(\bar{a}\langle v, a \rangle \ldots\)
Up-side-down point of view

- Linear channel transmitting a value and a new linear channel $(\nu b)\overline{a}\langle v, b \rangle \ldots$
- Linear channel transmitting a value and itself $\overline{a}\langle v, a \rangle \ldots$
- Linear channel transmitting a value $\overline{a}\langle v \rangle \ldots$
Up-side-down point of view

- Linear channel transmitting a value and a new linear channel $(\nu b)\bar{a}\langle\nu, b\rangle \ldots$
- Linear channel transmitting a value and itself $\bar{a}\langle\nu, a\rangle \ldots$
- Linear channel transmitting a value $\bar{a}\langle\nu\rangle \ldots$

NB

Session types are an optimisation of linear π types.
New typing rule for output

\[\Gamma_1 \vdash x : \ell_\circ [\tilde{T}] \quad \tilde{\Gamma}_2, x : \ell_\alpha [\tilde{S}] \vdash \tilde{v} : \tilde{T} \quad \Gamma_3, x : \ell_{\tilde{\alpha}} [\tilde{S}] \vdash P\]

\[\Gamma_1 \uplus \tilde{\Gamma}_2 \uplus \Gamma_3 \vdash x! \langle \tilde{v} \rangle . P\]