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Overview 

Overview  

 

The existing, open Worldwide Web has been successful on a global scale because the 
cost of participation at a basic level is low and the individual benefit of participation is 
immediate, rising rapidly as more participants take part. The same cannot currently be 
said about semantic based systems because the cost of being precise about semantics 
for sophisticated components is prohibitively high and the cost of ensuring an individual, 
absolute semantics for a component rises rapidly as more participants take part. 
OpenKnowledge aims to break out of this deadlock by focusing on semantics related to 
interaction (which are acquired at low cost during participation) and using this to avoid 
dependency on a priori semantic agreement; instead making semantic commitments 
incrementally at run time. The "Open" in OpenKnowledge thus is significant in two senses: 
it assumes an open system, which anyone may join at any time; it assumes an openness 
to being joined, achieved through participation at low individual cost. 

OpenKnowledge is a system which allows peers on an arbitrarily large peer-to-peer 
network to interactive productively with one another without any global agreements or pre-
run-time knowledge of who to interact with or how interactions will proceed. Existing 
services can be translated into OpenKnowledge peers and can then make use of the full 
functionality of the system [1] : this translation process already exists for WSDL services 
and can be created for most other kinds of services. 

This is made possible through the use of shared interaction protocols, which can be 
written by any user of the system and then reused by any peer on the network. These 
protocols describe interactions between two or more peers, and detail the messages that 
will be sent as part of that interaction and the constraints on those messages, which give 
information about the semantics of the messages and under what circumstances they can 
be sent. A peer can play a role in any of these protocols in which it can satisfy all the 
relevant constraints. 

This shift of emphasis to interaction means that semantic agreement can be reached 
locally. The lack of a global ontology means that peers will be using different terms which 
may not match, but interpretation of these terms need only be done within an interaction 
and only for those terms that directly affect the interaction. The problem of semantic 
heterogeneity is therefore reduced to the specific case of terms that are actually in use 
and the matching takes place within a particular context - the context of an interaction -
which aids the interpretation process. 
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Overview  

To learn how to use OpenKnowledge system, click here. [2]

Overview 

Source URL:  http://www.openk.org/introducingOK/overview

Links:   
[1] http://www.openk.org/howOKworks/service
[2] http://www.openk.org/howOKworks/overview
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Research Topics  

 

 

The key aspects of the OpenKnowledge Project are: 

1. Interaction   

How are these shared protocols written and coordinated? 

For more information, see Deliverables 1.1 - 1.3 [1]

2. The Discovery Service   

How do you discover who to interact with and what protocol you should use? 

For more information, see Deliverables 2.1 - 2.3 [1]

3. Semantic Matching   

Since there is no global ontology, the semantics surrounding specific interactions 
must be negotiated at run-time. 

For more information, see Deliverables 3.1 - 3.6 and 4.1 - 4.6 [1]   

4. Trust   

How can one be sure that a peer qualified to play a role will behave in the agreed 
manner and will produce goods/information/services etc. 
of an appropriate standard? 

For more information, see Deliverables 4.2 - 4.8 [1]

5. Visualisation   

How can users interact with the system: to keep track of what their peers are doing, 
to make decisions and oversee interactions and to provide information and feedback 
where necessary? 

For more information, see Deliverables 5.1 - 5.4 [1]
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6. Multimedia   

How can multimedia applications be supported via the peer to peer architecture and 
how can interaction models be harnessed for multimedia? 
For more information, see Deliverables 8.1 - 8.5 [1]

Research Topics 

Source URL:  http://www.openk.org/introducingOK/researchtopics

Links:   
[1] http://www.openk.org/deliverables 
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Testbeds  

 

We are currently evaluating the effectiveness of OpenKnowledge in two testbeds. For 
more details of these testbeds, as well as details of other projects which are making use of 
the OK system, see Case Studies [1] . 

 Emergency Response   

During an emergency situation - for example, a large flood, an earthquake or a 
terrorist attack - the ability of different agencies and individuals to interact quickly 
and effectively, understanding one another and building and executing mutual plans, 
is key and can potentially save many lives. There will generally be some kind of 
central command that has been put in place in anticipation of disaster and which 
directs other players along pre-arranged lines. However, the nature of an emergency 
means that nothing can be taken for granted: communication lines can fail; key 
players (and even the command centre) can become unavailable for any number of 
reasons; outside players who were not anticipated in pre-disaster planning can have 
valuable help to offer. OpenKnowledge provides the infrastructure for executing pre-
arranged plans between expected players who know how to communicate with one 
another, but also, crucially, can allow productive communication and action to 
continue even when one of these major stumbling blocks are encountered. 

We have developed a simulation based on real data from large-scale flooding in the 
Trentino region to demonstrate the ability of OpenKnowledge in this domain. Tests 
are currently being made to evaluate the effectiveness of our approach. 

For more information, see Deliverables 6.5 - 6.7. [2]

 Bioinformatics  

Modern biological experimentation requires computational techniques of different 
kinds to enable large-scale and high-throughput studies. For example, structural 
genomics efforts aim to understand the function of proteins from their 3-D structures, 
which are either determined by experimental methods (e.g., X-ray crystallography 
and NMR spectroscopy) or predicted by computational methods. Proteomics efforts 
as another example, aim to understand the functional consequences of the 
collection of proteins that is present in a cell, or tissue, at a given time - particularly 
where differences are observed between healthy and disease states. In both 
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examples the data, and the analytical methodology applied to them, are obviously 
central to accomplishing the aims of these scientific domains. In addition, however, a 
framework is required that allows researchers to access the data, interpret the data, 
and exchange knowledge with one another. In the OpenKnowledge peer-to-peer 
framework, any experimental protocol that is followed when one, or several, 
researchers are undertaking a bioinformatics experiment can be viewed as a series 
of interactions between the researcher(s), the databases from which the data are 
obtained, and the tools that are applied to derive secondary information from this 
data. Many bioinformatics protocols can be represented as consecutive interactions, 
or steps in a workflow. These two simple (though non-trivial) first bioinformatics 
analyses involving consistency checking amongst comparable data from different 
databases and different bioinformatics programs, respectively, were enacted (i), as a 
means of introducing the system to the bioinformatics community, and (ii), to 
illustrate the commonalities of the underlying interactions, and accordingly the 
transferability of the underlying protocols, in OpenKnowledge. 

For more information, see Deliverables 6.1 - 6.3. [2]  

Testbeds 

Source URL:  http://www.openk.org/introducingOK/testbeds

Links:   
[1] http://www.openk.org/applications/cases
[2] http://www.openk.org/deliverables 
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Overview 

Overview  

 

 

This page gives general information on how to use the OpenKnowledge system. This 
information is appropriate for those who wish to understand the process of 
OpenKnowledge or for people who wish to become users of OpenKnowledge but do not 
wish to write their own components or interactions. For more detailed information - once 
you have read this page - go here. [1]

In order to become an OpenKnowledge user, you simply need to download the 
OpenKnowledge kernel from here [2]  together with some additional components [3] that you 
might want to use. This basic infrastructure will allow you to create an OK peer. Existing 
WSDL services can also be made into OK peers. See here. [4]

overview 

Source URL:  http://www.openk.org/node/581

Links:   
[1] http://www.openk.org/beingAnOKuser/intro
[2] http://www.openk.org/resources 
[3] http://www.openk.org/okc 
[4] http://www.openk.org/howOKworks/service
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Lifecycle  

 

 

This is the lifecycle of interaction from the point of view of user. 

i) Why is this interaction taking place? The user inputs a need reflecting why he wants 
to participate in an interaction. For example, this might be buy camera , or it might be that 
he wants to provide a service in exchange for payment, or so on. This need is expressed 
in terms of keywords. 

ii) What will the interaction protocol be? The user will then need a protocol to describe 
the interaction that he wishes to take part in. This is called an Interaction Model (IM) and is 
described here [1] . There are various roles (at least two) in an IM and the user must choose 
which his peer is to play. The user may have written his own IM for this interaction, but 
more usually he will wish to find one that has been published on the network. In this case, 
the discovery service is invoked and will return a list of potentially suitable IMs. When IMs 
are published, they are annotated with a set of keywords, and these keywords are 
matched to the user's need to discover the potentially appropriate IMs. These IMs are 
ranked according to their popularity - i.e. how many times they have been used. 

The user must then choose which of the potential IMs he wishes to use. This can be done 
in various ways: 
a) Choosing the highest ranked IM; 
b) Re-ranking the IMs according to the scores returned by the automated matching 
operator, which matches the ability of the user's peer to the abilities required by the role it 
is to play; 
c) The user looking through the IMs personally. 

iii) Subscribing to the interaction Once the IM has been chosen, the user's peer should 
subscribe to the appropriate role. The following information is required for subscription: 
a) The peer ID (this can be verified and it is not possible to lie about this). 
b) The matching score that was produced by matching the peer's abilities to those 
required (it is possible for dishonest peers to lie about this). 
c) Some keywords giving more details of the peers wants or intended service (this is 
optional). 

iv) Initiating the interaction  Once all roles in an IM have at least one subscriber, the 
interaction can begin. This may happen immediately if all the other roles were subscribed 
to when the user's peer subscribed, or may not happen for some time (or never) if some of 
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the roles currently have no subscribers. Whether a user will wish to subscribe to a role in 
an IM that won't commence immediately, or whether he will wish to search for one that is 
ready to go will depend on the situation. For example, a seller may be prepared to 
subscribe to a role and then wait around until a buyer appears, whereas a buyer may 
perhaps want to purchase something immediately. 

Once all the roles are filled, a peer on the network will be arbitrarily chosen to be the 
coordinator for this interaction. This may or may not be a peer that also subscribed to that 
IM, though in a system with a large number of peers, it is very unlikely that they will be. 
Any peer can opt out of being chosen to be a coordinator; the coordinator will be chosen 
from all the peers that are willing to do this. 

v) Choosing partners  The coordinator will send information of which peers have 
subscribed to which roles to all of the subscribers of the IM. Each peer must then choose 
which of the peers subscribed to other roles it is prepared to interact with. This can be 
done automatically with the help of the trust model [2]  or can be done through intervention
of the user. Each peer then sends back to the coordinator a set of potential partners. 

vi) Allocating roles  The coordinator then allocates peers to roles in such a way that no 
peer is forced to interact with a peer that is not in its list of chosen peers. The coordinator 
informs all subscribed peers of the outcome. The process now ends for peers that have 
not been chosen. They may resubscribe to the same role in the same IM if they wish, and 
wait for the process to begin again. 

vii) The interaction  Whenever a peer is due to send a message, the coordinator will 
prompt that peer to give it the details that should be sent in that message, and the 
coordinator then passes that message on to the appropriate peer. This message passing 
is not visible to all peers, only to the sending and receiving peer in each case. 

viii) The interaction terminates  If the interaction proceeds smoothly, this will happen 
after all the messages of the interaction have been sent. However, this may happen 
earlier if a peer fails to respond appropriately. 

ix) Interaction feedback  The coordinator informs all peers involved in the interaction as to 
whether the interaction terminated successfully (they may or may not be able to judge this 
for themselves, depending on their role in the interaction). The coordinator will also send 
back information about certain messages so that peers can determine how things went 
during the interaction (how and why this happens is discussed here [2] ). 

x) Learning from interactions  Optionally, and depending on settings, the user can 
provide more targeted feedback about certain aspects of the interaction. This may only 
happen some time after the interaction: for example, if the user's peer acted as a buyer, 
some judgement can be formed about the success of the interaction through observation 
of message passing and successful termination of the interaction, but the full quality of the 
seller can only be ascertained once the goods have actually arrived and been examined 
by the user. These observations can be used to judge which peers to interact with in the 
future. 
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lifecycle 

Source URL:  http://www.openk.org/node/582

Links:   
[1] http://www.openk.org/howOKworks/im 
[2] http://www.openk.org/beingAnOKuser/trust
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What is an Interaction Model?  

 

 

The shared protocols describing interactions are called Interaction Models  and are written 
in Lightweight Coordination Calculus (LCC) [1]. This, as the name suggests, is designed to 
be very lightweight and to convey an interaction simply without getting bogged down in 
complexity. However, since there may be details that are pertinent to an interaction that 
cannot be expressed in LCC, we allow annotation files to be written for IMs. We do not 
discuss this here in this simple description of LCC, but details [1] of this are available. 

a(requester, A) :: 
    ask(X1) => a(informer, p2) <-- query_from(X1, p2) then 
    tell(X1) <= a(informer, p2) then 
    ask(X2) => a(informer, p3) <-- query_from(X2, p3) then 
    tell(X2) <= a(informer, p3) 
  
a(informer, B) :: 
    ask(X) <= a(requester, B) then 
    tell(X) => a(requester, B) <-- know(X) 

Figure 1. An example informer/requester interaction model. 

Figure 1 shows a simple diagram for discovering information: a requester  asks for 
information and an informer  responds. 

This simple IM is sufficient to illustrate the three key aspects to an IM: roles, messages 
and constraints. Firstly, we should note that in LCC, variables are identified by beginning 
(or consisting of) an uppercase letter, whereas constants begin with (or consist of) a 
lowercase letter. 

Roles : IMs must consist of two or more roles, with each role describing the necessary 
actions for one of the peers that will take part in the interaction. Role identifiers are of the 
form a(role,ID) . For example, in Figure 1, the first role is requester, and this will be played 
by a peer with ID A . A  is a variable that will become instantiated with the appropriate peer 
ID when this is known. It would be possible to make this ID a constant, and thus the role 
would only be playable by the particular peer identified by that constant, but this is 
contrary to ideal of reusing IMs so is not generally encouraged. 

Messages : These are indicated by the double arrow. To the left of this double arrow is 
message that is to be passed and to the right is the role to which it is to be sent or 
received from. Double arrows pointing to the right (towards the role) indicate messages 
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going to that role, and vice versa. Within an IM, most messages will contain one or more 
variables that are not determined by the IM: for example, in Figure 1, the variable X is 
passed around. The value of this variable is only determined during run-time: therefore, 
the IM is reusable in different situations. 

Any message that is sent in an IM must also be received by the appropriate role within 
that IM, and thus all messages appear twice, once as a sent message within the sender's 
role and once as a received message within the receiver's role. When there are only two 
roles, this makes the message passing in those roles completely symmetric, as can be 
seen in Figure 1. 

Constraints : These are put on messages, appearing to the right of them in an IM and 
pointing to the relevant message with a single arrow, and have two functions: 

- to explain how the variables in the messages should be instantiated; 

- to limit the circumstances under which a message can be sent: it can only be sent if the 
constraint can be satisfied by the peer playing the role. 

For example, during run-time, we do not wish to pass around the variable X ; instead, it 
should be instantiated to a suitable value. This is done by the constraint query(X). So the 
peer that takes on the role of requester must be able to satisfy this constraint, and in doing 
so, it will instantiate the variable X to whatever it wishes to query about. 

Any OK peer is capable of passing any message, provided the necessary constraints are 
satisfied, so the ability to play a particular role is equivalent to the ability to satisfy all the 
constraints on messages in that role. 

what_is_an_im 

Source URL:  http://www.openk.org/node/583

Links:   
[1] http://www.springerlink.com/content/ux5dy5ggryu0mxna/fulltext.pdf
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What is an OpenKnowledge Component?  

 

 

OKCs (OpenKnowledge Components) are plug-in components that contain the methods 
used to solve constraints in the Interaction Models. 

An OKC is a jar containing a facade class extending the OKCFacadeImpl  class in the 
kernel and an xml file, called okcinfo.xml describing the component. The jar file can 
obviously contain other support classes and resources, but the facade class is the one 
that must expose all the methods that solve constraints. 

A method must: 

 be public 
 return a boolean  
 every argument must be of type Argument  

More than a single OKC can be used to solve the constraints in an role: the matching
process finds the methods corresponding to the constraints in the available OKCs in the 
peer and creates the adaptors between them. 

For example, a role clause like the following: 

a(role1, A):: 
     msg1(X,Y) => a(role2,B) <- C1(X) and C2(Y) 
     then 
     msg2(Z) <= a(role2,B) 
     then 
     null <- C3(X,Y,Z) 

can have the constraints C1,C2,C3 matched to the methods m1,m2 from OKC1 and m4 
from OKC2: 

role1:         OKC1: 
  C1(X)  <--->   m1(X) 
  C2(Y)  <--->   m2(Y) 
                 m3(J) 
                 ... 
                 OKC2 
  C3(Z)  <--->   m4(Z) 
                 m5(L) 
                 ... 
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what_is_an_okc 

Source URL:  http://www.openk.org/node/584
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Interaction with the User  

 

The OpenKnoweldge interface has a GUI so that the user can input their need and 
visualise the interactions that are going on. The OpenKnowledge kernel comes with a 
basic user interface that allows you to search the OpenKnowledge network for interaction 
models and OpenKnowledge components. Interaction model search results are shown 
graphically and you can execute the interaction models by subscribing in particular roles. 
A publishing tool is provided that allows the syntax of an interaction model to be checked 
prior to it being publishing. A tool is also provided for creating OpenKnowledge 
components from Java code and then sharing them onto the network. The interface also 
allows you to see the status of your peer and make changes to its configuration. 
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19 
 

 

Interaction with the User  

  

However, during interaction, additional interaction with the user may be necessary: 
sometimes constraints should not be satisfied through the peer's knowledge base but by 
asking the user directly; at some choice points the direct opinion of the user should be 
sort, and so on. We use the annotation file [1] to provide such information about constraints 
so that an IM can easily adapt the user experience as necessary. 

interaction_with_user 

Source URL:  http://www.openk.org/node/585

Links:   
[1] http://www.openk.org/beingAnOKuser/usingLCC/annotation
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Services as Peers  

 

Existing services, such as WSDL services, can easily be made into OpenKnoweldge 
peers. This depends on a translation process so that an OKC is created for each service. 
This will allow the first-order constraints to function as service inputs and outputs. 

The first-order terms that we match do not distinguish between inputs and outputs in the 
same manner as, for example, WSDL. Instead, both inputs and outputs are arguments of 
the same predicate. In Prolog notation, this is indicated by using a + for an input and a -
for an output. Thus the term: 

purchase(-Price,+Vehicle,+Number)

indicates that Vehicle  and Number are inputs and Price is an output. During run-time, we 
can distinguish between inputs and outputs because inputs must be instantiated and 
outputs must be uninstantiated. In order to use our tree matching techniques for web 
services, we therefore make use of an automated translation process we have created 
that will map between a first-order term such as the above and a standard WSDL 
representation of the same information. This approach can also be used for other kinds of 
services in addition to web services; all that is required is that a translation process is 
created to convert between the representation of the service and our first-order terms. 

This translation process has been written for WSDL services. For services using different 
kinds of representations, translation processes would have to be written. 

services_as_peers 

Source URL:  http://www.openk.org/node/586
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Example Interactions  

 

The diagram in Figure 1 shows an interaction between three peers: p1, p2  and p3. Each 
peer knows different things: 

 p1  knows that queries asking about p(Y) can be sent to p2 and that queries asking 
about q(Z)  can be sent to p3. We write this as query_from(p(Y),p2)  and query_from
(q(Z),p3) . 

 p2  knows that p(a)  is true. We write this as know(p2, p(a)). 
 p3  knows that q(b)  is true. We write this as know(p3, q(b)). 

The interaction we require is depicted by the numbered messages in the diagram: 

 p1  sends a message ask(p(Y)) to p2. 
 p2  sends a message ask(p(a)) to p1. 
 p1  sends a message ask(q(Z)) to p3. 
 p3  sends a message ask(q(b)) to p1. 

Figure 1. Basic Interaction Example
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Let us first define an interaction model that does exactly the message passing defined 
above. There are two roles that agents take in this model: the role of a requester (which 
asks for information) and the role of an informer (which supplies information). We define a 
LCC clause for each role as shown below. For the requester (p1) we have simply given 
the sequence of four messages corresponding to those above. Then we have defined a 
clause for the role of informer that defines the behaviour expected of p2  and p3 . 

a(requester, A) :: 
    ask(X1) => a(informer, p2) <-- query_from(X1, p2) then 
    tell(X1) <= a(informer, p2) then 
    ask(X2) => a(informer, p3) <-- query_from(X2, p3) then 
    tell(X2) <= a(informer, p3)                                               (1.1)
  
a(informer, B) :: 
    ask(X) <= a(requester, B) then 
    tell(X) => a(requester, B) <-- know(X) 

The LCC definition above covers the example but suppose we want a more general type 
of requester that takes a list, L , of the form [q(Query,Peer), ...], where Query  is the query 
we want to make and Peer  is an identifier for the peer to which we want to send the query. 
We want the requester to send an ask(Query) message to the appropriate Peer  for each 
query and receive a tell(Query)  reply each time. A standard way to do this is by giving L as 
a parameter to the requester role (so it becomes requester(L)) and making the definition of 
this role recursive, taking the first element of L and then applying the same definition to 
the remainder of the list, Lr , as shown below. 

a(requester(L), A) :: 
    (ask(Query) => a(informer, Peer) <-- L = [q(Query, Peer)|Lr] then 
    tell(Query) <= a(informer, Peer) then 
    a(requester(Lr),A)) 
    or 
    null <-- L = [] 
  
a(informer, B) :: 
    ask(X) <= a(requester(), B) then 
    tell(X) => a(requester(), B) <-- know(X) 
                                                                                  (1.2)

If we were to run the interaction model shown above, starting with the role of requester for 
the list of queries [q(ask(p(X)),p2),q(ask(q(Y)),p3)], then we get the message sequences 
shown in Figure 2. On the left is the sequence for a(requester([q(ask(p(X)),p2),q(ask(q
(Y)),p3)]), p1) . On the right are the sequences for a(informer, p2) and a(informer, p3)
which are the roles undertaken by p2 and p3 in response to p1. The dashed lines indicate 
synchronisation via message passing between peers. 

  



 

24 
 

 

Example Interactions  

Figure 2. Event Sequences for the Example

In our earlier example (definition 1.1 above) we made some of the message passing 
events contingent on constraints. For example sending the message ask(X1) => a
(informer, p2)  was contingent on satisfying the constraint query_from(X1, p2) . These 
constraints are satisfied by connecting them to methods for computing the constraint. 
Although some basic methods (such as for basic forms of visualisation) are pre-supplied 
by OpenKnowledge we expect that most methods will be specific to application domains 
and so will need to be written or re-used by interaction model developers. To make it 
possible to share these methods, we allow appropriately packaged methods to be shared, 
so that peers can accumulate repositories of methods that they find useful. We call these 
OpenKnowledge Components (OKCs). A more detailed description of OKCs can be found 
here [1] . 

examples 

Source URL:  http://www.openk.org/node/618

Links:   
[1] http://www.openk.org/howOKworks/okc 
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Syntax  

 

Each LCC interaction model is defined by a set of clauses where each clause has the 
syntax shown in Figure 3. Each clause is a self contained definition of a role, with 
message passing being the only means of transferring information between roles. 
Message passing is also the only means of synchronisation between roles. 

  Clause := Role :: Def 
    Role := a(Type, Id) 
     Def := Role | Message | Def then Def | Def or Def 
 Message := M ⇒  Role | M ⇒  Role ← C | M Role | C ← M Role 
       C := Constant | P(T m, ...) | ¬C | C ∧ C | C ∨ C 
    Type := Term 
      Id := Constant | V ariable 
       M := Term 
    Term := Constant | Variable | P(Term, ...) 
Constant := lower case character sequence or number 
Variable := upper case character sequence or number 

Figure 3. LCC Syntax   

In the sections which follow we explain what each element of LCC syntax means from a 
programming point of view. 

 Variables, Constants, Terms, IDs and Roles

Variables must start with an upper case letter. The scope of a variable is local to a 
clause (in other words, if you use the same variable name in different clauses then 
these names refer to different variables). When it is unnecessary to give a specific 
name for a variable (because it is not used elsewhere in a clause) you can use an 
underscore ( _ ) for the variable name. Constants must start with a lower case letter. 
Numbers also are constants. Terms are tree-structured - that is, they are either a 
constant or are of the form F(A, ..., A)  where F is a non-numerical constant and 1 n
each A  is a term. IDs are unique identifiers for peers which must be non-numerical i 
constants. Roles are terms that describe the type of role played by a peer in a given 
interaction. 

 Messages   

  

⇐⇐
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There are two types of messages: 
Incoming Messages : are of the form Term � a(Role,ID), where Term  is the content 
of the message. When using ASCII, the symbol � is written using <=. 
Outgoing Messages : are of the form Term ⇒ a(Role,ID), where Term  is the 
content of the message. When using ASCII, the symbol ⇒ is written using =>. 

Constraints can be attached to both incoming and outgoing messages (see below). 

 Constraints   

Constraints associate message passing events with conditions established by the 
peer. 

Message ←  constraint(Arg1, ..., ArgN)                             (1.3) 

Constraints also may be associated with the special null event which represents an
event that is not associated with a specific message. This frequently is used in 
recursive role definition where terminating the role depends on a parameter to the 
role, rather than a specific message passing event. 

When using ASCII the constraint operator ← should be written using <-. 

Visual Constraints   
A constraint can have a mapping made available to it using the visual (,) operator. 
The visual operator maps a constraint to a visual term. Visual terms provide an 
abstract representation for a particular type of user interaction. 

visual(constraint(Arg1, ..., ArgN), visualTerm(vArg1, ..., vArgN))         (1.4)

The OpenKnowledge kernel has a number of built-in visual term implementations, 
listed below: 
msg(M<,T>)  Display a message M to the user, with the optional title T . 
text(<T,>M)  Display a large amount of text in M to the user, with the optional title T. 
input(<Q,>V)  Ask the user to input some value into V, providing optional question 
text in Q . 

List Operations  
List operations are a common basis of the recursion techniques available when 
writing LCC. List operations make use of the bar | operation that delineates the head 
( H , first element) of a list from the rest of the list (T, the tail); that is, L = [H|T]. 

In the case that H  has some value, you can append this value to the head of the list 
using the following constraint: 

... ←  L = [H|T]                                  (1.5) 

For example, if before the operation H contained the value 5, and the list, L, 
contained [6,7,8] , after the operation the list would contain the values [5,6,7,8]. 
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In the case that H  is not set, the following LCC will extract into H  the value of the 
head of the list. 

... ←  L = [H|T]                                  (1.6) 

Notice that T  is itself a list, so that the head of T will be the second element in the 
list. This allows for recursion on T. If the list is empty, and no value for H  can be 
determined, the constraint will fail. For example, if before the operation H  was unset 
and the list, L , contained [6,7,8], after the operation H would have the value 6 and 
the T  would have the value [7,8]. 

To test whether a list is empty, use the following LCC: 

... ←  L = []                                    (1.7) 

This constraint will fail if L  is not empty. 

Logical Operators   
Constraints can be connected by the logical operators and and or : 

 C and C  succeeds if both constraints C  and C  succeed, with C  being 1 2 1 2 1 
attempted first. 

 C and C  succeeds if one of the constraints C  and C  succeeds, with C1 2 1 2 1
being attempted first. 

 Comments   

To comment your LCC you can use the C-like comments //... or /*...*/ . The double-
slash comment form will make the interpreter ignore the rest of the line. The slash-
star comment form will ignore everything until the next star-slash. The following are 
valid comments: 

// A valid single line comment 
// Another single line comment 
  
/* 
   A valid 
   multi-line 
   comment 
*/ 

 Sequence and Choice   

The basic operations used in LCC to determine the sequence of messages in a 
clause are sequence and choice, as defined below (where E  and E  are sequence 1 2 
expressions or message passing events): 

Sequence :  is written as E then E . This sequence is completed if both E  or E  is 1 2 1 2
completed, with E  being completed first. 1 
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Choice : is written as E or E . This sequence is completed if either E  or E  is 1 2 1 2
completed, with E  being attempted first. E  will only be attempted if E  fails. If E1 2 1 1
succeeds then E  will not be attempted. 2 

Source URL:  http://www.openk.org/node/619
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Design Patterns Page 1 of 3

 

Perhaps the easiest way to understand LCC programming is through design patterns. 
These are standard ways of structuring clauses that are used to obtain specific forms of 
interaction. The broad idea is similar to design patterns in more traditional languages but 
the good news for LCC is that you only need to know a small number of patterns, which 
you then combine to make more complex programs. The four key patterns are given 
below. 

 Pattern 1: Interaction   

The simplest thing we can do with LCC is to specify a message being sent from one 
peer to another. To do this we decide the role (r1) being taken by the sender; then 
write M out a(r2, Y) if C  to describe the message, M, being sent out to the recipient, 
Y , which is expected to receive it in role r2. The constraint C1 is used to determine 
whether this message can be sent by the sender, and it often is used also to 
determine values for any variables that appear in M.. In the specification of the 
recipient's role we write C2 if M in a(r2, X) to describe the message, M , being 
received, with C2  giving a constraint that should hold as a consequence of receiving 
it. 

a(r1,X) :: 
     . . . 
     M ⇒  a(r2, Y ) ←  C1 
     . . . 
                                                 (1.8) 
a(r2, Y ) :: 
     . . . 
     C2 ←  M   a(r2,X) 
     . . . 

An example of using this pattern is an interaction that sends a message, M, to a 
recipient, Y , where the choice on M is made by the constraint message(M)  and the 
choice of recipient is made by the constraint recipient(Y). Acceptance of the 
message by the recipient is determined by the constraint accept(M) . 

a(sender, X) :: 
     M ⇒  a(recipient, Y) ← message(M) and recipient(Y) 
                                                                 (1.9) 
a(recipient, Y) :: 
     accept(M) ← ⇐  M   a(sender, X) 

file://C:\Documents  and Settings\Administrator\Desktop\patterns.htm 12/19/2008
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 Pattern 2: Sequence   

Usually we want to put an ordering on the sequence of events that can occur as part 
of a role. To do this we use the "then" operator to say that the earlier event, E1, 
comes before the later event, E2. 

a(r,X) :: 
     . . . 
     E1 then                                          (1.10) 
     E2 
     . . . 

An example that uses this pattern twice is when the recipient of the message returns 
a message to the sender, where response(M1, M2) is a constraint determining the 
recipient's response message, M2, from the sender's message, M1 . 

a(sender,X) :: 
     M1 ⇒  a(recipient, Y ) ← message(M1)and recipient(Y ) then 
     accept(M2) ←  M2   a(recipient, Y ) 
                                                             (1.11) 
a(recipient, Y ) :: 
     accept(M1) ←  M1   a(sender,X) then 
     M2 ⇒  a(sender,X) ←  response(M1,M2) 

 Pattern 3: Choice   

We may want a peer taking some role, r, in an interaction to make a choice about 
the course of its interaction with other peers. This is done by writing E1 if C1 or E2 if 
C2  to say that the interaction described by E1 should be done under the conditions 
stipulated by constraint C1  or the interaction described by E2 should be done under 
the conditions stipulated by constraint C2. The choice we are making here is a 
committed choice, meaning that if C1 is satisfied then the alternative choice (E2 if 
C2 ) will not be attempted. 

a(r,X) :: 
     E1 ←  C1 
     or                                              (1.12) 
     E2 ←  C2 
     . . . 

An example of this pattern is when a buyer wants to send a message to a seller 
accepting some Offer  (received earlier in the definition of the buyer role) if it is 
acceptable or otherwise it sends a message to the seller rejecting that Offer if it is 
unacceptable. 

a(buyer, X) :: 
     . . . 
     accept(Offer) ⇒  a(seller, Y) ← acceptable(Offer)             (1.13) 
     or 
     reject(Offer) ⇒  a(seller, Y) ← unacceptable(Offer) 

file://C:\Documents  and Settings\Administrator\Desktop\patterns.htm 12/19/2008
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Since LCC makes committed choices, we know in this example that if acceptable
(Offer)  is satisfied then the second option (in which the peer attempts to satisfy 
unacceptable(Offer) ) will not be attempted, so if testing unacceptability is not 
important then we might shorten this example to: 

a(buyer, X) :: 
     . . . 
     accept(Offer) ⇒  a(seller, Y) ← acceptable(Offer)             (1.14) 
     or 
     reject(Offer) ⇒  a(seller, Y) 

 Pattern 4: Recursion   

Often we want an interaction to be controlled by some data structure, for example 
we might want to have a similar sub-interaction for each of the elements in a list (as 
in the basic example above). The pattern below describes this. In the pattern r(A) is 
a role, r , with the data structure as its argument, A. Somewhere within the definition 
of the of the role appears a constraint, R(A, Ar), that reduces A to some "smaller" 
structure, Ar . Then the role recurses as r(Ar). Normally there also is an alternative 
choice for when the data structure does not reduce any further but meets some test, 
P(A) , that it is has reached some terminating state. 

a(r(A),X) :: 
     (. . . R(A,Ar) . . . 
     a(r(Ar),X))                                           (1.15) 
     or 
     (. . . P(A) . . .) 

One example of using this pattern is an interaction that sends as a message each 
element, M , from a list [M1,...] to peer p2 in role r2. 

a(r(A), X) :: 
     (M ⇒  a(r2, p2) ←  A = [M|Ar] then 
     a(r(Ar), X) )                                       (1.16) 
     or 
     (null ←  A = [] ) 

A second example is an interaction that sends N messages to peer p2 , each with the 
same content, M . Here, N  and M are parameters to the role, r. 

a(r(N, M), X) :: 
     (M ⇒  a(r2, p2) ←  N > 0 and N1 is N - 1 then 
     a(r(N1, M), X))                                               (1.17) 
     or 
     (null ←  N =< 0) 

patterns 

Source URL:  http://www.cisa.informatics.ed.ac.uk/OK/drupal/node/620
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An LCC model only defines the abstract exchange of messages between peers, and the 
preconditions and postconditions on those message. The messages and the constraints 
are first order predicates, and the arguments are variables. 

However, constraints need to be matched against methods in OKCs. The OKC methods 
are described by the Java Annotation @MethodSemantic:  

@MethodSemantic( 
language="tag"; 
args={"title"} 
) 
  
public boolean askTitle(Argument t){...} 

The arguments can be complex objects: 

@MethodSemantic( 
language="tag"; 
args={"email(subject,priority,body)"} 
) 
  
public boolean writeEmail(Argument email){...} 

In this case, the argument email will contain a structure composed of three elements: 

 email 
    |- subject 
    |- priority 
    |- body 

Interaction Models can be annotated as well. The annotations mechanism is general and 
can be used for different purposes. In particular, the LCC annotations are used to 
semantically annotate the variables in roles and to annotate messages and constraints for 
enabling their logging during an interaction run. 

annotation 

Source URL:  http://www.cisa.informatics.ed.ac.uk/OK/drupal/node/621

file://C:\Documents  and Settings\Administrator\Desktop\annotations.htm 12/19/2008
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Visualisers are small user interface modules that are used to allow the user to satisfy 
constraints in an interaction model. They are entirely distinct from the user interface, but 
the user interface is responsible for providing a means for displaying them on the screen. 
Visualisers are implemented in the same way as OKCs. 

Visualisations can be suggested through the use of annotations in the LCC. For example, 
the getMyName constraint might be annotated in the LCC as follows: 

@annotation( @constraint( getMyName(N) ), visual( qask("Please enter your name", N) ) )

As with other annotations, the first parameter defines the constraint to which the 
annotation is associated. The second part of the annotation utilises the "visual" annotation 
label. The definition of the visual annotation refers to a specific visualisation, in this case 
"qask" which asks the user a question. 

How qask  is implemented is independent of both the OKC and (potentially) the user 
interface. It is, however, specific to the platform on which the visualisation is running. For 
example, an image viewer provided on a mobile phone will be different to that provided on 
a desktop PC. It could be that specific peers and user interfaces that implement specific 
applications on top of the OpenKnowledge system will have specific visualisers that 
provider greater user interface integration, however, these interfaces must be robust to 
changes in the network that might mean different interaction models are used and 
therefore different visualisations are requested. 

visualisation 

Source URL:  http://www.cisa.informatics.ed.ac.uk/OK/drupal/node/622
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Overview  

 

Peers and OKCs [1]     Mapping Constraints to Methods [2]    Peer Ontologies [3]     Services 
as Peers [4]

 Peers and OKCs   

OpenKnowledge peers must have at least one OKC [5] in order to play a role but may 
have arbitrarily many. Each OKC is a set of methods, and these methods provide 
information on how constraints should be satisfied. It may be the case that an OKC 
is designed for a particular role, so that methods to satisfy all the constraints for that 
role are contained within the OKC. This is useful because it means that this OKC 
can be shared across the network and any peer that downloads it has the necessary 
methods for performing that role. However, when playing a particular role, a peer 
may use methods from many different OKCs. For example, a peer may have a 
util.okc  in which it keeps many common methods that are used to solve constraints 
that reappear in a large number of roles. This prevents the peer from having to keep 
many copies of the same method; however, it is not forbidden for the peer to have 
more than one copy of the same method: it may download an OKC for a particular 
role that contained methods it already had and it would not be obliged to remove all 
of these duplicates. 

Although the sharing of OKCs is central to the concept of OpenKnowledge, there will 
be many situations in which peers wish to use their own trusted OKCs rather than 
ones developed by unknown others because this allows them more control over their 
actions. This can lead to the situation where peers need to play a role using an OKC 
that only imperfectly matches that role: this situation is dealt with through mapping 
constraints to methods [2] . 

Peers are more than the sum of their OKCs. At the very least, peers subscribe to 
interactions and interact with their users, whereas the OKCs they contain merely 
provide methods for solving constraints. But, crucially, we would expect most peers 
to have their own knowledge that will be used to assist in these methods, because 
most methods access the peer's internal state. Thus, different peers may download 
the same OKC and yet produce different results and outcome when performing the 
same role. 
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 Mapping Constraints to Methods

One of the central tenets of OpenKnowledge is that IMs and OKCs can be shared 
between peers on the network without any prior agreement about semantic 
standards. When a peer takes on a role, it performs it in its own manner: this may be 
through using an existing OKC for the role, through making a choice of many 
existing OKCs or for reusing its own OKC that is generally appropriate for the role. 
For example, a peer playing a buying role may have an OKC for buying but may be 
searching for IMs that already have selling peers attached. Thus they may end up 
taking part in an interaction that their OKC was not specifically designed for. This 
flexibility is crucial to the vision and feasibility of the OpenKnowlege project but it 
leads to the problem of semantic mismatch. Therefore, we have developed a 
matching component  that can match the first-order constraints in an IM to the first-
order methods within an OKC. 

This matching process returns a value in [0 1] indicating how similar the constraint 
and the method are. This allows the peer to form its own notion of good enough and 
determine whether this match meets this standard. If the match between a method 
and a constraint is below a certain threshold (determined by the peer), it may decide 
that this method is not good enough to satisfy the constraint and either decide not to 
play that role or decide to search for an OKC that better matches the role. 

For more details of this, see Good Enough Answers. [6]

 Peer Ontologies   

OpenKnowledge does not place any restrictions on or have any expectations of 
peers. Anything that is able to run the OpenKnowledge kernel and to solve 
constraints can act as OpenKnowledge peer. Therefore, we cannot either have any 
expectations of what ontologies these disparate peers will have and how they will be 
represented: peers are fully autonomous and must make their own choices. 

However, there are many reasons why having a well-formed ontology will allow the 
peer to perform more successfully in interactions. Firstly, some of the machinery of 
OpenKnowledge - the matching service and the trust component - rely on peers 
having a taxonomy of terms. Both of these services will work without this - especially 
the matching service, where use can be made of facilities such as WordNet - but 
their success rate will be very low if the peers cannot provide any semantics. 
Additionally, peers may find it hard to satisfy constraints even if the matching 
process is successful if they do not have well ordered knowledge. 

Therefore, we would recommend that peers have at least a basic taxonomy to 
represent their knowledge. 

 Services as Peers   

This page [7]  tells you how services can be used as peers. 
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Accessing Peer State  

 

Some interaction constraints are functional: they expect that the method in the 
component, given a set of input arguments, will always unify the non instantiated 
arguments with the same values, or will succeed or fail, independently of whether the peer 
that has downloaded and executed the component. For example, the constraint sort
(List,SortedList)  for sorting a list of elements should always unify SortedList  with the 
ordered version of List , even though different peers may have OKCs that implement 
different algorithms for sorting it. 

Other components work as a bridge between the interaction model and the peer local 
knowledge, and will unify non instantiated variables with values that depend on the peer in 
which the OKC is running. For example, a constraint price(Product, Price)  expects that 
the corresponding method in the OKC unifies the variable Price  with the price assigned to 
Product  by the peer, possibly accessing the database local to the peer: different peers 
may have different prices for the same product. Moreover, the same peer can be involved 
in many interactions simultaneously, and the peer local knowledge (or state) is changed 
by one interaction and read in another. For example, a peer selling products will have the 
total amount of available products reduced after each successful selling interaction. 

The scope of an OKC instance is a single interaction: it cannot share data with runs of 
other interactions. However, an OKC often needs to access persistent information. For 
example, an interaction for the purchase of some product may need to access the peer 
catalogue, and may change the state of the peer’s warehouse. An issue to consider in 
defining the access to the peer from the OKC is that OKCs and peers may be developed 
by different entities, and there cannot be many assumptions. The mechanism for 
accessing the peer state, therefore, relies on adaptors. 

An OKC declares the methods it needs to access in the peer using the Java5 annotation 
@RequiredPeerAccess , listing the method signatures in the peer: 

@RequiredPeerAccess( 
 methods={"doSomething(name)","doSomethingElse(text)"} 
) 

The peer will have a class implementing the dummy interface PeerAccess , where exposes 
the methods it provides to the OKCs. The methods must be annotated with 
@MethodSemantic, and the arguments are all of type Argument. 
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class MyPeerAccess implements PeerAccess{ 
  @MethodSemantic( 
    language="tag", 
    args={"name"} 
  ) 
  public boolean doSomething(Argument n){...} 
  
  @MethodSemantic( 
    language="tag", 
    args={"text"} 
  ) 
  public boolean doSomethingElse(Argument t){...} 
  

The peer, in the initialization, will instantiate its PeerAccess class, and pass it to the 
OKManager calling the method setPeerAccess(). The manager will compare the requests 
of OKCs requiring access to the peer with the exposed methods in the PeerClass. OKCs 
whose requirements do not match what the Peer provides cannot be added to the OKC 
storage. By comparing the OKC requirements with the PeerAccess class, the manager 
generates an adaptor, that is then passed to every instantiated OKC. 

When an OKC needs to access the peer, it will call the method invokePeer(methodName, 
Argument...args) : 

try { 
  invokePeer("doSomething", new ArgumentImpl("name","testname")); 
} catch (AdaptorException e) { 
  e.printStackTrace(); 
} 

Important Notice   
One important element to notice is that the Arguments passed in the OKC methods are 
mapped to constraint parameters, while the arguments passed to the peer methods are 
mapped to the parameters in the peer’s methods: therefore it is not possible  to use the 
arguments received in the OKC method in peer’s methods invocation. 

The following example is wrong: 

@MethodSemantic(language="tag", args={"word"}) 
public boolean okcMethod(Argument a){ 
  try { 
    invokePeer("doSomething", a); 
  } catch (AdaptorException e) { 
  e.printStackTrace(); 
  } 
} 

If the argument is an input  argument, the correct solution is: 

public boolean okcMethod(Argument a){ 
  try { 
    invokePeer("doSomething", new ArgumentImp("word",a.getValue())); 
  } catch (AdaptorException e) { 
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  e.printStackTrace(); 
  } 
} 

If the argument is an output  argument, the correct solution is: 

public boolean okcMethod(Argument a){ 
  try { 
    Argument lw = new ArgumentImp("word"); 
    invokePeer("doSomething", lw); 
    a.setValue(lw.getValue()); 
  } catch (AdaptorException e) { 
  e.printStackTrace(); 
  } 
} 

Specific case: starting a new IM from another IM
An interesting possibility for an OKC is to ask the peer to start a new IM. Here is a simple 
implementation that exploits the InteractionTask class. 

In the Peer access class: 

class MyPeerAccess implements PeerAccess { 
 protected Peer peer; 
  
 public MyPeerAccess(Peer p){ peer=p; }
  
 ... 
  
 @MethodSemantic(language="tag", args={"role_name","interaction_description"}) 
 public boolean attemptIM(Argument rn, Argument imd){ 
   InteractionTask task = new InteractionTask(this.peer, rn.getValue(), AcceptPolicy.ACCEPT_ONE,
false);    String[] q = (String[]) imd.getValue(); 
   task.attempt(q); 
 } 
  
 ... 
} 

To call the method in peer from an OKC: 

@RequiredPeerAccess( 
 methods={"attemptIM(role,description)"} 
) 
public class MyOKC extends OKCFacadeImpl { 
  
  public void someConstraint(...){ 
    try{ 
      invoke("attemptIM", new ArgumentImpl("role", "buyer"), new ArgumentImpl("description","pur
    } catch (AdaptorException ae){ 
      ae.printStackTrace(); 
    } 
  } 
} 
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accessing peer state 

Source URL:  http://www.openk.org/beingAnOKuser/okpeers/state
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Overview [1]     What Does the Trust Component Provide? [2]     What Does the Trust 
Component Require? [3]

 Overview   

This differs from other elements we have discussed so far because this is not part of 
the kernel and its use is entirely optional for OpenKnowledge peers. Some peers 
may choose not to use any trust model, some may choose other trust models that 
may exist or may wish to write their own (see below for information about how to do 
this). We believe that our trust model is useful in many scenarios but freely admit 
that it is not the most appropriate model in all situations. 

On this page, we briefly introduce the general notions of our trust component. For 
further details and for the algorithms, please see Deliverable 4.5 [4]  and Trust in P2P. 
[5]   

 What Does the Trust Component Provide?

The trust component keeps records of all previous interactions, which can be used 
to evaluate how well a potential peer is likely to play a role. In addition, these stored 
records can be shared with other peers through gossip, and gossip can be used in 
the trust calculation - in addition to personal experience, or in place of it if no 
personal experience exists - and can be weighted according to the provenance of 
the trust information. 

When considering how well a peer is likely to play a role, there are two factors to 
consider: 
1. is the peer capable of playing that role? 
2. is the peer willing to play that role? 
Since any peer can play any role in which it can satisfy the constraints, observation 
of previous constraints that have been satisfied can help us to answer the first 
question. However, there are two different levels of peer ability in playing a role: 
a. satisfying the constraints; 
b. providing good quality goods/information/etc. (depending on the type of role). 
Complying with the first condition is the minimum requirement of successful 
interaction, and observation of previously satisfied constraints can answer this 
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question (fully or partially). The second condition is more nebulous and can only be 
answered by considering user feedback in identical or similar situations. 

The second question is more difficult, and depends on factors such as the good 
intentions of the peer. To answer this question, context is more important. A peer 
that has performed well in a similar situation is more likely to perform well than one 
that has only performed well in a very different situation. 

The trust algorithm considers all these factors and uses a probabilistic measure to 
produce a score in [0 1] indicating the trust value for a peer playing a particular role 
in a particular IM. 

 What Does the Trust Component Require?

There are two kinds of information about how well a peer performed its role in an 
interaction: 

- information about whether an interaction terminated or not. 
This can be generated automatically by the coordinator of an interaction. It cannot 
provide information to help assign blame for the failure of an interaction to terminate: 
all peers involved in the interaction are blamed equally. This means that in isolation, 
it does not provide a reliable judgement. However, over many interactions, it is more 
useful. An able, well-meaning peer may sometimes interact with failing peers and 
thus be involved in a failed interaction, but most of the time its interactions will 
terminate successfully. 

- information about whether the service was performed well. 
This may, depending on the situation, mean providing high quality goods, 
appropriate and correct information, and so on. This usually cannot be judged 
through automated observation of the interaction. This is because such 
considerations are outside the scope of an interaction. Expectations of quality would 
not normally be expressed as a constraint and cannot usually be judged until after 
the interaction terminates and the goods or information are actually received and/or 
used. Additionally, such a judgement is using subjective and depends on the 
judgement and perhaps taste of the user. Therefore, this information must be given 
directly by the user. 

Once the interaction has successfully terminated, the trust component will cause a 
small window to pop up in the OpenKnowledge GUI to remind the user that feedback 
is pending on this interaction (if the interaction terminated unsuccessfully, the user 
will be informed and no further feedback will be necessary.) The user can ignore and 
dismiss this request or, at an appropriate point (for example, after the goods have 
been delivered if the interaction involved buying goods), can provide feedback about 
the quality of the service provided. If this feedback is provided, it will be used by the 
trust module as part of the stored information about the transaction and used to 
judge expected performance in future interactions. 

- why and when would you prefer to use another trust model? 
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Our model is based on frequent interactions. In order for the values produced to be 
meaningful it is necessary to have several previous interactions to refer to. This does 
not all have to be personal experience as much useful information can be received 
through gossip. However, in a domain where interaction is sparse, there may only 
rarely be enough information to make the output from this trust component useful. 
Once example of such a domain is bioinformatics. 

Additionally, in some particularly communities, trust is judged in very different ways 
and peers involved in such communities may wish to judge trust in their own way. 

the trust component 

Source URL:  http://www.openk.org/beingAnOKuser/trust

Links:   
[1] http://www.openk.org/beingAnOKuser/trust #overview 
[2] http://www.openk.org/beingAnOKuser/trust #trustProvide 
[3] http://www.openk.org/beingAnOKuser/trust #trustRequire 
[4] http://www.cisa.informatics.ed.ac.uk/OK/Deliverables/D4.5.pdf
[5] http://www.openk.org/research/tpp 
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Overview 

Publishing IMs  

 

The section on Using LCC [1]  will tell you all you need to know to create an IM. 

You can publish interaction models from the tool provided by the standard user interface. 
To get to the tool select "Publish IM" from the Tools menu. 

  
Figure 1. The `Publish Interaction Model' dialog box
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Figure 2. Selecting an interaction model to publish

Figure 1 shows the dialog box for publishing interaction models. This dialog box allows 
you to enter a new interaction model, or you can load one from your local disc using the 
"Load Interaction Model From File" button. Figure 2 shows the selection of an interaction 
model from the disc. Use the drop down box to change the type of interaction model you 
wish to search for (the default is LCC). 
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Figure 3. Giving descriptive tags to the interaction model

Once the interaction model that you wish to publish has been completely defined, you can 
check the syntax using the "Check Syntax" button on the right of the window shown in 
Figure 3. Then, enter a set of keywords for describing the interaction model in the box at 
the bottom. Bear in mind that these keywords will be matched against when a user 
searches the OpenKnowledge network, so choose keywords that would be expected to 
return an interaction model like the one you are publishing. 

Figure 4. Successfully published interaction model

Press the 'Publish Interaction Model' button to send the model to the discovery service. If 
the publishing succeeds a message will pop up (see Figure 4). 

Source URL:  http://www.openk.org/beingAnOKuser/publishing/publishingIMs
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Links:   
[1] http://www.openk.org/beingAnOKuser/usingLCC/examples
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Creating and Publishing OKCs  

 

- Programming New Components 
In the informer/requester IM [1] , there is one constraint to be satisfied: query(X1) . The 
constraint simply defines what function needs to take place at this point in the interaction; 
it does not provide any particular implementation of this function. OpenKnowledge 
components provide this implementation and there may be many implementations for any 
particular interaction model. 

For the Java version of OpenKnowledge, implementations of constraints are provided in 
the form Java code wrapped into a Java Archive (JAR) file. These files are shared on the 
network and contain the code to run when a constraint needs to be satisfied by the model. 

Preparing the code to do this has been made as simple a task as possible. 

Components must implement a specific (empty) interface that is defined as part of the 
OpenKnowledge core software. However, they do not need to implement any specific 
methods other than those required for the constraint satisfaction. In Java, what this means 
is that the class you write to provide the implementation for the constraints must 
implement the interface org.openk.core.OKC.OKCFacade . This interface actually defines 
some methods, so to make programming of components as easy as possible, an 
implementation of these has been provided in the class 
org.openk.core.OKC.impl.OKCFacadeImpl . You should extend this class to create your 
OpenKnowledge component. 

Code Listing 1.1. gives the skeleton for an OpenKnowledge Component. 

package myokc; 
import org.openk.core.OKC.OKCFacadeImpl; 
  
public class MyOKC extends OKCFacadeImpl 
{ 
} 

Listing 1.1. Skeleton Class for OpenKnowledge Components 

You can see that there is nothing more to creating an OpenKnowledge Component than to 
extend OKCFacadeImpl . 
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To make it even easier, the interaction model defines the method signature that you must 
implement. Because the library works by using reflection on you OpenKnowledge 
Component classes, you just need to implement the constraints as methods. 

Your methods for the constraints should return boolean values; this represents whether 
the constraint was satisfied or not. You methods can throw exceptions and this will be 
considered as a constraint failure by the system. 

Listing 1.2. shows an example of a full implementation of the stock checker 
OpenKnowledge component. 

package myokc; 
import org.openk.core.OKC.OKCFacadeImpl; 
  
public class StockCheckerOKC extends OKCFacadeImpl 
{ 
  /** 
   *   Solve the validItem(X) constraint 
   *   Succeeds if X is a valid item number 
   * 
   *   @param X The item identifier 
   *   @return TRUE if X is a valid identifier, 
   *           FALSE otherwise 
   */ 
  public boolean validItem( Argument X ) 
  { 
    String itemID = X.getValue(); 
    if( StockChecker.validItem( itemID ) ) 
      return true; 
    return false; 
  } 
  
  /** 
   *   Solve the inStock(X) constraint. Returns 
   *   the number of items of X in stock in N. 
   * 
   *   @param X The item identifier 
   *   @param N The number of items in stock 
   *   @return Always returns TRUE 
   */ 
  public boolean inStock( Argument X, Argument N ) 
  { 
    String itemID = X.getValue(); 
    N.setValue( StockChecker.checkStock( itemID ) ); 
  
    return true; 
  } 
} 

Listing 1.2. Stock Checker OpenKnowledge Component 

The arguments that are passed to your constraint methods match those that are defined in 
the interaction model. You can use Argument.getValue()  and Argument.setValue()  to 
change the interaction's state. 
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- Creating Component JAR Files 
In OpenKnowledge, components can be shared across the network, so that other users 
can download your component and run it on their machine; that is, they can assume a 
certain role in an interaction by using your code for that role. The components are shared 
using a Java Archive, which is similar to a zip file. The easiest way to create these 
components is by using the tool built into the default user interface. 

First you need to publish the interaction model for which you have a component. Once 
published, search for it on the network. If it is already published on the network, then you 
can simply search for it. 

Expand the role-list for the interaction model in the results table, and click on the role for 
which you have a component. The button "Create New OKC For Role" becomes available. 
When you click this button a window will appear that will let you create the component 
JAR. 

- Loading in Local Components 
If you have created some OpenKnowledge components in JAR files that you have stored 
locally on a disc, you can load these into the local state of your peer. To do this, use 
access the File menu and select "Import OKC". You will be presented with a dialog box 
from which you can select the OKC JAR file. 

Note that restoring OKCs from disc into the state of your local peer will not subscribe your 
peer to any role; to do this, read section Publishing Components below. The component 
you have loaded will appear under the "Local Components" under 'My Peer'. 

- Publishing Components 
Publishing components is very easy from the user interface. Once a component has been 
loaded into the local state of your peer (see section Loading in Local Components above) 
you can select that component from `My Peer' (it will be listed under 'Local Components'). 
Once selected click the 'Share Component' button; this will send a copy of the component 
to the network where it can be retrieved by other parties and used by them. 

-- Programming a New Visualisation 
Visualisations are small user interface modules that are used to satisfy constraints in an 
interaction model. They are entirely distinct from the user interface, but the user interface 
is responsible for providing a means for displaying them on the screen (see section on 
Providing Alternate User Interfaces [2]). 

Visualisation [3]  described how visualisations are incorporated into interaction models. 
They utilise the visual(,)  operation. The LCC below shows as example of the visualisation 
introduced earlier. 

visual(getMyName( N ), qask("Please enter your name", N))                  (1.14) 

The first part of the visualisation definition is the interaction model constraint (getMyName
( N )), and the second part is the visual term (qask("Please enter your name", N )). 
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The visual term does not specify how the visualisation will be realised, it only provides a 
hook for providing implementations. This means that a peer may have many 
implementations for a particular visual term, while also allowing different devices to have 
different implementations. For example, an image viewer on a mobile phone will be 
different to that on a desktop PC. There are a number of visual term implementations built-
in to the kernel; see Visual Constraints [4]  for a list. 

Source URL:  http://www.openk.org/beingAnOKuser/publishing/publishingOKCs

Links:   
[1] http://www.openk.org/howOKworks/im 
[2] http://www.openk.org/beingAnOKuser/publishing/interfaces
[3] http://www.openk.org/beingAnOKuser/usingLCC/visualisation
[4] http://www.openk.org/beingAnOKuser/usingLCC/syntax/ #visCons 
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Providing Alternate User Interfaces  

 

The OpenKnowledge kernel has been specifically developed to be easy to extend. All of 
the components that interface to the kernel have an application programmers' interface 
(API) defined for them. The user interface is no exception to this, meaning that you can 
create new applications that use the OpenKnowledge network, but look distinct from the 
default user interface that has been supplied. 

As an example, Figure 1 shows the user interface that has been developed for 
coordination of emergency services in one of the OpenKnowledge demonstration 
systems. In this application each emergency service vehicle (ambulance, fire engine, etc.) 
is a peer on the OpenKnowledge network. They communicate through the network to 
coordinate themselves to aid in an emergency. For this scenario, the default 
OpenKnowledge user interface is too limited. The application is specific and requires a 
specific user interface that provides a map of the emergency area showing where the 
individual emergency vehicles are. 
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Figure 1. Emergency Response User Interface 

Source URL:  http://www.openk.org/beingAnOKuser/publishing/interfaces
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Writing Your Own Trust Component  

 

The best way to design your own trust component will vary greatly depending on what sort 
of domain you are designing it for and what the reasons are that you wish to move away 
from the trust component already provided with OpenKnowledge. We therefore cannot 
give you much direction in this: you must consider what trust means in the domain in 
which you are interested. 

However, any trust model must consider two questions: 
- how do we determine how trustworthy another peer is? 
- how do we use this information? 

In the existing OpenKnowledge trust component, the former question is answered through 
looking at previous interactions and making judgements on the basic of past performance. 
However, for some domains this may be much less automated: for example, a peer may 
be trusted if it represents a known source of information that is trusted within the 
community. In this situation, users may be unwilling to depend on automatically generated 
trust scores and prefer to go with community norms. In other situations, more simple 
evaluation techniques such as page rank may be appropriate. In order to use a trust 
component, you must have some way of extracting this knowledge and providing it to 
peers who must choose who to interact with. 

The answer to the latter question is that information must be used during the pre-
interaction phase (this page [1]  describes this) when determining which other peers to 
interact with. This is how any trust component links in to the OpenKnoweldge system: it is 
used to form part of the decision to reject or accept potential players in an interaction. For 
some domains, this could be as simple as providing the peers with a list of other peers 
that they can interact with: any other peer will be refused. In other domains, this would be 
a more complicated, situational calculation. 

Therefore, what is required of any trust model is: 
- to provide a mechanism for evaluating trust (which may be fully manual, fully automated 
or interactive) and to provide this information to one's own peer, or allow this information 
to be shared as appropriate; 
- to provide a mechanism for peers to use this information appropriately when determining 
who they are prepared to interact with. 

Source URL:  http://www.openk.org/beingAnOKuser/publishing/writingtrustcomps
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Links:   
[1] http://www.openk.org/howOKworks/lifecycle
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Overview  

 

The OpenKnowledge system makes knowledge more easily shared in open systems by 
always sharing knowledge in the context of a formal model of the interaction process that 
has stimulated the knowledge sharing. The language we have chosen to represent the 
interaction process is LCC so LCC specifications have to be produced from somewhere. 
In the long term we want to make that production process as fast and straightforward as 
possible because, for the OpenKnowledge approach to flourish, it is necessary for large 
numbers of potentially useful interactions to be described. This document describes three 
ways of facilitating this: 

 Through the use of patterns and high level languages to raise the level of description 
of LCC (Structured Design). [1]  

 Via automated analysis of LCC specifications, prior to deploying them (Interaction 
Model Analysis). [2]   

 By relating LCC to other systems of design (and process representation) that have 
already developed design communities in their domains of application (Connecting 
to Other Systems of Design). [3]  

The solutions we present in each of these areas are not definitive or exhaustive (applied 
methods seldom are) but they demonstrate what can be done. For each of the methods in 
each area we summarise the idea in general and connect detailed technical reports (plus 
source code where appropriate) of the specific way in which we developed it. This, 
provides a resource down to coding level for those who want to replicate or extend our 
efforts. 

Source URL:  http://www.openk.org/beingAnOKuser/design/overview

Links:   
[1] http://www.openk.org/beingAnOKuser/design/structured
[2] http://www.openk.org/beingAnOKuser/design/analysis
[3] http://www.openk.org/beingAnOKuser/design/connect
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Structured Design  

 

 

 1. Structure Editing for LCC

The most direct way to assist in constructing LCC is by providing an editor in which 
editing operations are based on structural patterns that are meaningful in terms of 
the engineering of the specification. For example a common pattern for specifying 
recursive roles is as follows: 

a(F(A1...An),X) :: 
     ( then a(F(A1...An-1,AnN),X)) 
     or 
     null <- 

where: F(A1...An) is a role definition with functor F and arguments A1...An; the new 
argument AnN is derived as a consequence of the earlier definition in the recursive 
part of the definition; and the base case is determined by some constraint, . 

Patterns like the one above provide skeletal definitions for LCC specifications that 
can then be elaborated using further editing operations. This view of structured 
design is similar to the idea of techniques editing for logic programs. A basic 
structure editor for LCC is described in detail, along with examples of the system in 
operation, in our technical report on techniques editing [1]. 

Structure editors of the sort described above provide assistance in design but 
assume that those being assisted are interested in manipulating the target language 
(in our case LCC) directly; the engineer is always aware that he or she is working on 
a LCC specification. There are other forms of editing where this need not be the 
case and in the next section we consider one of those. 

 2. Finite State Based Editing for LCC

LCC is a process language in which the definition of a process orders message 
passing events. Consequently, there is no explicit representation in LCC syntax of 
the space of states that can be encountered in an interaction; this space can be 
inferred from a LCC specification, rather than being directly described by it. Some 
systems of design, however, start from a finite state model of interactions, in which 
the different states of the interaction are explicitly represented and events in the 
interaction appear as transitions between these states. One such style of 

  and Settings\Administrator\Desktop\structured.htm  
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specification in the multi-agent systems community is that of electronic institutions. 
Here the nodes represent the different states of the conversation and the directed 
arcs connecting the nodes are labeled with the actions that make the scene state 
evolve. The Electronic Institutions Development Environment (EIDE) is a tool for 
describing electronic institutions, with a translator that produces, automatically, LCC 
from the electronic institution specification. This means that designers who prefer a 
state-oriented rather than a process oriented view of interaction can still contribute to 
OpenKnowledge. 

The mechanism for translation from electronic institutions in EIDE to LCC is 
described in Section 5 of the OpenKnowledge report on visualiser components and 
visual authoring tools [2] . The basic idea is that definitions for the sequencing in LCC 
definitions of roles correspond to traces through the finite state machine of the 
electronic institution. This translation does not preserve some of the distinctions 
made in an electronic institution model because electronic institutions have, as 
primitive, a concept of scene composition that is absent (for reasons of parsimony) 
in LCC. The relationship between electronic institutions and LCC is described in 
detail in the OpenKnowledge report on Ambient LCC [3] . 

 3. Generating OpenKnowledge Components (Groovy)

In Sections 1 and 2 we described systems to support the construction of LCC 
specifications. In order for interactions to do useful work, however, it is necessary to 
supply OpenKnowledge components that can be used by peers to satisfy the 
constraints in an interaction. Although component design inevitably involves some 
application programming, we can make this programming simpler by supplying a 
higher level, Java-compatible language targeted at component design. 

Groovy [4]  is an agile and dynamic language for the Java Virtual Machine, it builds 
upon the strengths of Java but has additional power features inspired by languages 
like Python, Ruby and other scripting languages. Groovy also increases developer 
productivity by reducing scaffolding code. It integrates with all existing Java objects 
and libraries seamlessly, therefore Groovy can be used to create OKCs that run 
within the OK kernel. Moreover Java developers are able to use Groovy with almost-
zero learning curve, and it's also relatively easy for novice programmers to learn and 
use, enlarging the group of programmers able to write OpenKnowledge components 
themselves. 

To demonstrate Groovy in use for component definition we applied it to one of our 
bioinformatics service coordination examples. The technical details of this (along 
with an illustrative example) are in our technical report on Groovy [5] . 

Source URL:  http://www.openk.org/beingAnOKuser/design/structured

Links:   
[1] http://www.cisa.informatics.ed.ac.uk/OK/Deliverables/D7.5/structure-editor.pdf
[2] http://www.cisa.informatics.ed.ac.uk/OK/Deliverables/D7.5/d54.pdf
[3] http://www.cisa.informatics.ed.ac.uk/OK/Deliverables/D7.5/ambientlcc.pdf

  and Settings\Administrator\Desktop\structured.htm  
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[4] http://groovy.codehaus.org/ 
[5] http://www.cisa.informatics.ed.ac.uk/OK/Deliverables/D7.5/groovy.pdf

  and Settings\Administrator\Desktop\structured.htm  
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Like all sophisticated process languages, LCC specifications can be complex so it is not 
always easy for the designer of an interaction to be certain that the specification generates 
the interaction that he or she had in mind when writing it. To raise confidence that it does 
behave as intended it is useful to be able to explore the LCC behaviours prior to deploying 
the interaction on the OpenKnowledge system. There are numerous ways of doing this but 
here we explore three of these: the first is simulation via trace generation from the LCC 
specification; the second is temporal property checking of these traces; the third is the 
inclusion of a (virtual) real-time environment in the simulation. 

 1 Generating Behavioural Traces (Meta-Interpretation)

LCC is an executable specification language and the style of execution of LCC in the 
OpenKnowledge kernel is based on the idea of unfolding the clauses of each peer's 
role definition as a means of representing change in the state of the interaction. 
Although the kernel is Java based for portability, Prolog is a more elegant language 
in which to describe unfolding. For this reason the behavioural trace generator (and 
the other related LCC mechanisms in Section 3) are implemented as Prolog meta-
interpreters. A detailed description of the process of unfolding to generate a trace is 
given in the LCC operational semantics definition [1]. The basic idea, however, is that 
the meta-interpreter "walks" through the role definitions, sending messages in 
sequence and simulating concurrency via non-deterministic choice. For example, the 
LCC interaction model: 

a(r1, X) :: 
    ( m1 => a(r2, Y) or m2 => a(r2, Y) ) then 
    M <= a(r2, Y). 
  
a(r2, Y) :: 
    ( m1 <= a(r1, X) then m3 => a(r1, X) ) or 
    ( m2 <= a(r1, X) then m4 => a(r1, X) ). 

would be capable of generating the following two traces for peer p1 in role r1 and 
peer p2 in role r2: 
[m(p1, m1 => a(r2, p2)), m(p2, m1 <= a(r1, p1)), m(p2, m3 => a(r1, X)), m(p1, 
m3 <= a(r2, p2))] 
[m(p1, m2 => a(r2, p2)), m(p2, m2 <= a(r1, p1)), m(p2, m4 => a(r1, X)), 
m(p1, m4 <= a(r2, p2))] 
where each element of the trace above is either a message, M, being sent from peer 
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S to peer R (m(S, M => R)) or is a message being received by peer R from peer S 
(m(R, M <= S)). 

The source code for a generating traces from LCC specifications (along with some 
example specifications can be downloaded as a zipped folder [2] . 

This sort of simulator is useful both for exhaustively exploring the state space for 
interactions (a ropic of the following section) and for running multiple simulations of 
interactions with random selections of events at choice points in the trace 
generation. This latter method was used in developing our peer rank algorithm (used 
in our bioinformatics testbed) because it gave us a way of rapidly running thousands 
of interactions in concert with the peer rank reputation mechanism without having to 
set up a much more complex (and less easily controlled) test harness for the 
OpenKnowledge kernel. The peer rank algorithm eventually was provided as a 
service for the kernel but only after this initial testing phase. A description of peer 
ranking and some of the simulation results appears in our technical report on peer 
rank simulation [3] . The full source code for the peer rank simulator, plus test 
interactions, downloaded as a zipped folder [4]. 

 2 Checking Temporal Properties of Interactions (Tabled Resolution)   

In Section 1 our concern was to be able to generate individual traces corresponding 
to a permitted behaviour in an interaction specification. Sometimes, however, we are 
interested in knowing whether some temporal property can occur across the space 
of all interaction behaviours (for example if a particular message is always eventually 
followed by some other particular message; or if a given sequence can never occur). 

A basic temporal property checker that utilises a trace generator, as described in 
Section 1, applied to business process examples is described in our technical report 
on constraint verification [5] . This provided a way of checking the following properties 
of traces (each of these is given formally in Section 5 of our technical report): 

 Safety : If B represents some undesirable condition, a model is said to satisfy 
the safety property with respect to B, if in all the runs of the model, the 
condition B is never satisfied. 

 Liveness : If A represents some desirable condition, a model is said to possess 
the liveness property in any run, if at some point in the run the condition A is 
met. 

 Deadlock : indicates a situation in which two or more processes wait for each 
other and are unable to proceed on their tasks as each is waiting for the other. 
For LCC, each process waiting for a message 
from the other process before it can proceed with its part of the interaction 
gives a deadlock. 

 Correctness: aims at meeting all the functional requirements expected of the 
given model, where the conjunction of all constraints is implied by the 
conjunction of all the property specifications and 
the conjunction of all constraints holds in the integrated behavioural model. 

 Termination : requires the completion of all roles in an interaction. In LCC this 
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means that all the roles associated with the messages of an interaction should 
be closed. 

Although our basic temporal property checker can analyse important properties of 
LCC interaction specifications, it explores the search space of possible interaction 
traces using a standard Prolog search strategy. This limits the efficiency of search 
space exploration because it involves a high proportion of redundant search. In 
OpenKnowledge we addressed this problem by using a tabled resolution based 
Prolog system: XSB [6] . This allowed us to perform more complex forms of property 
checking on larger LCC specifications. More surprisingly, it allowed us to perform 
limited but useful forms of property checking in only a few seconds of real time which 
makes it possible to check LCC interaction models not only in advance of their 
deployment (the traditional approach) but also, in some circumstances, during their 
deployment. This provides a novel form of trust-related verification. The XSB-based 
property checker is described in detail in our technical report on runtime verification 
of trust models [7]  and the code used to implement it can be downloaded as source 
code [8] . 

 3 Virtual Environments (Unreal Tournament)

All of the analytical methods described so far in this section assume that the 
environment on which interactions is run need not be modelled as part of the 
analysis, other than in terms of constraints satisfied by the LCC interaction model 
(or, as in Section 2, by a combination of LCC and service specifications). In some 
cases, however, we are interested in detailed simulation of environments. This is 
especially the case when we want to assess performance of LCC as a coordination 
medium in real-time systems, where response times in a rapidly changing 
environment are of utmost importance. To perform these sorts of analyses one 
needs a simulator for the dynamic environment. A popular source of this sort of 
simulator comes from the computer gaming world where commercial success has 
depended on providing semi-realistic environments in which to play. 

One of the standard gaming simulators is Unreal Tournament [9]  which is a popular 
gaming environment in its own right but also provides an accessible game engine 
that can be used by developers to introduce automated game playing agents ("bots" 
in UT jargon) into the game. It also provides a rich source of complex virtual 
environment topologies, courtesy of the environment design community that has 
built up around the game. We have built a means of linking a LCC interpreter to UT-
bots so that LCC can be used to coordinate message passing between them. This 
allows us to use LCC to define collaborative strategies for game playing which we 
then test by playing teams of coordinated "LCC-enabled" bots against teams of 
individually superior but uncoordinated conventional bots. We have been able to 
produce remarkably fluid and effective team play by this means. 

A description our most recent work with the Unreal Tournament environment is 
available as a Quicktime movie [10]  with a set of accompanying notes [11] . The second 
half of this video shows the environment in action (note that the movie is a 
comparatively large file, 75MB, so may take several minutes to download). The bots 
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that you see in this video are highly autonomous,using machine learning algorithms 
fed by data from the environment to develop their individual behaviours as the game 
proceeds. The LCC being used to coordinate them is simple and reactive (in fact the 
system uses a reactive subset of LCC for speed of response) as can be seen from 
the accompanying notes. In the long term, we hope that this sort of architecture 
could develop into a framework for behaviour-based software system development 
analogous to the subsumption architectures used to combine behavioural modules 
in robotic systems. 

Source URL:  http://www.openk.org/beingAnOKuser/design/analysis

Links:   
[1] http://www.cisa.informatics.ed.ac.uk/OK/Deliverables/D7.5/simulator/unfolding.pdf
[2] http://www.cisa.informatics.ed.ac.uk/OK/Deliverables/D7.5/simulator/basic-simulator.zip 
[3] http://www.cisa.informatics.ed.ac.uk/OK/Deliverables/D7.5/simulator/peer-rank-simulations.pdf 
[4] http://www.cisa.informatics.ed.ac.uk/OK/Deliverables/D7.5/simulator/okrank.zip
[5] http://www.cisa.informatics.ed.ac.uk/OK/Deliverables/D7.5/rudradevaru.pdf
[6] http://xsb.sourceforge.net/ 
[7] http://www.cisa.informatics.ed.ac.uk/OK/Deliverables/D7.5/model-checking/model-checking.pdf 
[8] http://www.cisa.informatics.ed.ac.uk/OK/Deliverables/D7.5/model-checking/code.zip 
[9] http://www.unrealtournament3.com/ 
[10] http://www.cisa.informatics.ed.ac.uk/OK/Deliverables/D7.5/UT-movie.mov
[11] http://www.cisa.informatics.ed.ac.uk/OK/Deliverables/D7.5/UT-movie-notes.pdf
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Connecting to Other Systems of Design  

 

 

LCC is as lightweight and parsimonious as we can make it. This does not mean, however, 
that it is straightforward for every engineer to use. Application domains develop 
engineering cultures that often take as a focus particular styles of design, supported by 
task-specific design notations. Thousands of these have developed and many continue to 
be invented so it is impossible to catalogue exhaustively the relationship of all these to 
LCC. Instead, we give examples below of ways to connect OpenKnowledge to established 
systems of design. First, in Section 1, we demonstrate the most direct route, via 
translation from a more traditional language to LCC. Then, in Section 2, we consider the 
case where the traditional language to which we wish to connect is providing a different 
functionality from that of LCC so extension of LCC is required to embrace it. In Section 3 
we explain the more radical alternative of writing, in LCC, an interpreter for an established 
language. Finally, in Section 4, we discuss the most radical step of all - to replace LCC in 
the OpenKnowledge kernel with an alternative process language. 

 1. Translation to LCC From Established Languages (UML, SCUFL) 
 1.1 Translation to LCC from UML Activity Diagrams

The LCC coordination calculus lends itself well to display in a graphical form. 
Its concepts of participants, messages and constraints, are similar to that of 
the UML activity diagram [1] that has partitions, flows and activities. As UML is a 
common tool for the design of software that is well used in industry, by 
providing a conversion between UML diagrams and LCC, we are able to 
minimise the intellectual cost of joining the OpenKnowledge network for many 
industry software houses and developers. 

UML editors are relatively common, yet they tend to focus less on data flow 
than data design. There are very few open source UML editors and those we 
found did not provide activity diagram support. Commercial products would be 
very hard to augment for LCC output without considerable cost and/or reverse 
engineering. So, as one of the support tools for the OpenKnowledge project we 
have implemented a basic UML activity diagram editor that has the option of 
outputting LCC code. The editor itself has been designed in a modular, 
extensible way so that other open-source developers could extend it such that 
it would handle other diagram types. However, we have, for now, only 
implemented the basic UML activity diagrams. 
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A screenshot of the editor appears below. Various node types are displayed on 
the left of the editor and they are added to the diagram by clicking their 
appropriate button. Once in the editing area, they can be dragged around and 
their properties edited by double clicking. 

The conversion is achieved by searching for the initial node (the black dot) and 
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Transitions are considered LCC sequence ("then") statements unless they 
cross the partition swimlanes, in which case they are rendered as message 
sending and receiving. Activities are translated as constraint satisfactions. The 
branch nodes are rendered as "or" branches in the LCC. 

The LCC is rendered by traversing the graph and outputting the appropriate 
LCC for the node encountered. The LCC is buffered so that when "or" nodes 
are encountered, the LCC can be re-written. Back-tracing of the graph is done 
at various points to ensure that activities that occur after branches in other 
participants are rendered correctly. 

The LCC below shows the LCC export for the diagram shown in the UML 
diagram above: 

// -----------------------------------------------------------------------------
// LCC File generated by UML-to-LCC exporter. 
// test.lcc 
// 24/10/2008 
// -----------------------------------------------------------------------------
r( participant1, initial ) 
r( participant2, necessary ) 
  
// ============================================================ 
a( participant1, ID ) :: 
( 
  null <- activity1() then 
  msg() => a( participant2, Participant2ID ) then 
  msg() <= a( participant2, Participant2ID ) then 
  null <- activity3() 
) 
or 
( 
  null <- activity2a() 
) 
  
// ============================================================ 
a( participant2, ID ) :: 
  msg() <= a( participant1, Participant1ID ) then 
  null <- activity2b() then 
  msg() => a( participant1, Participant1ID ) 

The implementation of the basic UML editor and translator to LCC can be 
downloaded as source code [2]. 

 1.2 Attaching to Existing Design Systems via Translation (Taverna)

One of the main testbeds for the OpenKnowledge system is in bioinformatics. 
Although this domain of application is comparatively new, there already exist 
accessible design tools for bioinformatics workflow, especially in Grid systems. 
One of the best known systems is Taverna [3] (although there are others, such 
as Kepler and Triana). The Taverna system provides a visual editor for 
describing workflows to be enacted on a Grid system and produces a 
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specification of the workflow in the SCUFL process language. For the sector of 
the bioinformatics community interested in using Taverna, the easiest way to 
connect to the OpenKnowledge system would be to continue to use their 
familiar design tools but, instead of using a Grid system for workflow 
enactment, to use the OpenKnowledge system. 

To make a switch to OpenKnowledge as straightforward as possible for this 
community we built an automatic translator from SCUFL to LCC. This does not 
disrupt in any way the current methods of use of the Taverna system (which 
we assume are well honed to the Taverna community) but simply provides an 
additional step beyond the traditional endpoint of Taverna specification (which 
is a workflow specification in SCUFL) to LCC. The SCUFL to LCC translator is 
described in detail in our technical report [4]  and the Java code used to 
implement it can be downloaded as source code [5]. 

 2. Connecting LCC to Compatible Languages With Different Functionality 
(OWL-S)   

In the previous section our approach to integrating with an existing design system 
was automatic translation, with the aim of altering established design practice as 
little as possible. Some systems of design, however, are oriented to a different 
problem than the one being addressed by OpenKnowledge and then the issue 
becomes one of complementarity: establishing connections such that the two 
systems can be used together to mutual advantage. An example of this is the OWL-
S [6]  language for semantic web service specification. 

OWL-S is essentially a typed language for specifying input/output interfaces to Web 
services. It's use of OWL [7]  as a type language gives it a strong connection to 
semantic web efforts. OWL-S, however, deliberately avoids prescribing any 
language in which the processes to choreograph services might be specified (so as 
to remain neutral to choices in choreography language). Conversely, LCC 
deliberately avoids commitment to a service specification language (so as to remain 
neutral to service specification infrastructure). LCC and OWL-S therefore tackle 
service choreography from different perspectives. 

As an experiment in combining LCC and OWL-S, we built a prototype discovery 
system for services when enacting LCC interaction models. This involved adding 
type annotations to constraints in LCC interaction models and, from these 
annotations, automatically extracting service descriptions that could be matched to 
OWL-S service specifications using a Description Logic reasoner. The relationship 
between OWL-S and LCC is described in detail in our technical report [8]  and the 
Prolog code used to implement his OWL-S based discovery system for LCC (and 
the DL reasoner) can be downloaded as source code [9]. 

 3. Writing an Interpreter for an Established Language in LCC (BPEL4WS)

In Section 1 we gave an example of translation as a means of linking LCC to a task-
specific design system. In Section 2 we gave an example of connecting to a 
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complementary task-specific language via annotations in LCC. We now introduce a 
third way to bring a task-specific language into the sphere of OpenKnowledge: by 
writing an interpreter for the language in LCC. 

Although it is unconventional to use one protocol language as an interpreter for 
another, a similar idea - that one can use a declarative language to write a meta-
interpreter for another language - is quite conventional in declarative programming. 
As an example, we chose the Business Process Execution Language for Web 
Services (BPEL4WS [10] ) which is an industrially used language for specifying 
business interaction protocols. Instead of writing a translator from BPEL4WS to LCC 
(the route we chose with UML and SCUFL in Section 1) we wrote a protocol in which 
the principal role is to act as a BPEL4WS interpreter. A BPEL4WS specification is 
given as a parameter to this role and enacting the role interprets the BPEL4WS 
specification to produce appropriate message passing and invocation of services. 
The LCC specification needed for this is, of course, complex but for BPEL4WS users 
this complexity is no more apparent than in any other system for enacting 
BPEL4WS. Conversely, from an LCC point of view, the BPEL4WS interpreter is just 
a normal (though complex) interaction model. 

The LCC interpreter for BPEL4WS is described in detail in Chapter 5 of our technical 
report on enacting decentralised workflow [11]  and the same source also 
demonstrates, in Chapter 4, the more conventional route of translation from 
BPEL4WS to LCC. 

 4. Replacing LCC with an Established Language (WS-BPEL)   

OpenKnowledge chose LCC as its core language because it provided a 
parsimonious yet powerful language with strong links to more abstract, generic 
process specification and declarative languages. Nevertheless, we have always 
recognised that other process languages could have been substituted for LCC and 
we have made the OpenKnowledge kernel system as independent as we could from 
specific choice of core language. This raises the possibility, for those who prefer a 
core language in some style other than LCC, to replace LCC with a process 
language of choice. We have demonstrated this with the Web Services Business 
Process Execution Language (WS-BPEL [12] ). 

This approach to integrating OpenKnowledge with other design systems requires 
much deeper understanding of the OpenKnowledge system, since it requires the 
LCC interpreter in the OpenKnowledge kernel to be replaced with an interpreter for a 
different language. Once done, however, it allows the more traditional process 
language (in our case WS-BPEL) to take advantage of the peer to peer discovery 
methods and other OpenKnowledge infrastructure. For those deeply committed to a 
non-LCC process specification language, this could be a more attractive long-term 
option than translation or meta-interpretation. Our experience of replacing LCC with 
WS-BPEL is described in our technical report [13] . 

Source URL:  http://www.openk.org/beingAnOKuser/design/connect
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Links:   
[1] http://www.agilemodeling.com/artifacts/activityDiagram.htm
[2] http://www.cisa.informatics.ed.ac.uk/OK/Deliverables/D7.5/UML-editor.zip
[3] http://taverna.sourceforge.net/ 
[4] http://www.cisa.informatics.ed.ac.uk/OK/Deliverables/D7.5/taverna/taverna.pdf
[5] http://www.cisa.informatics.ed.ac.uk/OK/Deliverables/D7.5/taverna/code.zip
[6] http://www.w3.org/Submission/OWL-S/ 
[7] http://www.w3.org/TR/owl-features/ 
[8] http://www.cisa.informatics.ed.ac.uk/OK/Deliverables/D7.5/owls/lcc-owls.pdf
[9] http://www.cisa.informatics.ed.ac.uk/OK/Deliverables/D7.5/owls/code.zip
[10] http://www.ibm.com/developerworks/library/specification/ws-bpel/
[11] http://www.cisa.informatics.ed.ac.uk/OK/Deliverables/D7.5/bpel4ws-interpreter.pdf 
[12] http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
[13] http://www.cisa.informatics.ed.ac.uk/OK/Deliverables/D7.5/bpel-for-lcc.pdf

  


