It Takes a Village: Reasoning
About Concurrent
Processes

David Castro, Francisco Ferreira, Lorenzo Gheri, and
Nobuko Yoshida

2020
VEST Workshop

Imperial College
London

Motivating
Meta-Theory

Certified tool + reasoning environment

Certified code
extraction

NS

Mechanised
Meta-theory

Reasoning

Binary Session Types

¢ Do a case study:

e [anguage Primitives and Type Discipline for Structured
Communication-Based Programming Revisited, by Yoshida
and Vasconcelos, 2007.

Available online at www.sciencedirect.com

“+.“ ScienceDirect e

Science

Electronic Notes in Theoretical Computer Science 171 (2007) 73-93
www elsevier.com/locate/entcs

Language Primitives and Type Discipline for
Structured Communication-Based
Programming Revisited: n
Two Systems for
Higher-Order Session Communication

o
Nobuko Yoshida'

Imperial College London

Vasco T. Vasconcelos’

University of Lisbon

What do we have?

e A proof of type preservation formalised in Coq using
ssreflect.

e A library to implement locally nameless with multiple name
scopes and handle environments in a versatile way.

10, TACAS 2020 accepter paper and artefact describing our
& tool and mechanisation.

e We built in-team expertise (i.e. we learned some hard lessons
while struggling to finish the proof).

What did we
mechanise?

A tale of three systems

® We set out to represent the three systems described in the
paper:

¢ The Honda,Vasconcelos, Kubo system from ESOP’98
¢ [ts naive but ultimately unsound extension

e |ts revised system inspired by Gay and Hole in Acta
Informatica

The Send Receive
System

iest a(k) in P session request
G

We consider terms a(k) in P session acceptance

up-to x-conversion data sending
data reception

P label selection

>{l1: P [ln: Po} label branching
throw k[k']; P | e

catch k(k') in P

if e then P else Q
PlQ

inact Then we cannot distinguish:
M k?(x) in inact

def D in P " and

X[él%—k] 2(y) in inact

e =20

le+e | e—€¢ | exe | notle) | ...
D = Xl(flzjl) = P1 and - --and Xn(flv]ni{v?n) =

ol=conversion curse or
Blessing?

(throw k[k']; P1) | (catch k(k') in P) — P | P

® The original system depends cruci n names

This is a bound variable.

® [f X-conversion is built in, this rule collapses to:

(throw k[K']; P1) | (catch k(k") in P,) — P | Pk /K"]

ol=conversion curse or
Blessing?

¢ Humans have to pretend not to see the different bound names.

e However, there exist several representations that offer
inherently X-convertible terms:

e de Bruijn indices (or levels)

e Higher Order Abstract Syntax My personal take:
X=conversion iIs more

interesting that | originally
gave it credit for.

® [ocally Nameless

The Naive
Representation

¢ [t“looks like” the original Send Receive system.

® You start suspecting is wrong when defining the reduction
relation.

® You know there is a problem when the proof fails.

The Revisited system

¢ Now we distinguish between the endpoints of channels.

® [t can be readily represented with LN-variables and names.

Four kinds of atoms

Inductive proc : Set :=
€T ---e---a. .

| request : scvar — proc — proc =TT T - - - -
| accept : scvar — proc — proc ~ - binds variable

i J
______________ -~ from Agc
| send : channel — exp — proc — proc

| receive : channel — proc — proc

-~
-~

~
-~
-~

| select : T
channel — label — proc — proc Rk P binds variable
| branch : IR T f
rom Agy

channel — proc — proc — proc

| throw :
channel — channel — proc — proc
| catch : channel — proc — proc

-
~
-~
-~
-~

| ife : exp — proc — proc — proc - _

| par : proc = proc — proc L F
| inact : proc o SO
(x hides a channel name *) ‘) binds variable
| nu_ch : proé =5 "proc = = = = = e e o o oo - from ALC
(* hides a name *)
- m————-E e S, .t-m.-- - - - .
| nu_nm : proc — proc "~~~ _ binds channel
* pr r 1 ion *
(* process replication *) from ACN

| bang : proc — proc

Typing environments

e Store their assumptions in a unique order
(easy to compare)

e Only store unique assumptions
(easy to split)

® They come with many lemmas
(Iess induction pl"OOfS) and easy to use. #artefact

These are generic enough

Subject Reduction

Theorem 3.3 (Subject Reduction) If O:T' - P> A with A balanced and P —*
Q, then O:T'F Q> A’ and A’ balanced.

Is straightforward to represent:

Theorem SubjectReduction G P Q D:
oft G PD — balanced D - P —* Q — exists D', balanced D' /\ oft G Q D'.

We want more from
our mechanisation.

About

Processes

Motivating A
M Eta - T h eoyr | .»Certified

Scribble
Algorithms

Certified tool + reasoning environment

Certified code | | TG0

Reasoning extraction [l Neletiy]

Mechanised
Meta-theory

MPST Trace equivalence

Processes : Local Types

& Local.v
Induc¥ve 1_ty :=

1L _end

1L _var (v : N)

1_rec (L : 1 iy)

L. msg (a : 1 act) (r : role) (Ks : seq (1bl * (mty * 1_ty)))
-:--- Local.v 2% (21,3) Git:master (Cogq U5 yas hs Outl
Wrote /Users/franciscoferreira/devel/cmpst/theories/Proc.v

Processes

Inductive Proc : 1_ty = Type :=
Finish : Proc 1 _end

Var : ¥V (v : N), Proc (1 _var v)
Rec L: Proc L & Proc (1l _rec L)

Recv a (p : role) : Alts a » Proc (1L_msg 1 _recv p a)
Send (p : role) La T (1 : 1bl) :

coq_ty T »

Proc L 2

(1, (T, L)) \in a »

Proc (1_msg 1_send p a)

with Alts : seq (lbl * (mty * 1_ty)) > Type :=
Asging T L L & tcog ty T % Proc L) 9 Alts = (L, (T, L))]
A_cons TLal: (cog_ty T > Proc L) =
Alts a »
Alts ((1, (T, L)) :: a)

L

-:--- Proc.v 5% (47,1) Git:master (Cog Script(e-) €
| Wrote /Users/franciscoferreira/devel/cmpst/theories/Proc.v

“Process Traces
are Nice”

Definition run_rt_act L (P : Proc L) (A : rt_act) : (Proc (run_act_1l_ty L (erase_act A))).[]

-:-—— Proc.v 83% (366,94) Git:master (Coq Script(@-) ©% yas hs Outl company Holes)
Wrote /Users/franciscoferreira/devel/cmpst/theories/Proc.v

e Running a process preserves types by construction

From Processes to...

Global
Type

Ae equivalent to

Reasoning

e A process is a term of type Proc L.

e The user just writes proofs on the shape of said term.

® Processes are translated into monadic computations.

Extraction of certified
code

e Two aspects:

e Generating certified OCaml| code parametrised by an
ambient monad.

¢ Generating a certified library to handle Multiparty Session
Types. Ultimately combining the vScr (a small implementation

of Scribble in OCaml) to build Certified vScr.

Certified Processes

Proc.v

[§rom C equire Extraction.
Module MP.

Parameter t : Type = Tlype.

Parameter send : V T, role 2 1lbl » T 2 t unit.
(# Extract Constant send = "ocaml _send". =*)

Parameter recv : (1lbl » t unit) > t unit.
Parameter recv_one : V T, role & t T.

Parameter bind : V Tq Ty, t T 2 (T71 2 t T2) > t Ty.
Parameter pure : V Tq, Tq > t T1.

Parameter loop : V Tq, N> t Tq9 2> t T4.

Parameter set current: N > t unit.
End MP.

-:--- Proc.v 14% (67,0) Git:master (Cog Script(o-

About Proof Assistant
Choice

e We chose Coq because it is powerful, well maintained, and
popular in PL.

e While using it,
@ | wished for Isabelle’s automation and classical logic.

@ | cried over the loss of Agda’s dependent pattern matching
and rich interaction with the system.

@ As we try to get extraction to work, | envy Idris’s compiler.

If you want to know
more...

e Talk to us!

® Binary Session types:

e TACAS20 Tool Paper: https://bit.ly/3co/KFn

® Tech report: https://bit.ly/2Z/7zAVE

o EMTST repository: https://github.com/emtst/

® Multiparty Session Types Thanks for your
kind attention!
e Repo:Talk to us! Questions?

e Check vScr at: https://nuscr.github.io

